Skip to content
2000
Volume 11, Issue 1
  • ISSN: 2215-0838
  • E-ISSN: 2215-0846

Abstract

L. (Punicaceae) generally identified as pomegranate, seeded or granular fruit, has been widely used for centuries in many cultures. exhibits a wide variety of medicinal activities, ., anticancer, antioxidant, antimicrobial, anti-inflammatory, . A variety of ethnomedical uses of in several formulations, like powder, pulp, decoction and extract on its own or in blend with additional herbs against various diseases, like inflammation, skin disorders, cancer, microbial infections, and asthma, have been recorded. A wide variety of phytochemicals, including polyphenols, terpenoids, fatty acids, sugars, amino acids, tocopherols, sterols, alkaloids, amino acids, ., have been isolated and identified from , amongst which punicalagin, the major polyphenolic component of pomegranate extract, has been well thought of as the main effective component of plant. Thorough information related to was gathered using the keywords or pomegranate in various computerized databases, including Pubmed, ACS, Science Direct, Google Scholar, WoS, Springer Link, Sci Finder, and Wiley. All full-text articles and abstracts were reviewed. Additionally, book chapters and monographs were also screened. The current study has highlighted the botany, ethnopharmacology, phytochemical profile, pharmacological activity, and toxicological studies of . The ethnopharmacological importance of pomegranate has been discussed in recent pharmacological studies, indicating its medicinal and nutritional benefits in varied human disorders. Moreover, inquiries related to various facets of relating to safety, toxicity and quality control are yet unanswered. Additionally, the article has provided a thorough knowledge of the herb, including its mechanism of action, structure activity relationships, safety as well as toxicity, as reported in clinical studies.

Loading

Article metrics loading...

/content/journals/ctm/10.2174/0122150838249599231020074948
2023-10-31
2025-09-02
Loading full text...

Full text loading...

References

  1. BhowmikD. GopinathH. KumarB.P. KumarK.S. Medicinal uses of Punica granatum and its health benefits.J. Pharmacogn. Phytochem.2013152835
    [Google Scholar]
  2. PrakashC.V. PrakashI. Bioactive chemical constituents from pomegranate (Punica granatum) juice, seed and peel-a review.Int. J. Res. Chem. Environ.20111118
    [Google Scholar]
  3. KarimiM. SadeghiR. KokiniJ. Pomegranate as a promising opportunity in medicine and nanotechnology.Trends Food Sci. Technol.201769597310.1016/j.tifs.2017.08.019
    [Google Scholar]
  4. FouratiM. SmaouiS. HlimaH.B. Bioactive compounds and pharmacological potential of pomegranate (Punica granatum) seeds-a review.Plant Foods Hum. Nutr.202075447748610.1007/s11130‑020‑00863‑7 33040298
    [Google Scholar]
  5. HollandD. HatibK. Bar-Ya’akovI. Pomegranate: botany, horticulture, breeding.Hortic. Rev. (Am. Soc. Hortic. Sci.)20093512719110.1002/9780470593776.ch2
    [Google Scholar]
  6. FahmyH. HegaziN. El-ShamyS. FaragM.A. Pomegranate juice as a functional food: A comprehensive review of its polyphenols, therapeutic merits, and recent patents.Food Funct.20201175768578110.1039/D0FO01251C 32608443
    [Google Scholar]
  7. El-HadaryA.E. TahaM. Pomegranate peel methanolic‐extract improves the shelf‐life of edible‐oils under accelerated oxidation conditions.Food Sci. Nutr.2020841798181110.1002/fsn3.1391 32328245
    [Google Scholar]
  8. RahmaniA.H. AlsahliM.A. AlmatroodiS.A. Active constituents of pomegranates (Punica granatum) as potential candidates in the management of health through modulation of biological activities.Pharmacogn. J.20179568969510.5530/pj.2017.5.109
    [Google Scholar]
  9. UllahN. AliJ. KhanF.A. Proximate composition, minerals content, antibacterial and antifungal activity evaluation of pomegranate (Punica granatum L.) peels powder.Middle East J. Sci. Res.2012113396401
    [Google Scholar]
  10. EngelsG. BrinckmannJ. Herb Profile: Pomegranate (Punicagranatum) Family: Lythraceae.HerbalGram201310017
    [Google Scholar]
  11. ChandraR. BabuK.D. JadhavV.T. JaimeA. SilvaT.D. Origin, history and domestication of pomegranate.Fruit. Vegetable Cereal Sci. Biotechnol.2010216
    [Google Scholar]
  12. MalikA. AfaqF. SarfarazS. AdhamiV.M. SyedD.N. MukhtarH. Pomegranate fruit juice for chemoprevention and chemotherapy of prostate cancer.Proc. Natl. Acad. Sci. USA200510241148131481810.1073/pnas.0505870102 16192356
    [Google Scholar]
  13. DerakhshanZ. FerranteM. TadiM. Antioxidant activity and total phenolic content of ethanolic extract of pomegranate peels, juice and seeds.Food Chem. Toxicol.201811410811110.1016/j.fct.2018.02.023 29448088
    [Google Scholar]
  14. DandekarD.V. JayaprakashaG.K. PatilB.S. Simultaneous extraction of bioactive limonoid aglycones and glucoside from Citrus aurantium L. using hydrotropy.Z. Naturforsch. C J. Biosci.2008633-417618010.1515/znc‑2008‑3‑403 18533458
    [Google Scholar]
  15. FatmaZ. LuisM.B.J. AntonioE.D.L.M.Y.Z. An aqueous pomegranate peel extract (Punica granatum) protect against Elastase-induced pulmonary emphysema in Sprague Dawley rats model.Braz. J. Pharm. Sci.202157e1897210.1590/s2175‑97902020000418972
    [Google Scholar]
  16. Viuda-MartosM. Fernández-LópezJ. Pérez-ÁlvarezJ.A. Pomegranate and its many functional components as related to human health: A review.Compr. Rev. Food Sci. Food Saf.20109663565410.1111/j.1541‑4337.2010.00131.x 33467822
    [Google Scholar]
  17. FariaA. CalhauC. de FreitasV. MateusN. Procyanidins as antioxidants and tumor cell growth modulators.J. Agric. Food Chem.20065462392239710.1021/jf0526487 16536624
    [Google Scholar]
  18. FariaA. MonteiroR. MateusN. AzevedoI. CalhauC. Effect of pomegranate (Punica granatum) juice intake on hepatic oxidative stress.Eur. J. Nutr.200746527127810.1007/s00394‑007‑0661‑z 17514376
    [Google Scholar]
  19. AdhamiV.M. MukhtarH. Polyphenols from green tea and pomegranate for prevention of prostate cancer.Free Radic. Res.200640101095110410.1080/10715760600796498 17015254
    [Google Scholar]
  20. Chidambara MurthyK.N. ReddyV.K. VeigasJ.M. MurthyU.D. Study on wound healing activity of Punica granatum peel.J. Med. Food20047225625910.1089/1096620041224111 15298776
    [Google Scholar]
  21. SaxenaA. VikramN.K. Role of selected Indian plants in management of type 2 diabetes: a review.J. Altern. Complement. Med.200410236937810.1089/107555304323062365 15165418
    [Google Scholar]
  22. KawamadaY. ShimadaT. Cosmetic or topical compositions containing Punica granatum extracts. Japanese Patent: JP.20022002234814: A2,2002
    [Google Scholar]
  23. MoayadiA. Mixtures of pomegranate seed oils for cosmetics JP 2004083544, A2 20040318,2004
    [Google Scholar]
  24. WatanabeK HatakoshiM Punica granatum leaf extracts for inactivation of allergen JP 2002370996, A2 20021224.2002
    [Google Scholar]
  25. KimM.M. KimS. Composition for improving oral hygiene containing Punica granatum L. extract. KR 2002066042,2002
    [Google Scholar]
  26. LanskyE.P. Pomegranate supplements prepared from pomegranate material including pomegranate seeds. US Patent 6060063,2000
    [Google Scholar]
  27. BruijnC.D. ChristF.R. DziaboA.J. Ophthalmic, pharmaceutical and other healthcare preparations with naturally occurring plant compounds, extracts and derivatives. US Patent Application 20030086986,2003
    [Google Scholar]
  28. ShiraishiT. AbeM. MiyagawaT. Cheese foods containing conjugated polyunsaturated fatty acid glycerides.JP20022002176913
    [Google Scholar]
  29. AviramM. DornfeldL. KaplanM. Pomegranate juice flavonoids inhibit low-density lipoprotein oxidation and cardiovascular diseases: Studies in atherosclerotic mice and in humans.Drugs Exp. Clin. Res.2002282-34962 12224378
    [Google Scholar]
  30. AmorimL.F. CatanhoM.T. TerraD.A. Assessment of the effect of Punica granatum (pomegranata) on the bioavailability of the radiopharmaceutical sodium pertechnetate (99mTc) in Wistar rats.Cell. Mol. Biol.2003494501507 12899440
    [Google Scholar]
  31. Pérez-VicenteA. Gil-IzquierdoA. García-VigueraC. In vitro gastrointestinal digestion study of pomegranate juice phenolic compounds, anthocyanins, and vitamin C.J. Agric. Food Chem.20025082308231210.1021/jf0113833 11929289
    [Google Scholar]
  32. RobertP. GorenaT. RomeroN. SepulvedaE. ChavezJ. SaenzC. Encapsulation of polyphenols and anthocyanins from pomegranate (Punica granatum) by spray drying.Int. J. Food Sci. Technol.20104571386139410.1111/j.1365‑2621.2010.02270.x
    [Google Scholar]
  33. WaheedS. SiddiqueN. RahmanA. ZaidiJ.H. AhmadS. INAA for dietary assessment of essential and other trace elements in fourteen fruits harvested and consumed in Pakistan.J. Radioanal. Nucl. Chem.2004260352353110.1023/B:JRNC.0000028211.23625.99
    [Google Scholar]
  34. HornungE. PernstichC. FeussnerI. Formation of conjugated Δ 11 Δ 13 -double bonds by Δ 12 -linoleic acid (1,4)-acyl-lipid-desaturase in pomegranate seeds.Eur. J. Biochem.2002269194852485910.1046/j.1432‑1033.2002.03184.x 12354116
    [Google Scholar]
  35. DalimovD.N. DalimovaG.N. BhattM. Chemical composition and lignins of tomato and pomegranate seeds.Chem. Nat. Compd.2003391374010.1023/A:1024128512801
    [Google Scholar]
  36. WangR.F. XieW.D. ZhangZ. Bioactive compounds from the seeds of Punica granatum (pomegranate).J. Nat. Prod.200467122096209810.1021/np0498051 15620261
    [Google Scholar]
  37. TozziF. Núñez-GómezD. LeguaP. Del BubbaM. GiordaniE. MelgarejoP. Qualitative and varietal characterization of pomegranate peel: High-value co-product or waste of production?Sci. Hortic.202229111060110.1016/j.scienta.2021.110601
    [Google Scholar]
  38. MaganganaT.P. MakungaN.P. FawoleO.A. OparaU.L. Processing factors affecting the phytochemical and nutritional properties of Pomegranate (Punica granatum L.) peel waste: A review.Molecules20202520469010.3390/molecules25204690 33066412
    [Google Scholar]
  39. FaragRS Abdel-LatifMS EmamS S TawfeekLS Phytochemical screening and polyphenol constituents of pomegranate peels and leave juices. Landmark Res. J Agric Soil Sci20141608693
    [Google Scholar]
  40. KaderidesK. KyriakoudiA. MourtzinosI. GoulaA.M. Potential of pomegranate peel extract as a natural additive in foods.Trends Food Sci. Technol.202111538039010.1016/j.tifs.2021.06.050
    [Google Scholar]
  41. XuJ. CaoK. LiuX. ZhaoL. FengZ. LiuJ. Punicalagin regulates signaling pathways in inflammation-associated chronic diseases.Antioxidants20211112910.3390/antiox11010029 35052533
    [Google Scholar]
  42. EspostoS. VenezianiG. TaticchiA. Chemical composition, antioxidant activity, and sensory characterization of commercial pomegranate juices.Antioxidants2021109138110.3390/antiox10091381 34573013
    [Google Scholar]
  43. SuručićR. TubićB. StojiljkovićM.P. Computational study of pomegranate peel extract polyphenols as potential inhibitors of SARS-CoV-2 virus internalization.Mol. Cell. Biochem.202147621179119310.1007/s11010‑020‑03981‑7 33200379
    [Google Scholar]
  44. AqilF. MunagalaR. VadhanamM.V. Anti-proliferative activity and protection against oxidative DNA damage by punicalagin isolated from pomegranate husk.Food Res. Int.201249134535310.1016/j.foodres.2012.07.059 23493479
    [Google Scholar]
  45. GanesanT. SinniahA. ChikZ. AlshawshM.A. Punicalagin regulates apoptosis-autophagy switch via modulation of annexin A1 in colorectal cancer.Nutrients2020128243010.3390/nu12082430 32823596
    [Google Scholar]
  46. AdaramoyeO. ErguenB. NitzscheB. HöpfnerM. JungK. RabienA. Punicalagin, a polyphenol from pomegranate fruit, induces growth inhibition and apoptosis in human PC-3 and LNCaP cells.Chem. Biol. Interact.201727410010610.1016/j.cbi.2017.07.009 28709945
    [Google Scholar]
  47. CaoK. LvW. HuS. GaoJ. LiuJ. FengZ. Punicalagin activates AMPK/PGC-1α/Nrf2 cascade in mice: The potential protective effect against prenatal stress.Mol. Nutr. Food Res.20206414200031210.1002/mnfr.202000312 32475051
    [Google Scholar]
  48. CaoK. WangK. YangM. LiuX. LvW. LiuJ. Punicalagin improves hepatic lipid metabolism via modulation of oxidative stress and mitochondrial biogenesis in hyperlipidemic mice.Food Funct.202011119624963310.1039/D0FO01545H 32975274
    [Google Scholar]
  49. LiuX. CaoK. LvW. Punicalagin attenuates endothelial dysfunction by activating FoxO1, a pivotal regulating switch of mitochondrial biogenesis.Free Radic. Biol. Med.201913525126010.1016/j.freeradbiomed.2019.03.011 30878647
    [Google Scholar]
  50. RettigM.B. HeberD. AnJ. Pomegranate extract inhibits androgen-independent prostate cancer growth through a nuclear factor-κB-dependent mechanism.Mol. Cancer Ther.2008792662267110.1158/1535‑7163.MCT‑08‑0136 18790748
    [Google Scholar]
  51. KoyamaS. CobbL.J. MehtaH.H. Pomegranate extract induces apoptosis in human prostate cancer cells by modulation of the IGF–IGFBP axis.Growth Horm. IGF Res.2010201556210.1016/j.ghir.2009.09.003 19853487
    [Google Scholar]
  52. AlbrechtM. JiangW. Kumi-DiakaJ. Pomegranate extracts potently suppress proliferation, xenograft growth, and invasion of human prostate cancer cells.J. Med. Food20047327428310.1089/jmf.2004.7.274 15383219
    [Google Scholar]
  53. KhanN. HadiN. AfaqF. SyedD.N. KweonM.H. MukhtarH. Pomegranate fruit extract inhibits prosurvival pathways in human A549 lung carcinoma cells and tumor growth in athymic nude mice.Carcinogenesis200728116317310.1093/carcin/bgl145 16920736
    [Google Scholar]
  54. LiY. YangF. ZhengW. Punica granatum (pomegranate) leaves extract induces apoptosis through mitochondrial intrinsic pathway and inhibits migration and invasion in non-small cell lung cancer in vitro.Biomed. Pharmacother.20168022723510.1016/j.biopha.2016.03.023 27133061
    [Google Scholar]
  55. KimN.D. MehtaR. YuW. Chemopreventive and adjuvant therapeutic potential of pomegranate (Punica granatum) for human breast cancer.Breast Cancer Res. Treat.200271320321710.1023/A:1014405730585 12002340
    [Google Scholar]
  56. JeuneM.A.L. Kumi-DiakaJ. BrownJ. Anticancer activities of pomegranate extracts and genistein in human breast cancer cells.J. Med. Food20058446947510.1089/jmf.2005.8.469 16379557
    [Google Scholar]
  57. KhanG.N. GorinM.A. RosenthalD. Pomegranate fruit extract impairs invasion and motility in human breast cancer.Integr. Cancer Ther.20098324225310.1177/1534735409341405 19815594
    [Google Scholar]
  58. SreejaS. Santhosh KumarT.R. LakshmiB.S. SreejaS. Pomegranate extract demonstrate a selective estrogen receptor modulator profile in human tumor cell lines and in vivo models of estrogen deprivation.J. Nutr. Biochem.201223772573210.1016/j.jnutbio.2011.03.015 21839626
    [Google Scholar]
  59. SeeramN. AdamsL. HenningS. In vitro antiproliferative, apoptotic and antioxidant activities of punicalagin, ellagic acid and a total pomegranate tannin extract are enhanced in combination with other polyphenols as found in pomegranate juice.J. Nutr. Biochem.200516636036710.1016/j.jnutbio.2005.01.006 15936648
    [Google Scholar]
  60. AdamsL.S. SeeramN.P. AggarwalB.B. TakadaY. SandD. HeberD. Pomegranate juice, total pomegranate ellagitannins, and punicalagin suppress inflammatory cell signaling in colon cancer cells.J. Agric. Food Chem.200654398098510.1021/jf052005r 16448212
    [Google Scholar]
  61. LarrosaM. Tomás-BarberánF.A. EspínJ.C. The dietary hydrolysable tannin punicalagin releases ellagic acid that induces apoptosis in human colon adenocarcinoma CaCo2 cells by using the mitochondrial pathway.J. Nutr. Biochem.200617961162510.1016/j.jnutbio.2005.09.004 16426830
    [Google Scholar]
  62. AfaqF. MalikA. SyedD. MaesD. MatsuiM.S. MukhtarH. Pomegranate fruit extract modulates UV-B-mediated phosphorylation of mitogen-activated protein kinases and activation of nuclear factor kappa B in normal human epidermal keratinocytes paragraph sign.Photochem. Photobiol.2005811384510.1562/2004‑08‑06‑RA‑264.1 15493960
    [Google Scholar]
  63. YoshimuraM. WatanabeY. KasaiK. YamakoshiJ. KogaT. Inhibitory effect of an ellagic acid-rich pomegranate extract on tyrosinase activity and ultraviolet-induced pigmentation.Biosci. Biotechnol. Biochem.200569122368237310.1271/bbb.69.2368 16377895
    [Google Scholar]
  64. PengJ. WeiD. FuZ. Punicalagin ameliorates lipopolysaccharide-induced acute respiratory distress syndrome in mice.Inflammation201538249349910.1007/s10753‑014‑9955‑5 25005005
    [Google Scholar]
  65. OudaneB. BoudemaghD. BounekhelM. SobhiW. VidalM. BroussyS. Isolation, characterization, antioxidant activity, and protein-precipitating capacity of the hydrolyzable tannin punicalagin from pomegranate yellow peel (Punica granatum).J. Mol. Struct.2018115639039610.1016/j.molstruc.2017.11.129
    [Google Scholar]
  66. LuoJ. LongY. RenG. Punicalagin reversed the hepatic injury of tetrachloromethane by antioxidation and enhancement of autophagy.J. Med. Food201922121271127910.1089/jmf.2019.4411 31718395
    [Google Scholar]
  67. ZhangL. ChinnathambiA. AlharbiS.A. VeeraraghavanV.P. MohanS.K. ZhangG. Punicalagin promotes the apoptosis in human cervical cancer (ME-180) cells through mitochondrial pathway and by inhibiting the NF-kB signaling pathway.Saudi J. Biol. Sci.20202741100110610.1016/j.sjbs.2020.02.015 32256171
    [Google Scholar]
  68. ZahinM. AhmadI. GuptaR.C. AqilF. Punicalagin and ellagic acid demonstrate antimutagenic activity and inhibition of benzo[a]pyrene induced DNA adducts.BioMed Res. Int.2014201411010.1155/2014/467465 24949451
    [Google Scholar]
  69. Gosset-ErardC. ZhaoM. Lordel-MadeleineS. EnnaharS. Identification of punicalagin as the bioactive compound behind the antimicrobial activity of pomegranate (Punica granatum L.) peels.Food Chem.202135212939610.1016/j.foodchem.2021.129396 33652195
    [Google Scholar]
  70. XuY. ShiC. WuQ. Antimicrobial activity of punicalagin against Staphylococcus aureus and its effect on biofilm formation.Foodborne Pathog. Dis.201714528228710.1089/fpd.2016.2226 28128637
    [Google Scholar]
  71. HoustonD.M.J. BugertJ.J. DenyerS.P. HeardC.M. Potentiated virucidal activity of pomegranate rind extract (PRE) and punicalagin against Herpes simplex virus (HSV) when co-administered with zinc (II) ions, and antiviral activity of PRE against HSV and aciclovir-resistant HSV.PLoS One2017126e017929110.1371/journal.pone.0179291 28665969
    [Google Scholar]
  72. LiP. DuR. ChenZ. Punicalagin is a neuraminidase inhibitor of influenza viruses.J. Med. Virol.20219363465347210.1002/jmv.26449 32827314
    [Google Scholar]
  73. FouadA.A. QutubH.O. Al-MelhimW.N. Nephroprotection of punicalagin in rat model of endotoxemic acute kidney injury.Toxicol. Mech. Methods201626753854310.1080/15376516.2016.1211207 27464552
    [Google Scholar]
  74. HuangM. WuK. ZengS. Punicalagin inhibited inflammation and migration of fibroblast-like synoviocytes through NF-κB Pathway in the experimental study of rheumatoid arthritis.J. Inflamm. Res.2021141901191310.2147/JIR.S302929 34012288
    [Google Scholar]
  75. LeeS.I. KimB.S. KimK.S. LeeS. ShinK.S. LimJ.S. Immune-suppressive activity of punicalagin via inhibition of NFAT activation.Biochem. Biophys. Res. Commun.2008371479980310.1016/j.bbrc.2008.04.150 18466764
    [Google Scholar]
  76. WangY. SmithW. HaoD. HeB. KongL. M1 and M2 macrophage polarization and potentially therapeutic naturally occurring compounds.Int. Immunopharmacol.20197045946610.1016/j.intimp.2019.02.050 30861466
    [Google Scholar]
  77. DuL. LiJ. ZhangX. Pomegranate peel polyphenols inhibits inflammation in LPS-induced RAW264.7 macrophages via the suppression of TLR4/NF-κB pathway activation.Food Nutr. Res.20196306310.29219/fnr.v63.3392 31073284
    [Google Scholar]
  78. BerközM. KrośniakM. Punicalagin induces apoptosis in A549 cell line through mitochondria-mediated pathway.Gen. Physiol. Biophys.202039655756710.4149/gpb_2020024 33226364
    [Google Scholar]
  79. SharmaA. AhmadS. AhmadT. AliS. SyedM.A. Mitochondrial dynamics and mitophagy in lung disorders.Life Sci.202128411987610.1016/j.lfs.2021.119876 34389405
    [Google Scholar]
  80. RabeK.F. HurdS. AnzuetoA. Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease: GOLD executive summary.Am. J. Respir. Crit. Care Med.2007176653255510.1164/rccm.200703‑456SO 17507545
    [Google Scholar]
  81. McGarry HoughtonA. Matrix metalloproteinases in destructive lung disease.Matrix Biol.201544-4616717410.1016/j.matbio.2015.02.002 25686691
    [Google Scholar]
  82. GanW.Q. ManS.F. SenthilselvanA. SinD.D. Association between chronic obstructive pulmonary disease and systemic inflammation: a systematic review and a meta-analysis.Thorax200459757458010.1136/thx.2003.019588 15223864
    [Google Scholar]
  83. WareL. Pathophysiology of acute lung injury and the acute respiratory distress syndrome.Semin. Respir. Crit. Care Med.200627433734910.1055/s‑2006‑948288 16909368
    [Google Scholar]
  84. MeiS.H.J. McCarterS.D. DengY. ParkerC.H. LilesW.C. StewartD.J. Prevention of LPS-induced acute lung injury in mice by mesenchymal stem cells overexpressing angiopoietin 1.PLoS Med.200749e26910.1371/journal.pmed.0040269 17803352
    [Google Scholar]
  85. ImaiY. KubaK. NeelyG.G. Identification of oxidative stress and Toll-like receptor 4 signaling as a key pathway of acute lung injury.Cell2008133223524910.1016/j.cell.2008.02.043 18423196
    [Google Scholar]
  86. GunnarssonT.S. SigvaldasonK. ReynissonK.I. MöllerA.D. The incidence and mortality of ARDS at Landspítali-The National University Hospital of Iceland 2004-2008.Laeknabladid2013991044344810.17992/lbl.2013.10.512 24287726
    [Google Scholar]
  87. WareL. JanzD. Biomarkers of ALI/ARDS: Pathogenesis, discovery, and relevance to clinical trials.Semin. Respir. Crit. Care Med.201334453754810.1055/s‑0033‑1351124 23934723
    [Google Scholar]
  88. SunK. HuangR. YanL. Schisandrin attenuates lipopolysaccharide-induced lung injury by regulating TLR-4 and Akt/FoxO1 signaling pathways.Front. Physiol.20189110410.3389/fphys.2018.01104 30177885
    [Google Scholar]
  89. WangY.M. JiR. ChenW.W. Paclitaxel alleviated sepsis-induced acute lung injury by activating MUC1 and suppressing TLR-4/NF-κB pathway.Drug Des. Devel. Ther.2019133391340410.2147/DDDT.S222296 31576113
    [Google Scholar]
  90. RenC. ChenJ. CheQ. IL-37 alleviates TNF-α-induced pyroptosis of rheumatoid arthritis fibroblast-like synoviocytes by inhibiting the NF-κB/GSDMD signaling pathway.Immunobiology2023228315238210.1016/j.imbio.2023.152382 37075579
    [Google Scholar]
  91. OlędzkaA.J. CzerwińskaM.E. Role of plant-derived compounds in the molecular pathways related to inflammation.Int. J. Mol. Sci.2023245466610.3390/ijms24054666 36902097
    [Google Scholar]
  92. Krajka-KuźniakV. Baer-DubowskaW. Modulation of Nrf2 and NF-κB signaling pathways by naturally occurring compounds in relation to cancer prevention and therapy. Are combinations better than single compounds?Int. J. Mol. Sci.20212215822310.3390/ijms22158223 34360990
    [Google Scholar]
  93. TehranifarA. SelahvarziY. KharraziM. BakhshV.J. High potential of agro-industrial by-products of pomegranate (Punica granatum L.) as the powerful antifungal and antioxidant substances.Ind. Crops Prod.20113431523152710.1016/j.indcrop.2011.05.007
    [Google Scholar]
  94. GilM.I. Tomás-BarberánF.A. Hess-PierceB. HolcroftD.M. KaderA.A. Antioxidant activity of pomegranate juice and its relationship with phenolic composition and processing.J. Agric. Food Chem.200048104581458910.1021/jf000404a 11052704
    [Google Scholar]
  95. ZhangT. NieY. GuJ. Corrigendum: Identification of mitochondrial-related prognostic biomarkers associated with primary bile acid biosynthesis and tumor microenvironment of hepatocellular carcinoma.Front. Oncol.20221184362310.3389/fonc.2021.843623 35111689
    [Google Scholar]
  96. NaveenaB.M. SenA.R. KingslyR.P. SinghD.B. KondaiahN. Antioxidant activity of pomegranate rind powder extract in cooked chicken patties.Int. J. Food Sci. Technol.200843101807181210.1111/j.1365‑2621.2007.01708.x
    [Google Scholar]
  97. NazS. SiddiqiR. AhmadS. RasoolS.A. SayeedS.A. Antibacterial activity directed isolation of compounds from Punica granatum.J. Food Sci.2007729M341M34510.1111/j.1750‑3841.2007.00533.x 18034726
    [Google Scholar]
  98. ZhangT. NieY. GuJ. Identification of mitochondrial-related prognostic biomarkers associated with primary bile acid biosynthesis and tumor microenvironment of hepatocellular carcinoma.Front. Oncol.20211158747910.3389/fonc.2021.587479 33868990
    [Google Scholar]
  99. SuX. SangsterM.Y. D’SouzaD.H. In vitro effects of pomegranate juice and pomegranate polyphenols on foodborne viral surrogates.Foodborne Pathog. Dis.20107121473147910.1089/fpd.2010.0583 20807113
    [Google Scholar]
  100. VidalA. FallareroA. PeñaB.R. Studies on the toxicity of Punica granatum L. (Punicaceae) whole fruit extracts.J. Ethnopharmacol.2003892-329530010.1016/j.jep.2003.09.001 14611895
    [Google Scholar]
  101. JosephM.M. AravindS.R. GeorgeS.K. VargheseS. SreelekhaT.T. A galactomannan polysaccharide from Punica granatum imparts in vitro and in vivo anticancer activity.Carbohydr. Polym.20139821466147510.1016/j.carbpol.2013.07.023 24053828
    [Google Scholar]
  102. YangY. LiJ. TangM. NieB. HuangW. Decaprenyl Diphosphate Synthase Subunit 1 (PDSS1): A potential prognostic biomarker and immunotherapy-target for hepatocellular carcinoma.Cancer Manag. Res.2022141627163910.2147/CMAR.S364346 35535267
    [Google Scholar]
  103. ZhouQ. ChenL. YangL. ZhouH. ChenY. GuoY. Integrated systemic analysis of FAM72A to identify its clinical relevance, biological function, and relationship to drug sensitivity in hepatocellular carcinoma.Front. Oncol.202212104647310.3389/fonc.2022.1046473 36483027
    [Google Scholar]
  104. SunX. OuZ. ChenR. Activation of the p62‐Keap1‐NRF2 pathway protects against ferroptosis in hepatocellular carcinoma cells.Hepatology201663117318410.1002/hep.28251 26403645
    [Google Scholar]
  105. SongM.Y. LeeD.Y. ChunK.S. KimE.H. The role of NRF2/KEAP1 signaling pathway in cancer metabolism.Int. J. Mol. Sci.2021229437610.3390/ijms22094376 33922165
    [Google Scholar]
  106. SalminenA. KauppinenA. KaarnirantaK. Phytochemicals suppress nuclear factor-κB signaling.Curr. Opin. Clin. Nutr. Metab. Care2012151232810.1097/MCO.0b013e32834d3ae7 22108095
    [Google Scholar]
  107. MushnickR. Rhabdomyolysis Medline Plus.U.S. National Library of Medicine2007
    [Google Scholar]
  108. HeberD. SeeramN.P. WyattH. Safety and antioxidant activity of a pomegranate ellagitannin-enriched polyphenol dietary supplement in overweight individuals with increased waist size.J. Agric. Food Chem.20075524100501005410.1021/jf071689v 17966977
    [Google Scholar]
  109. BlascoJ. CuberoS. Gómez-SanchísJ. MiraP. MoltóE. Development of a machine for the automatic sorting of pomegranate (Punica granatum) arils based on computer vision.J. Food Eng.2009901273410.1016/j.jfoodeng.2008.05.035
    [Google Scholar]
  110. PayelG. SunilC.K. Quality analysis of pomegranate by non-destructive soft X-ray method.J. Food Process. Technol.201453412
    [Google Scholar]
  111. PandeyC. SethyP.K. BiswasP. BeheraS.K. KhanM.R. Quality evaluation of pomegranate fruit using image processing techniques.2020 International Conference on Communication and Signal Processing (ICCSP)10.1109/ICCSP48568.2020.9182232
    [Google Scholar]
/content/journals/ctm/10.2174/0122150838249599231020074948
Loading
/content/journals/ctm/10.2174/0122150838249599231020074948
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): Chinese medicine; pharmacology; phytochemistry; Pomegranate; Punica granatum; punicalagin
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test