Skip to content
2000
Volume 11, Issue 1
  • ISSN: 2215-0838
  • E-ISSN: 2215-0846

Abstract

The global threat posed by the COVID-19 pandemic has intensified the search for innovative treatments, sparking interest in the potential of natural materials as sources for antiviral medications. This paper delves into the realm of natural medicine, examining the utilization of plant extracts and microbial compounds to combat viral diseases like COVID-19. While these sources hold promise, safety remains paramount. Just as with conventional drugs, natural medications can yield adverse effects and interactions, necessitating rigorous evaluation. To mitigate potential risks, techniques to reduce after-effects are explored, emphasizing the importance of standardization and quality control. Integrating traditional knowledge with modern scientific methods presents an opportunity to discover novel therapies. The development of potent and effective natural antiviral medications and vaccines, crucial for managing future outbreaks, demands interdisciplinary collaboration, regulatory oversight, and comprehensive clinical trials. In navigating the dynamic landscape of viral diseases, the exploration of natural sources complements conventional approaches, underlining the need for a holistic and balanced strategy.

Loading

Article metrics loading...

/content/journals/ctm/10.2174/0122150838264297231026111437
2023-11-10
2025-12-08
Loading full text...

Full text loading...

References

  1. RastogiM. PandeyN. ShuklaA. SinghS.K. SARS coronavirus 2: From genome to infectome.Respir. Res.202021131810.1186/s12931‑020‑01581‑z 33261606
    [Google Scholar]
  2. BibiS. HasanM.M. WangY-B. PapadakosS.P. YuH. Cordycepin as a promising inhibitor of SARS-CoV-2 RNA dependent RNA polymerase (RdRp).Curr. Med. Chem.202229115216210.2174/1875533XMTE3xNDEq0 34420502
    [Google Scholar]
  3. IslamF. BibiS. MeemA.F.K. Natural bioactive molecules: An alternative approach to the treatment and control of covid-19.Int. J. Mol. Sci.202122231263810.3390/ijms222312638 34884440
    [Google Scholar]
  4. FantiniJ. ChahinianH. YahiN. Synergistic antiviral effect of hydroxychloroquine and azithromycin in combination against SARS-CoV-2: What molecular dynamics studies of virus-host interactions reveal.Int. J. Antimicrob. Agents202056210602010.1016/j.ijantimicag.2020.106020
    [Google Scholar]
  5. KandeelM. Al-NazawiM. Virtual screening and repurposing of FDA approved drugs against COVID-19 main protease.Life Sci.202025111762710.1016/j.lfs.2020.117627 32251634
    [Google Scholar]
  6. JohnG. SahajpalN.S. MondalA.K. Next-generation sequencing (NGS) in COVID-19: A tool for SARS-CoV-2 diagnosis, monitoring new strains and phylodynamic modeling in molecular epidemiology.Curr. Issues Mol. Biol.202143284586710.3390/cimb43020061 34449545
    [Google Scholar]
  7. KhatoonF. PrasadK. KumarV. Neurological manifestations of COVID-19: Available evidences and a new paradigm.J. Neurovirol.202026561963010.1007/s13365‑020‑00895‑4 32839951
    [Google Scholar]
  8. XydakisM.S. Dehgani-MobarakiP. HolbrookE.H. Smell and taste dysfunction in patients with COVID-19.Lancet Infect. Dis.20202091015101610.1016/S1473‑3099(20)30293‑0 32304629
    [Google Scholar]
  9. BiswasP. HasanM.M. DeyD. Candidate antiviral drugs for COVID-19 and their environmental implications: A comprehensive analysis.Environ. Sci. Pollut. Res. Int.20212842595705959310.1007/s11356‑021‑16096‑3 34510341
    [Google Scholar]
  10. IslamF. BeparyS. NafadyM.H. IslamR. EmranT.B. SultanaS. Review article polyphenols targeting oxidative stress in spinal cord injury.Current Status and Future Vision202220228741787
    [Google Scholar]
  11. RaniI. KalsiA. KaurG. Modern drug discovery applications for the identification of novel candidates for COVID-19 infections.Ann. Med. Surg.20228010412510.1016/j.amsu.2022.104125 35845863
    [Google Scholar]
  12. WaliaV. KaushikD. MittalV. Delineation of neuroprotective effects and possible benefits of antioxidantstherapy for the treatment of alzheimer’s diseases by targeting mitochondrial-derived reactive oxygen species: Bench to bedside.Mol. Neurobiol.202259165768010.1007/s12035‑021‑02617‑1 34751889
    [Google Scholar]
  13. BansalH. SinglaR.K. BehzadS. ChopraH. GrewalA.S. ShenB. Unleashing the potential of microbial natural products in drug discovery: Focusing on streptomyces as antimicrobials goldmine.Curr. Top. Med. Chem.202121262374239610.2174/1568026621666210916170110 34530711
    [Google Scholar]
  14. KourJ. ChopraH. BukhariS. SharmaR. BansalR. HansM. Nutraceutical-A deep and profound concept.Nutraceut. Heal Care202212810.1016/B978‑0‑323‑89779‑2.00021‑1
    [Google Scholar]
  15. Singh BakshiI. ChopraH. SharmaM. KaushikD. PahwaR. Chapter 9 - Herbal bioactives for wound healing application.In: Herbal Bioactive-Based Drug Delivery Systems.Chapter 9Academic press.202225928210.1016/B978‑0‑12‑824385‑5.00003‑0
    [Google Scholar]
  16. ChopraH. DeyP.S. DasD. BhattacharyaT. ShahM. MubinS. Curcumin nanoparticles as promising therapeutic agents for drug targets.Mol20212616499810.3390/molecules26164998
    [Google Scholar]
  17. SohailM.N. RasulF. KarimA. KanwalU. AttitallaI.H. Plant as a source of natural antiviral agents.Asian J. Anim. Vet. Adv.20116121125115210.3923/ajava.2011.1125.1152
    [Google Scholar]
  18. AbdallaM.A. McGawL.J. Bioprospecting of South African plants as a unique resource for bioactive endophytic microbes.Front. Pharmacol.2018945610.3389/fphar.2018.00456 29867466
    [Google Scholar]
  19. DeyD. HossainR. BiswasP. PaulP. IslamM.A. EmaT.I. Amentoflavone derivatives significantly act towards the main protease (3CLPRO/MPRO) of SARS-CoV-2: in silico admet profiling, molecular docking, molecular dynamics simulation, network pharmacology.Mol. Divers.2022111510.1007/s11030‑022‑10459‑9 35639226
    [Google Scholar]
  20. ZamanW. SaqibS. UllahF. AyazA. YeJ. COVID ‐19: Phylogenetic approaches may help in finding resources for natural cure.Phytother. Res.202034112783278510.1002/ptr.6787 32648294
    [Google Scholar]
  21. AkindeleAJ AgunbiadeFO SofidiyaMO COVID-19 Pandemic: A case for phytomedicines. Nat Prod Commun20201581934578X209450810.1177/1934578X20945086 34191921
    [Google Scholar]
  22. BenarbaB. PandiellaA. Medicinal plants as sources of active molecules against COVID-19.Front. Pharmacol.202011118910.3389/fphar.2020.01189 32848790
    [Google Scholar]
  23. IslamM.T. SarkarC. El-KershD.M. Natural products and their derivatives against coronavirus: A review of the non‐clinical and pre‐clinical data.Phytother. Res.202034102471249210.1002/ptr.6700 32248575
    [Google Scholar]
  24. KoeT. COVID-19 natural product trial: New curcumin, artemisinin supplement to be tested on patients.HTTPS://WWWNUTRAINGREDIENTS-ASIACOM/ARTICLE/2020/04/23/COVID-19-NATURAL-PRODUCT-TRIAL-NEWCURCUMIN-ARTEMISININ-SUPPLEMENT-TO-BE-TESTEDON-PATIENTSn.d2020
  25. OrhanI.E. Senol DenizF.S. Natural products as potential leads against coronaviruses: could they be encouraging structural models against SARS-CoV-2?Nat. Prod. Bioprospect.202010417118610.1007/s13659‑020‑00250‑4 32529545
    [Google Scholar]
  26. StirgusE. Universities across Georgia research ways to prevent, treat COVID-19.
    [Google Scholar]
  27. Rosales-MendozaS. Will plant-made biopharmaceuticals play a role in the fight against COVID-19?Expert Opin. Biol. Ther.202020654554810.1080/14712598.2020.1752177 32250170
    [Google Scholar]
  28. GoldmanA. BomzeD. DanknerR. Cardiovascular adverse events associated with hydroxychloroquine and chloroquine: A comprehensive pharmacovigilance analysis of pre‐COVID‐19 reports.Br. J. Clin. Pharmacol.20218731432144210.1111/bcp.14546 32964535
    [Google Scholar]
  29. KampT.J. HamdanM.H. JanuaryC.T. Chloroquine or hydroxychloroquine for covid-19: Is cardiotoxicity a concern?J. Am. Heart Assoc.2020912e01688710.1161/JAHA.120.016887 32463308
    [Google Scholar]
  30. SinglaR.K. HeX. ChopraH. Natural products for the prevention and control of the COVID-19 pandemic: Sustainable bioresources.Front. Pharmacol.20211275815910.3389/fphar.2021.758159 34925017
    [Google Scholar]
  31. JuhnP. PhillipsA. ButoK. Balancing modern medical benefits and risks.Health Aff.200726364765210.1377/hlthaff.26.3.647 17485739
    [Google Scholar]
  32. GhenadenikA. RochaisÉ. AtkinsonS. BussièresJ.F. Potential risks associated with medication administration, as identified by simple tools and observations.Can. J. Hosp. Pharm.201265430030710.4212/cjhp.v65i4.1161 22919108
    [Google Scholar]
  33. YangY. Use of herbal drugs to treat COVID-19 should be with caution.Lancet2020395102381689169010.1016/S0140‑6736(20)31143‑0 32422123
    [Google Scholar]
  34. McCLAIN SD. Shortages, high prices press garlic supply ndhttps://www.capitalpress.com/nation_world/agriculture/shortages-high-prices-press-garlic-supply/article_84b280d4-88e5-11ea-8606-7b44e2297dec.html
    [Google Scholar]
  35. WiesemeyerJ. . Forecasts are Murky Re: Factoring in phase 1 of U.S./China Accord.2020
    [Google Scholar]
  36. RoseK.D. CroissantP.D. ParliamentC.F. LevinM.B. Spontaneous spinal epidural hematoma with associated platelet dysfunction from excessive garlic ingestion: a case report.Neurosurgery199026588088210.1227/00006123‑199005000‑00026 2352608
    [Google Scholar]
  37. BorrelliF. CapassoR. IzzoA.A. Garlic (Allium sativum L.): Adverse effects and drug interactions in humans.Mol. Nutr. Food Res.200751111386139710.1002/mnfr.200700072 17918162
    [Google Scholar]
  38. MashhadiN.S. GhiasvandR. AskariG. HaririM. DarvishiL. MofidM.R. Anti-oxidative and anti-inflammatory effects of ginger in health and physical activity: review of current evidence.Int. J. Prev. Med.20134Suppl. 1S36S42 23717767
    [Google Scholar]
  39. AngL. LeeH.W. ChoiJ.Y. ZhangJ. LeeM.S. Herbal medicine and pattern identification for treating COVID-19: A rapid review of guidelines.Integr. Med. Res.20209210040710.1016/j.imr.2020.100407 32289016
    [Google Scholar]
  40. SuchardJ.R. WallaceK.L. GerkinR.D. Acute cyanide toxicity caused by apricot kernel ingestion.Ann. Emerg. Med.199832674274410.1016/S0196‑0644(98)70077‑0 9832674
    [Google Scholar]
  41. KimS-R. Rat single oral dose toxicity test of Armeniacae Semen (including endocarp).J Intern Korean Med2012332145159
    [Google Scholar]
  42. ParkJ.H. SeoB.I. ChoS.Y. Single oral dose toxicity study of prebrewed armeniacae semen in rats.Toxicol. Res.2013292919810.5487/TR.2013.29.2.091 24278634
    [Google Scholar]
  43. MugabiI. Africa: COVID-19 - WHO Cautions Against the Use of Traditional Herbs in Africa.2020
    [Google Scholar]
  44. ManiJ.S. JohnsonJ.B. SteelJ.C. Natural product-derived phytochemicals as potential agents against coronaviruses: A review.Virus Res.202028419798910.1016/j.virusres.2020.197989 32360300
    [Google Scholar]
  45. LungJ. LinY.S. YangY.H. The potential chemical structure of anti‐SARS‐CoV‐2 RNA‐dependent RNA polymerase.J. Med. Virol.202092669369710.1002/jmv.25761 32167173
    [Google Scholar]
  46. WangZ. YangL. Turning the tide: Natural products and natural-product-inspired chemicals as potential counters to SARS-CoV-2 infection.Front. Pharmacol.202011101310.3389/fphar.2020.01013 32714193
    [Google Scholar]
  47. FanH.H. WangL.Q. LiuW.L. Repurposing of clinically approved drugs for treatment of coronavirus disease 2019 in a 2019-novel coronavirus-related coronavirus model.Chin. Med. J.202013391051105610.1097/CM9.0000000000000797 32149769
    [Google Scholar]
  48. MilletJ.K. SéronK. LabittR.N. Middle East respiratory syndrome coronavirus infection is inhibited by griffithsin.Antiviral Res.20161331810.1016/j.antiviral.2016.07.011 27424494
    [Google Scholar]
  49. MoriT. O’KeefeB.R. SowderR.C.II Isolation and characterization of griffithsin, a novel HIV-inactivating protein, from the red alga Griffithsia sp.J. Biol. Chem.2005280109345935310.1074/jbc.M411122200 15613479
    [Google Scholar]
  50. AntonioA.S. WiedemannL.S.M. Veiga-JuniorV.F. Natural products’ role against COVID-19.RSC Advances20201039233792339310.1039/D0RA03774E 35693131
    [Google Scholar]
  51. SayedAM KhattabAR AboulMagd AM, et al Nature as a treasure trove of potential anti-SARS-CoV drug leads: A structural/mechanistic rationale.RSC Advances20201034197901980210.1039/D0RA04199H 35685913
    [Google Scholar]
  52. JinY.H. CaiL. ChengZ.S. A rapid advice guideline for the diagnosis and treatment of 2019 novel coronavirus (2019-nCoV) infected pneumonia (standard version).Mil. Med. Res.202071410.1186/s40779‑020‑0233‑6 32029004
    [Google Scholar]
  53. PešićM. The significance of sustainable development of natural product drugs.Br United Nations Glob Sustain Dev Rep2015
    [Google Scholar]
  54. BauerA. BrönstrupM. Industrial natural product chemistry for drug discovery and development.Nat. Prod. Rep.2014311356010.1039/C3NP70058E 24142193
    [Google Scholar]
  55. KhanZ. KarataşY. CeylanA.F. RahmanH. COVID-19 and therapeutic drugs repurposing in hand: The need for collaborative efforts.Pharm. Hosp. Clin.202156131110.1016/j.phclin.2020.06.003
    [Google Scholar]
  56. AliA. Textbook of pharmacognosy, publication and information directorate.New Delhi1993381384
    [Google Scholar]
  57. HossainM.A. ShahM.D. SakariM. Gas chromatography–mass spectrometry analysis of various organic extracts of Merremia borneensis from Sabah.Asian Pac. J. Trop. Med.20114863764110.1016/S1995‑7645(11)60162‑4 21914542
    [Google Scholar]
  58. ThatteU.M. DhanukarS. The rasayan concept: Clues from immunomoldulatory therapy.In: Upadhayaya SN, Dhanukar S, Eds. Immunomodulation Upadhayaya Immunomodulation.New DelhiNarosa Publ. House1997141148
    [Google Scholar]
  59. TiwariV. DarmaniN.A. YueB.Y.J.T. ShuklaD. In vitro antiviral activity of neem (Azardirachta indica L.) bark extract against herpes simplex virus type-1 infection.Phytother. Res.20102481132114010.1002/ptr.3085 20041417
    [Google Scholar]
  60. BorkotokyS. BanerjeeM. A computational prediction of SARS-CoV-2 structural protein inhibitors from Azadirachta indica (Neem).J. Biomol. Struct. Dyn.202139114111412110.1080/07391102.2020.1774419 32462988
    [Google Scholar]
  61. BaildyaN. KhanA.A. GhoshN.N. DuttaT. ChattopadhyayA.P. Screening of potential drug from Azadirachta Indica (Neem) extracts for SARS-CoV-2: An insight from molecular docking and MD-simulation studies.J. Mol. Struct.2021122712939010.1016/j.molstruc.2020.129390 33041371
    [Google Scholar]
  62. Sai RamM. NeetuD. YogeshB. Cyto-protective and immunomodulating properties of Amla (Emblica officinalis) on lymphocytes: An in-vitro study.J. Ethnopharmacol.200281151010.1016/S0378‑8741(01)00421‑4 12020921
    [Google Scholar]
  63. SreeramuluD. RaghunathM. Antioxidant activity and phenolic content of roots, tubers and vegetables commonly consumed in India.Food Res. Int.20104341017102010.1016/j.foodres.2010.01.009
    [Google Scholar]
  64. XiangY. PeiY. QuC. In vitro anti-herpes simplex virus activity of 1,2,4,6-tetra-O-galloyl-β-D-glucose from Phyllanthus emblica L. (Euphorbiaceae).Phytother. Res.201125797598210.1002/ptr.3368 21213355
    [Google Scholar]
  65. EstariM. VenkannaL. SripriyaD. LalithaR. Human immunodeficiency virus (HIV-1) reverse transcriptase inhibitory activity of phyllanthus emblica plant extract.Biol. Med. (Aligarh)20124
    [Google Scholar]
  66. KumarV. ChauhanR.S. TandonC. Biosynthesis and therapeutic implications of iridoid glycosides from Picrorhiza genus: The road ahead.J. Plant Biochem. Biotechnol.201726111310.1007/s13562‑016‑0364‑8
    [Google Scholar]
  67. SharmaM.L. RaoC.S. DudaP.L. Immunostimulatory activity of picrorhiza kurroa leaf extract.J. Ethnopharmacol.199441318519210.1016/0378‑8741(94)90031‑0 8176958
    [Google Scholar]
  68. WinN.N. KodamaT. LaeK.Z.W. Bis-iridoid and iridoid glycosides: Viral protein R inhibitors from Picrorhiza kurroa collected in Myanmar.Fitoterapia201913410110710.1016/j.fitote.2019.02.016 30794917
    [Google Scholar]
  69. SharmaU. BalaM. KumarN. SinghB. MunshiR.K. BhaleraoS. Immunomodulatory active compounds from Tinospora cordifolia.J. Ethnopharmacol.2012141391892610.1016/j.jep.2012.03.027 22472109
    [Google Scholar]
  70. SharmaD.N. SharmaA. Tinospora cordifolia enhances vyadhikshamatwa (immunity) in Children.J Phytopharmacol20154422723010.31254/phyto.2015.4408
    [Google Scholar]
  71. AlsuhaibaniS. KhanM.A. Immune-stimulatory and therapeutic activity of tinospora cordifolia: Double-edged sword against salmonellosis.J. Immunol. Res.201720171910.1155/2017/1787803 29318160
    [Google Scholar]
  72. SharmaJ. VarmaR. A review on endangered plant of Mallotus philippensis (Lam.) M.Arg Pharmacologyonline2011312561265
    [Google Scholar]
  73. IgnatovI. Anti inflammatory and anti viral effects of potassium (K) and chemical composition of moringa.Asian J Biol2020921710.9734/ajob/2020/v9i230081
    [Google Scholar]
  74. MondalS. VarmaS. BamolaV.D. Double-blinded randomized controlled trial for immunomodulatory effects of Tulsi (Ocimum sanctum Linn.) leaf extract on healthy volunteers.J. Ethnopharmacol.2011136345245610.1016/j.jep.2011.05.012 21619917
    [Google Scholar]
  75. ShreeP. MishraP. SelvarajC. SinghS.K. ChaubeR. GargN. Targeting COVID-19 (SARS-CoV-2) main protease through active phytochemicals of ayurvedic medicinal plants–Withania somnifera (Ashwagandha), Tinospora cordifolia (Giloy) and Ocimum sanctum (Tulsi)–a molecular docking study.J. Biomol. Struct. Dyn.202040119020310.1080/07391102.2020.1810778 32851919
    [Google Scholar]
  76. SharmaM. AndersonS.A. SchoopR. HudsonJ.B. Induction of multiple pro-inflammatory cytokines by respiratory viruses and reversal by standardized Echinacea, a potent antiviral herbal extract.Antiviral Res.200983216517010.1016/j.antiviral.2009.04.009 19409931
    [Google Scholar]
  77. PrompetcharaE. KetloyC. PalagaT. Immune responses in COVID-19 and potential vaccines: Lessons learned from SARS and MERS epidemic.Asian Pac. J. Allergy Immunol.20203811910.12932/AP‑200220‑0772 32105090
    [Google Scholar]
  78. KumarV. AbbasA.K. FaustoN. AsterJ.C. Robbins and cotran pathologic basis of disease professional edition: Expert consult - online and print.Elsevier2009
    [Google Scholar]
  79. TisoncikJ.R. KorthM.J. SimmonsC.P. FarrarJ. MartinT.R. KatzeM.G. Into the eye of the cytokine storm.Microbiol. Mol. Biol. Rev.2012761163210.1128/MMBR.05015‑11 22390970
    [Google Scholar]
  80. HewlingsS. KalmanD. Curcumin: A review of its effects on human health.Foods20176109210.3390/foods6100092 29065496
    [Google Scholar]
  81. JagetiaG.C. AggarwalB.B. “Spicing up” of the immune system by curcumin.J. Clin. Immunol.2007271193510.1007/s10875‑006‑9066‑7 17211725
    [Google Scholar]
  82. MishraA. KumarR. TyagiA. Curcumin modulates cellular AP-1, NF-kB, and HPV16 E6 proteins in oral cancer.Ecancermedicalscience2015952510.3332/ecancer.2015.525 25932049
    [Google Scholar]
  83. von RheinC. WeidnerT. HenßL. Curcumin and Boswellia serrata gum resin extract inhibit chikungunya and vesicular stomatitis virus infections in vitro.Antiviral Res.2016125515710.1016/j.antiviral.2015.11.007 26611396
    [Google Scholar]
  84. MounceB.C. CesaroT. CarrauL. ValletT. VignuzziM. Curcumin inhibits Zika and chikungunya virus infection by inhibiting cell binding.Antiviral Res.201714214815710.1016/j.antiviral.2017.03.014 28343845
    [Google Scholar]
  85. FangL. KarakiulakisG. RothM. Are patients with hypertension and diabetes mellitus at increased risk for COVID-19 infection?Lancet Respir. Med.202084e2110.1016/S2213‑2600(20)30116‑8 32171062
    [Google Scholar]
  86. YaoY. WangW. LiM. Curcumin exerts its anti-hypertensive effect by down-regulating the AT1 receptor in vascular smooth muscle cells.Sci. Rep.2016612557910.1038/srep25579 27146402
    [Google Scholar]
  87. LimT.K. Edible medicinal and non-medicinal plants.Springer2016102016
    [Google Scholar]
  88. ZhaoH. ZhaoM. WangY. LiF. ZhangZ. Glycyrrhizic acid prevents sepsis-induced acute lung injury and mortality in rats.J. Histochem. Cytochem.201664212513710.1369/0022155415610168 26385569
    [Google Scholar]
  89. ChenH. DuQ. Potential natural compounds for preventing SARS-CoV-22019Preprints10.29007/3b2l
    [Google Scholar]
  90. HoeverG. BaltinaL. MichaelisM. Antiviral activity of glycyrrhizic acid derivatives against SARS-coronavirus.J. Med. Chem.20054841256125910.1021/jm0493008 15715493
    [Google Scholar]
  91. ParvathaneniV. GuptaV. Utilizing drug repurposing against COVID-19 – Efficacy, limitations, and challenges.Life Sci.202025911827510.1016/j.lfs.2020.118275 32818545
    [Google Scholar]
  92. SenanayakeS.L. Drug repurposing strategies for COVID-19.Future Drug Discov.202022fdd-2020-001010.4155/fdd‑2020‑0010
    [Google Scholar]
  93. CusinatoJ. CauY. CalvaniA.M. MoriM. Repurposing drugs for the management of COVID-19.Expert Opin. Ther. Pat.202131429530710.1080/13543776.2021.1861248 33283567
    [Google Scholar]
  94. DowdenH. MunroJ. Trends in clinical success rates and therapeutic focus.Nat. Rev. Drug Discov.201918749549610.1038/d41573‑019‑00074‑z 31267067
    [Google Scholar]
  95. HarrisonC. Coronavirus puts drug repurposing on the fast track.Nat. Biotechnol.202038437938110.1038/d41587‑020‑00003‑1 32205870
    [Google Scholar]
  96. ChaY. ErezT. ReynoldsI.J. Drug repurposing from the perspective of pharmaceutical companies.Br. J. Pharmacol.2018175216818010.1111/bph.13798 28369768
    [Google Scholar]
  97. PushpakomS. IorioF. EyersP.A. Drug repurposing: Progress, challenges and recommendations.Nat. Rev. Drug Discov.2019181415810.1038/nrd.2018.168 30310233
    [Google Scholar]
  98. SchlagenhaufP. GrobuschM.P. MaierJ.D. GautretP. Repurposing antimalarials and other drugs for COVID-19.Travel Med. Infect. Dis.20203410165810.1016/j.tmaid.2020.101658 32247925
    [Google Scholar]
  99. WongY.K. YangJ. HeY. Caution and clarity required in the use of chloroquine for COVID-19.Lancet Rheumatol.202025e25510.1016/S2665‑9913(20)30093‑X 32518920
    [Google Scholar]
  100. DevauxC.A. RolainJ.M. ColsonP. RaoultD. New insights on the antiviral effects of chloroquine against coronavirus: What to expect for COVID-19?Int. J. Antimicrob. Agents202055510593810.1016/j.ijantimicag.2020.105938 32171740
    [Google Scholar]
  101. SunJ. ChenY. FanX. WangX. HanQ. LiuZ. Advances in the use of chloroquine and hydroxychloroquine for the treatment of COVID-19.Postgrad. Med.2020132760461310.1080/00325481.2020.1778982 32496926
    [Google Scholar]
  102. FantiniJ. Di ScalaC. ChahinianH. YahiN. Structural and molecular modelling studies reveal a new mechanism of action of chloroquine and hydroxychloroquine against SARS-CoV-2 infection.Int. J. Antimicrob. Agents202055510596010.1016/j.ijantimicag.2020.105960 32251731
    [Google Scholar]
  103. VincentM.J. BergeronE. BenjannetS. Chloroquine is a potent inhibitor of SARS coronavirus infection and spread.Virol. J.2005216910.1186/1743‑422X‑2‑69 16115318
    [Google Scholar]
  104. LiuJ. CaoR. XuM. Hydroxychloroquine, a less toxic derivative of chloroquine, is effective in inhibiting SARS-CoV-2 infection in vitro.Cell Discov.2020611610.1038/s41421‑020‑0156‑0 32194981
    [Google Scholar]
  105. SivapalanP. UlrikC.S. ChristensenH.R. Azithromycin and hydroxychloroquine in hospitalised patients with confirmed COVID-19: a randomised double-blinded placebo-controlled trial.Eur. Respir. J.2022591210075210.1183/13993003.00752‑2021
    [Google Scholar]
  106. YanY. ZouZ. SunY. Anti-malaria drug chloroquine is highly effective in treating avian influenza A H5N1 virus infection in an animal model.Cell Res.201323230030210.1038/cr.2012.165 23208422
    [Google Scholar]
  107. KalraR.S. TomarD. MeenaA.S. KandimallaR. SARS-CoV-2, ACE2, and hydroxychloroquine: Cardiovascular complications, therapeutics, and clinical readouts in the current settings.Pathogens20209754610.3390/pathogens9070546 32645974
    [Google Scholar]
  108. FDA issues EUA allowing hydroxychloroquine sulfate, chloroquine phosphate treatment in COVID-19https://www.the-hospitalist.org/hospitalist/article/219861/coronavirus-updates/fda-issues-eua-allowing-hydroxychloroquine-sulfate
  109. SavarinoA. BoelaertJ.R. CassoneA. MajoriG. CaudaR. Effects of chloroquine on viral infections: an old drug against today’s diseases.Lancet Infect. Dis.200331172272710.1016/S1473‑3099(03)00806‑5 14592603
    [Google Scholar]
  110. LiangR. WangL. ZhangN. Development of small-molecule MERS-CoV inhibitors.Viruses2018101272110.3390/v10120721 30562987
    [Google Scholar]
  111. KeyaertsE. LiS. VijgenL. Antiviral activity of chloroquine against human coronavirus OC43 infection in newborn mice.Antimicrob. Agents Chemother.20095383416342110.1128/AAC.01509‑08 19506054
    [Google Scholar]
  112. WangM. CaoR. ZhangL. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro.Cell Res.202030326927110.1038/s41422‑020‑0282‑0 32020029
    [Google Scholar]
  113. SongW. MusteJ.C. GreenleeT.E. SinghR.P. Chloroquine and hydroxychloroquine toxicity.Ame J Ophth Cli Trials20202810.25259/AJOCT_2_2020
    [Google Scholar]
  114. JoyceE. FabreA. MahonN. Hydroxychloroquine cardiotoxicity presenting as a rapidly evolving biventricular cardiomyopathy: key diagnostic features and literature review.Eur. Heart J. Acute Cardiovasc. Care201321778310.1177/2048872612471215 24062937
    [Google Scholar]
  115. Della PortaA. BornsteinK. CoyeA. MontriefT. LongB. ParrisM.A. Acute chloroquine and hydroxychloroquine toxicity: A review for emergency clinicians.Am. J. Emerg. Med.202038102209221710.1016/j.ajem.2020.07.030 33071096
    [Google Scholar]
  116. SinghB. RyanH. KredoT. ChaplinM. FletcherT. Chloroquine or hydroxychloroquine for prevention and treatment of COVID-19.Cochrane Libr.202120212CD01358710.1002/14651858.CD013587.pub2 33624299
    [Google Scholar]
  117. European Medicines Agency. COVID-19: Reminder of the risks of chloroquine and hydroxychloroquine.
  118. AndreaniJ. Le BideauM. DuflotI. In vitro testing of combined hydroxychloroquine and azithromycin on SARS-CoV-2 shows synergistic effect.Microb. Pathog.202014510422810.1016/j.micpath.2020.104228 32344177
    [Google Scholar]
  119. HorbyP. LimW.S. EmbersonJ. Effect of dexamethasone in hospitalized patients with COVID-19- preliminary report.N. Engl. J. Med.2020384869370410.1101/2020.06.22.20137273
    [Google Scholar]
  120. Corticosteroids for COVID-19. n.d. Available from:https://www.who.int/publications/i/item/WHO-2019-nCoV-Corticosteroids-2020
  121. Mancilla-GalindoJ. García-MéndezJ.Ó. Márquez-SánchezJ. All-cause mortality among patients treated with repurposed antivirals and antibiotics for covid-19 in mexico city: A real-world observational study.EXCLI J.20212019922210.17179/excli2021‑3413
    [Google Scholar]
  122. WuC. LiuY. YangY. Analysis of therapeutic targets for SARS-CoV-2 and discovery of potential drugs by computational methods.Acta Pharm. Sin. B202010576678810.1016/j.apsb.2020.02.008 32292689
    [Google Scholar]
  123. AlamM.M. MahmudS. RahmanM.M. SimpsonJ. AggarwalS. AhmedZ. Clinical outcomes of early treatment with doxycycline for 89 High-Risk COVID-19 patients in long-term care facilities in new york.Cureus2020128e965810.7759/cureus.9658 32802622
    [Google Scholar]
  124. YatesP.A. NewmanS.A. OshryL.J. GlassmanR.H. LeoneA.M. ReichelE. Doxycycline treatment of high-risk COVID-19-positive patients with comorbid pulmonary disease.Ther. Adv. Respir. Dis.2020141510.1177/1753466620951053 32873175
    [Google Scholar]
  125. ParnhamM.J. HaberV.E. Giamarellos-BourboulisE.J. PerlettiG. VerledenG.M. VosR. Azithromycin: Mechanisms of action and their relevance for clinical applications.Pharmacol. Ther.2014143222524510.1016/j.pharmthera.2014.03.003 24631273
    [Google Scholar]
  126. ArabiY.M. DeebA.M. Al-HameedF. Macrolides in critically ill patients with middle east respiratory syndrome.Int. J. Infect. Dis.20198118419010.1016/j.ijid.2019.01.041 30690213
    [Google Scholar]
  127. ChorinE. WadhwaniL. MagnaniS. QT interval prolongation and torsade de pointes in patients with COVID-19 treated with hydroxychloroquine/azithromycin.Heart Rhythm20201791425143310.1016/j.hrthm.2020.05.014 32407884
    [Google Scholar]
  128. FurtadoR.H.M. BerwangerO. FonsecaH.A. Azithromycin in addition to standard of care versus standard of care alone in the treatment of patients admitted to the hospital with severe COVID-19 in Brazil (COALITION II): A randomised clinical trial.Lancet20203961025695996710.1016/S0140‑6736(20)31862‑6 32896292
    [Google Scholar]
  129. CavalcantiA.B. ZampieriF.G. RosaR.G. Hydroxychloroquine with or without azithromycin in mild-to-moderate Covid-19.N. Engl. J. Med.2020383212041205210.1056/NEJMoa2019014 32706953
    [Google Scholar]
  130. López-MedinaE. LópezP. HurtadoI.C. Effect of ivermectin on time to resolution of symptoms among adults with mild COVID-19: A randomized clinical trial.JAMA2021325141426143510.1001/jama.2021.3071
    [Google Scholar]
  131. TanY.L. TanK.S.W. ChuJ.J.H. ChowV.T. Combination treatment with remdesivir and ivermectin exerts highly synergistic and potent antiviral activity against murine coronavirus infection.Front. Cell. Infect. Microbiol.20211170050210.3389/fcimb.2021.700502 34395311
    [Google Scholar]
  132. JeffreysL.N. PenningtonS.H. DugganJ. Remdesivir–ivermectin combination displays synergistic interaction with improved in vitro activity against SARS-CoV-2.Int. J. Antimicrob. Agents202259310654210.1016/j.ijantimicag.2022.106542 35093538
    [Google Scholar]
  133. JitobaomK. BoonarkartC. ManopwisedjaroenS. PunyadeeN. BorwornpinyoS. ThitithanyanontA. Favipiravir and ivermectin showed in vitro synergistic antiviral activity against SARS-CoV-2.Res Square202110.21203/rs.3.rs‑941811/v1
    [Google Scholar]
  134. WeissA. TouretF. BarontiC. Niclosamide shows strong antiviral activity in a human airway model of SARS-CoV-2 infection and a conserved potency against the Alpha (B.1.1.7), Beta (B.1.351) and Delta variant (B.1.617.2).PLoS One20211612e026095810.1371/journal.pone.0260958 34855904
    [Google Scholar]
  135. BrunaughA.D. SeoH. WarnkenZ. DingL. SeoS.H. SmythH.D.C. Development and evaluation of inhalable composite niclosamide-lysozyme particles: A broad-spectrum, patient-adaptable treatment for coronavirus infections and sequalae.PLoS One2021162e024680310.1371/journal.pone.0246803 33571320
    [Google Scholar]
  136. GarrettT. CoatsworthH. MahmudI. Niclosamide reverses SARS-CoV-2 control of lipophagy.BioRxiv10.1101/2021.07.11.451951
    [Google Scholar]
  137. SinghS. WeissA. GoodmanJ. Niclosamide-A promising treatment for COVID‐19.Br. J. Pharmacol.2022179133250326710.1111/bph.15843 35348204
    [Google Scholar]
  138. https://www.who.int/teams/health-care-readiness/covid-19
  139. NasonovE. SamsonovM. The role of Interleukin 6 inhibitors in therapy of severe COVID-19.Biomed. Pharmacother.202013111069810.1016/j.biopha.2020.110698 32920514
    [Google Scholar]
  140. ScottL.J. Tocilizumab: A review in rheumatoid arthritis.Drugs201777171865187910.1007/s40265‑017‑0829‑7 29094311
    [Google Scholar]
  141. Tocilizumab in COVID-19 Pneumonia (TOCIVID-19). Available from: https://cl.n.d.
  142. Saber-AyadM. SalehM.A. Abu-GharbiehE. The rationale for potential pharmacotherapy of COVID-19.Pharmaceuticals20201359610.3390/ph13050096 32423024
    [Google Scholar]
  143. LiG. De ClercqE. Therapeutic options for the 2019 novel coronavirus (2019-nCoV).Nat. Rev. Drug Discov.202019314915010.1038/d41573‑020‑00016‑0 32127666
    [Google Scholar]
  144. ChenP.J. ChaoC.M. LaiC.C. Clinical efficacy and safety of favipiravir in the treatment of COVID-19 patients.J. Infect.202182518623010.1016/j.jinf.2020.12.005
    [Google Scholar]
  145. ChenC. ZhangY. HuangJ. YinP. ChengZ. WuJ. Favipiravir versus Arbidol for COVID-19: A randomized clinical trial.Front. Pharmacol.20201268329610.1101/2020.03.17.20037432
    [Google Scholar]
  146. WarrenT.K. JordanR. LoM.K. Therapeutic efficacy of the small molecule GS-5734 against Ebola virus in rhesus monkeys.Nature2016531759438138510.1038/nature17180 26934220
    [Google Scholar]
  147. AgostiniM.L. AndresE.L. SimsA.C. Coronavirus susceptibility to the antiviral remdesivir (GS-5734) is mediated by the viral polymerase and the proofreading exoribonuclease.MBio201892e00221e1810.1128/mBio.00221‑18 29511076
    [Google Scholar]
  148. YinW. MaoC. LuanX. ShenD.D. ShenQ. SuH. Structural basis for inhibition of the RNA-dependent RNA polymerase from SARS-CoV-2 by remdesivir.Science20203688010.1126/science.abc1560
    [Google Scholar]
  149. BurkiT.K. Completion of clinical trials in light of COVID-19.Lancet Respir. Med.20208121178118010.1016/S2213‑2600(20)30460‑4 33010809
    [Google Scholar]
  150. A from: FDA Approves First Treatment for COVID-19. Available from: https://www.fda.gov/news-events/press-announcements/fda-approves-first-treatment-covid-19
  151. A from: Coronavirus: Commission signs a joint procurement contract with Gilead for the supply of Remdesivir. Available from: https://ec.europa.eu/commission/presscorner/detail/en/ip_20_1845
  152. CaoB. WangY. WenD. A trial of lopinavir–ritonavir in adults hospitalized with severe Covid-19.N. Engl. J. Med.2020382191787179910.1056/NEJMoa2001282 32187464
    [Google Scholar]
  153. Lopinavir/ritonavir in the therapy of adults patients with COVID-19.
  154. SlomskiA. No benefit for lopinavir–ritonavir in severe COVID-19.JAMA202032320199910.1001/jama.2020.6793 32453363
    [Google Scholar]
  155. GiacomelliA. PaganiG. RidolfoA.L. Early administration of lopinavir/ritonavir plus hydroxychloroquine does not alter the clinical course of SARS‐CoV‐2 infection: A retrospective cohort study.J. Med. Virol.20219331421142710.1002/jmv.26407 32776534
    [Google Scholar]
  156. MeiniS. PagottoA. LongoB. VendraminI. PecoriD. TasciniC. Role of lopinavir/ritonavir in the treatment of covid-19: A review of current evidence, guideline recommendations, and perspectives.J. Clin. Med.202097205010.3390/jcm9072050 32629768
    [Google Scholar]
/content/journals/ctm/10.2174/0122150838264297231026111437
Loading
/content/journals/ctm/10.2174/0122150838264297231026111437
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): antiviral; Coronavirus; COVID-19; drugs; natural products; traditional medicines; vaccines
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test