Skip to content
2000
Volume 11, Issue 2
  • ISSN: 2215-0838
  • E-ISSN: 2215-0846

Abstract

Background

Several drugs have been proposed for the treatment of breast cancer, but none has fully treated the disease so far.

Methods

MCF7 cells were cultured in RPMI-1640 medium, consisting of different concentrations of aqueous-alcoholic extract of the fruit of (0.125, 0.25, 0.5, 1, 1.5, 2, 2.5, and 5 mg/mL) for 48 and 72 hours. MTT assay was used to determine the cell proliferation inhibition (IC). The percentage of apoptotic cells was determined by flow cytometry analysis using Annexin V/PI apoptosis detection kit. RT-PCR method was carried out to assess the fold changes of OCT4, NANOG, and SOX2 genes. Two-way ANOVA (tukeys) and t-test (repeated measure) were used for the statistical analysis of obtained data MTT assay and RT-PCR method, respectively. < 0.05 was considered significant.

Results

Our results have shown that cell death was induced by increasing fruit of extract concentration. IC was observed at 48 h culture period with 4.81 mg/mL, and 72 h with 2.72 mg/mL fruit extract, respectively. Flow cytometry results exhibited an obviously significant augmentation in apoptotic MF7 cells. According to RT-PCR findings on the fruit of extract-treated cells, the mean expression of OCT4, NANOG, and SOX2 genes decreased after 48 and 72 h of incubation with IC concentration compared to controls.

Conclusion

The fruit of the species was able to decrease the expression of self-renewal genes in the MCF7 cell line. Therefore, the fruit of extract can be considered a promising candidate for the management of human breast cancer after clinical trials.

Loading

Article metrics loading...

/content/journals/ctm/10.2174/0122150838258062230920091457
2023-10-05
2025-09-26
Loading full text...

Full text loading...

References

  1. SungH. FerlayJ. SiegelR.L. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J. Clin.202171320924910.3322/caac.21660 33538338
    [Google Scholar]
  2. AnastasiadiZ. LianosG.D. IgnatiadouE. HarissisH.V. MitsisM. Breast cancer in young women: an overview.Updates Surg.201769331331710.1007/s13304‑017‑0424‑1 28260181
    [Google Scholar]
  3. MoghadamniaY. Mousavi KaniS.N. Ghasemi-KasmanM. Kazemi KaniM.T. KazemiS. The anti-cancer effects of capparis spinosa hydroalcoholic extract.Avicenna J. Med. Biotechnol.20191114347 30800242
    [Google Scholar]
  4. VahidH. RakhshandehH. GhorbaniA. Antidiabetic properties of Capparis spinosa L. and its components.Biomed. Pharmacother.20179229330210.1016/j.biopha.2017.05.082 28551550
    [Google Scholar]
  5. ZhangH. MaZ. Phytochemical and pharmacological properties of Capparis spinosa as a medicinal plant.Nutrients201810211610.3390/nu10020116 29364841
    [Google Scholar]
  6. MosmannT. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays.J. Immunol. Methods1983651-2556310.1016/0022‑1759(83)90303‑4 6606682
    [Google Scholar]
  7. KarimabadM.N. MahmoodiM. JafarzadehA. Evaluating of OCT-4 and NANOG was differentially regulated by a new derivative indole in leukemia cell line.Immunol. Lett.201719071410.1016/j.imlet.2017.06.012 28690187
    [Google Scholar]
  8. Mahwash Mansoor , Palwasha Gul , Zara Arshad , Arshad Z. Breast cancer knowledge and perception among health care professionals and senior medical students at Bolan Medical Complex Hospital Quetta, Pakistan.J. Pak. Med. Assoc.20207012(B)11410.47391/JPMA.323 33475558
    [Google Scholar]
  9. Çalişİ. KuruüzümA. RüediP. 1H-Indole-3 acetonitrile glycosides from Capparis spinosa fruits.Phytochemistry19995071205120810.1016/S0031‑9422(98)00669‑4
    [Google Scholar]
  10. FarnsworthN.R. AkereleO. BingelA.S. SoejartoD.D. GuoZ. Medicinal plants in therapy.Bull. World Health Organ.1985636965981 3879679
    [Google Scholar]
  11. TliliN. KhaldiA. TrikiS. Munné-BoschS. Phenolic compounds and vitamin antioxidants of caper (Capparis spinosa).Plant Foods Hum. Nutr.201065326026510.1007/s11130‑010‑0180‑6 20668946
    [Google Scholar]
  12. GadgoliC. MishraS.H. Antihepatotoxic activity of p-methoxy benzoic acid from Capparis spinosa.J. Ethnopharmacol.199966218719210.1016/S0378‑8741(98)00229‑3 10433476
    [Google Scholar]
  13. GermanòM.P. De PasqualeR. D’AngeloV. CataniaS. SilvariV. CostaC. Evaluation of extracts and isolated fraction from Capparis spinosa L. buds as an antioxidant source.J. Agric. Food Chem.20025051168117110.1021/jf010678d 11853498
    [Google Scholar]
  14. RodrigoM. LazaroM.J. AlvarruizA. GinerV. Composition of capers (Capparis spinosa): influence of cultivar, size and harvest date.J. Food Sci.19925751152115410.1111/j.1365‑2621.1992.tb11286.x
    [Google Scholar]
  15. SharafM. El-AnsariM.A. SalehN.A.M. Quercetin triglycoside from Capparis spinosa.Fitoterapia2000711464910.1016/S0367‑326X(99)00116‑1 11449469
    [Google Scholar]
  16. MoutiaM. El AzharyK. ElouaddariA. Capparis Spinosa L. promotes anti-inflammatory response in vitro through the control of cytokine gene expression in human peripheral blood mononuclear cells.BMC Immunol.20161712610.1186/s12865‑016‑0164‑x 27483999
    [Google Scholar]
  17. MatthäusB. ÖzcanM. Glucosinolates and fatty acid, sterol, and tocopherol composition of seed oils from Capparis spinosa Var. spinosa and Capparis ovata Desf. Var. canescens (Coss.) Heywood.J. Agric. Food Chem.200553187136714110.1021/jf051019u 16131121
    [Google Scholar]
  18. AkgülA. ÖzcanM. Some compositional characteristics of capers (Capparis spp) seed and oil.Grasas Aceites1999501495210.3989/gya.1999.v50.i1.635
    [Google Scholar]
  19. Sen GuptaA. ChakrabartyM.M. Composition of the seed fats of the Capparidaceae family.J. Sci. Food Agric.1964152697310.1002/jsfa.2740150201
    [Google Scholar]
  20. NijveldtR.J. van NoodE. van HoornD.E.C. BoelensP.G. van NorrenK. van LeeuwenP.A.M. Flavonoids: A review of probable mechanisms of action and potential applications.Am. J. Clin. Nutr.200174441842510.1093/ajcn/74.4.418 11566638
    [Google Scholar]
  21. KorkmazA. KolankayaD. Protective effect of rutin on the ischemia/reperfusion induced damage in rat kidney.J. Surg. Res.2010164230931510.1016/j.jss.2009.03.022 19592016
    [Google Scholar]
  22. MildeJ. ElstnerE.F. GraßmannJ. Synergistic inhibition of low-density lipoprotein oxidation by rutin, γ-terpinene, and ascorbic acid.Phytomedicine2004112-310511310.1078/0944‑7113‑00380 15070159
    [Google Scholar]
  23. GharibiB. GhumanM.S. HughesF.J. Akt- and Erk-mediated regulation of proliferation and differentiation during PDGFRβ-induced MSC self-renewal.J. Cell. Mol. Med.201216112789280110.1111/j.1582‑4934.2012.01602.x 22805337
    [Google Scholar]
  24. ChiouS.H. WangM.L. ChouY.T. Coexpression of Oct4 and Nanog enhances malignancy in lung adenocarcinoma by inducing cancer stem cell-like properties and epithelial-mesenchymal transdifferentiation.Cancer Res.20107024104331044410.1158/0008‑5472.CAN‑10‑2638 21159654
    [Google Scholar]
  25. AL-Asady AAB Khalil H, Zhang KH, Barwari S. Cytotoxic and cytogenetics effects of aqueous, methanolic and secondary metabolites extracts of capparis spinosa on tumor cell lines in vitro .Jordan J Biol201251153010.17265/1548‑6648/2012.03.002
    [Google Scholar]
  26. ZhangH. WangZ.Z. Mechanisms that mediate stem cell self-renewal and differentiation.J. Cell. Biochem.2008103370971810.1002/jcb.21460 17647265
    [Google Scholar]
  27. TakahashiK. YamanakaS. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors.Cell2006126466367610.1016/j.cell.2006.07.024
    [Google Scholar]
  28. MaheraliN. SridharanR. XieW. Directly reprogrammed fibroblasts show global epigenetic remodeling and widespread tissue contribution.Cell Stem Cell200711557010.1016/j.stem.2007.05.014 18371336
    [Google Scholar]
  29. OkitaK. IchisakaT. YamanakaS. Generation of germline-competent induced pluripotent stem cells.Nature2007448715131331710.1038/nature05934
    [Google Scholar]
  30. NicholsJ. ZevnikB. AnastassiadisK. Formation of pluripotent stem cells in the mammalian embryo depends on the POU transcription factor.Cell199895337939110.1016/S0092‑8674(00)81769‑9 9814708
    [Google Scholar]
  31. JerabekS. MerinoF. SchölerH.R. CojocaruV. OCT4: Dynamic DNA binding pioneers stem cell pluripotency.Biochim. Biophys. Acta. Gene Regul. Mech.20141839313815410.1016/j.bbagrm.2013.10.001 24145198
    [Google Scholar]
  32. DuZ. JiaD. LiuS. Oct4 is expressed in human gliomas and promotes colony formation in glioma cells.Glia200957772473310.1002/glia.20800 18985733
    [Google Scholar]
  33. MurakamiS. NinomiyaW. SakamotoE. ShibataT. AkiyamaH. TashiroF. SRY and OCT4 are required for the acquisition of cancer stem cell-like properties and are potential differentiation therapy targets.Stem Cells20153392652266310.1002/stem.2059 26013162
    [Google Scholar]
  34. PontiD. CostaA. ZaffaroniN. Isolation and in vitro propagation of tumorigenic breast cancer cells with stem/progenitor cell properties.Cancer Res.200565135506551110.1158/0008‑5472.CAN‑05‑0626 15994920
    [Google Scholar]
  35. Rodriguez-PinillaS.M. SarrioD. Moreno-BuenoG. Sox2: A possible driver of the basal-like phenotype in sporadic breast cancer.Mod. Pathol.200720447448110.1038/modpathol.3800760 17334350
    [Google Scholar]
  36. HägerstrandD. HeX. Bradic LindhM. Identification of a SOX2-dependent subset of tumor- and sphere-forming glioblastoma cells with a distinct tyrosine kinase inhibitor sensitivity profile.Neuro-oncol.201113111178119110.1093/neuonc/nor113 21940738
    [Google Scholar]
  37. ChambersI. ColbyD. RobertsonM. Functional expression cloning of Nanog, a pluripotency sustaining factor in embryonic stem cells.Cell2003113564365510.1016/S0092‑8674(03)00392‑1 12787505
    [Google Scholar]
  38. NagataT. ShimadaY. SekineS. Prognostic significance of NANOG and KLF4 for breast cancer.Breast Cancer20142119610110.1007/s12282‑012‑0357‑y 22528804
    [Google Scholar]
  39. LinT. DingY.Q. LiJ.M. Overexpression of Nanog protein is associated with poor prognosis in gastric adenocarcinoma.Med. Oncol.201229287888510.1007/s12032‑011‑9860‑9 21336986
    [Google Scholar]
  40. YuC.C. ChenY.W. ChiouG.Y. MicroRNA let-7a represses chemoresistance and tumourigenicity in head and neck cancer via stem-like properties ablation.Oral Oncol.201147320221010.1016/j.oraloncology.2010.12.001 21292542
    [Google Scholar]
  41. MengH.M. ZhengP. WangX.Y. Over-expression of Nanog predicts tumor progression and poor prognosis in colorectal cancer.Cancer Biol. Ther.20109429530210.4161/cbt.9.4.10666 20026903
    [Google Scholar]
  42. IbrahimE.E. Babaei-JadidiR. SaadeddinA. Embryonic NANOG activity defines colorectal cancer stem cells and modulates through AP1- and TCF-dependent mechanisms.Stem Cells201230102076208710.1002/stem.1182 22851508
    [Google Scholar]
  43. WangX.Q. NgR.K. MingX. Epigenetic regulation of pluripotent genes mediates stem cell features in human hepatocellular carcinoma and cancer cell lines.PLoS One201389e7243510.1371/journal.pone.0072435 24023739
    [Google Scholar]
  44. YangL. ShiP. ZhaoG. Targeting cancer stem cell pathways for cancer therapy.Signal Transduct. Target. Ther.202051810.1038/s41392‑020‑0110‑5 32296030
    [Google Scholar]
  45. SellS. Stem cell origin of cancer and differentiation therapy.Crit. Rev. Oncol. Hematol.200451112810.1016/j.critrevonc.2004.04.007 15207251
    [Google Scholar]
  46. JiangW. PengJ. ZhangY. ChoW. JinK. The implications of cancer stem cells for cancer therapy.Int. J. Mol. Sci.20121312166361665710.3390/ijms131216636 23443123
    [Google Scholar]
  47. GostjevaE.V. ThillyW.G. Stem cell stages and the origins of colon cancer: a multidisciplinary perspective.Stem Cell Rev.20051324325210.1385/SCR:1:3:243 17142861
    [Google Scholar]
  48. AveryS. InnissK. MooreH. The regulation of self-renewal in human embryonic stem cells.Stem Cells Dev.200615572974010.1089/scd.2006.15.729 17105408
    [Google Scholar]
  49. NiwaH. MiyazakiJ. SmithA.G. Quantitative expression of Oct-3/4 defines differentiation, dedifferentiation or self-renewal of ES cells.Nat. Genet.200024437237610.1038/74199 10742100
    [Google Scholar]
/content/journals/ctm/10.2174/0122150838258062230920091457
Loading
/content/journals/ctm/10.2174/0122150838258062230920091457
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): anticancer agent; Breast cancer; fruit of Capparis spinosa; MCF-7 cell line; NANOG; OCT4; SOX2
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test