Skip to content
2000
Volume 11, Issue 2
  • ISSN: 2215-0838
  • E-ISSN: 2215-0846

Abstract

Herbal medicine has gained massive popularity among researchers worldwide. The leading causes of this rapid development are lower side effects, lower prices, and higher availability of plant extracts compared to synthetic drugs. Ginger (), from the Zingiberaceae family, is one of the most commonly used and popular plants utilized as a dietary spice, herbal medicine, and food preservative. Its biologically active components, such as shogaol, paradol, zingerone, and especially gingerol, can be highly effective for the treatment of several illnesses through various anti-inflammatory, anti-neoplastic, anti-emetic, anti-oxidant, anti-hyperlipidemic and anti-hyperglycaemic activities. Ginger can also be used as an antiviral agent. Numerous studies have been conducted to investigate the antiviral efficacy of ginger on several viruses; for instance, severe acute respiratory syndrome 2 (SARS-COV-2), influenza, dengue, hepatitis, herpes, Human Papilloma Virus (HPV), Human Immunodeficiency Virus (HIV), Epstein-Barr Virus (EBV), Chikungunya virus and so on. This review summarizes the efficacy of ginger in preventing or treating several viral diseases and its mechanism of action, emphasizing coronavirus disease 2019 (COVID-19) due to the current high burden of disease worldwide.

Loading

Article metrics loading...

/content/journals/ctm/10.2174/0122150838250624230926043708
2023-10-06
2025-10-29
Loading full text...

Full text loading...

References

  1. KuikenT. FouchierR. RimmelzwaanG. OsterhausA. Emerging viral infections in a rapidly changing world.Curr. Opin. Biotechnol.200314664164610.1016/j.copbio.2003.10.01014662395
    [Google Scholar]
  2. BanazadehM. Olangian-TehraniS. SharifiM. Malek-AhmadiM. NikzadF. Doozandeh-NargesiN. MohammadiA. StephensG.J. ShabaniM. Mechanisms of COVID-19-induced cerebellitis.Curr. Med. Res. Opin.202238122109211810.1080/03007995.2022.214196336305796
    [Google Scholar]
  3. HaryalchiK. Olangian-TehraniS. Asgari GalebinS.M. Mansour-GhanaieM. The importance of myocarditis in COVID‐19.Health Sci. Rep.202251e48810.1002/hsr2.48835059506
    [Google Scholar]
  4. HaryalchiK. HeidarzadehA. AbedinzadeM. Olangian-TehraniS. Ghazanfar TehranS. The importance of happy hypoxemia in COVID-19.Anesth. Pain Med.2021111e11187210.5812/aapm.11187234221943
    [Google Scholar]
  5. SanghaviS.K. BullottaA. HusainS. RinaldoC.R. Clinical evaluation of multiplex real-time PCR panels for rapid detection of respiratory viral infections.J. Med. Virol.201284116216910.1002/jmv.2218622052551
    [Google Scholar]
  6. Aleebrahim-DehkordiE. SoveyziF. DeraviN. RabbaniZ. SaghazadehA. RezaeiN. Human coronaviruses SARS-CoV, MERS-CoV, and SARS-CoV-2 in children.J. Pediatr. Nurs.202056707933186866
    [Google Scholar]
  7. DeraviN YaghoobpoorS FathiM VakiliK AhsanE MokhtariM Novel coronavirus infection in children and infants: Where we are and what we know?Arch. Clin. Infect. Dis.2020155e103785
    [Google Scholar]
  8. CasparD.L.D. KlugA. Physical principles in the construction of regular viruses.Cold Spring Harb. Symp. Quant. Biol.196227012410.1101/SQB.1962.027.001.00514019094
    [Google Scholar]
  9. WilsonD.P. Protruding features of viral capsids are clustered on icosahedral great circles.PLoS One2016114e015231910.1371/journal.pone.015231927045511
    [Google Scholar]
  10. CrickF.H.C. WatsonJ.D. Structure of small viruses.Nature1956177450647347510.1038/177473a013309339
    [Google Scholar]
  11. BreitbartM. RohwerF. Here a virus, there a virus, everywhere the same virus?Trends Microbiol.200513627828410.1016/j.tim.2005.04.00315936660
    [Google Scholar]
  12. ShojaeiF. HabibiZ. GoudarziS. FirouzabadiF.D. MontazerinS.M. NajafiH. KaheF. MomenzadehK. MirM. KhanF. JamilU. JamilA. LeeJ.J. ChiG. COVID-19: A double threat to takotsubo cardiomyopathy and spontaneous coronary artery dissection?Med. Hypotheses202114611041010.1016/j.mehy.2020.11041033267999
    [Google Scholar]
  13. MastersP.S. The molecular biology of coronaviruses.Adv. Virus Res.20066619329210.1016/S0065‑3527(06)66005‑316877062
    [Google Scholar]
  14. RathinavelT. PalanisamyM. PalanisamyS. SubramanianA. ThangaswamyS. Phytochemical 6-Gingerol : A promising Drug of choice for COVID-19.Int. J. Adv. Sci. Eng.2020641482148910.29294/IJASE.6.4.2020.1482‑1489
    [Google Scholar]
  15. de WitE. van DoremalenN. FalzaranoD. MunsterV.J. SARS and MERS: Recent insights into emerging coronaviruses.Nat. Rev. Microbiol.201614852353410.1038/nrmicro.2016.8127344959
    [Google Scholar]
  16. DeraviN. FathiM. VakiliK. YaghoobpoorS. PirzadehM. MokhtariM. FazelT. AhsanE. GhaffariS. SARS-CoV-2 infection in patients with diabetes mellitus and hypertension: A systematic review.Rev. Cardiovasc. Med.202021338539710.31083/j.rcm.2020.03.7833070543
    [Google Scholar]
  17. HaridasM. SasidharV. NathP. AbhithajJ. SabuA. RammanoharP. Compounds of Citrus medica and Zingiber officinale for COVID-19 inhibition: in silico evidence for cues from Ayurveda.Future J. Pharmac. Sci.2021711310.1186/s43094‑020‑00171‑633457429
    [Google Scholar]
  18. FathiM. VakiliK. DeraviN. YaghoobpoorS. AhsanE. MokhtariM. MoshfeghiM. VaezjalaliM. Coronavirus diseases and pregnancy: COVID-19, SARS, and MERS.Przegl. Epidemiol.202074227628910.32394/pe.74.2133112124
    [Google Scholar]
  19. HosseiniP. FallahiM.S. ErabiG. PakdinM. ZarezadehS.M. FaridzadehA. EntezariS. AnsariA. PoudinehM. DeraviN. Multisystem inflammatory syndrome and autoimmune diseases following COVID-19: Molecular mechanisms and therapeutic opportunities.Front. Mol. Biosci.2022980410910.3389/fmolb.2022.80410935495619
    [Google Scholar]
  20. KoyamaT. PlattD. ParidaL. Variant analysis of SARS-CoV-2 genomes.Bull. World Health Organ.202098749550410.2471/BLT.20.25359132742035
    [Google Scholar]
  21. WHOSARS-CoV-2 genomic sequencing for public health goals: Interim guidance.WHO2021
    [Google Scholar]
  22. SarkarM. MadabhaviI. SARS-CoV-2 variants of concern: A review.Monaldi Arch. Chest Dis.202293336305283
    [Google Scholar]
  23. DaviesN.G. JarvisC.I. EdmundsW.J. JewellN.P. Diaz-OrdazK. KeoghR.H. Increased mortality in community-tested cases of SARS-CoV-2 lineage B.1.1.7.medRxiv202110.1101/2021.02.01.21250959
    [Google Scholar]
  24. TegallyH. WilkinsonE. GiovanettiM. IranzadehA. FonsecaV. GiandhariJ. DoolabhD. PillayS. SanE.J. MsomiN. MlisanaK. von GottbergA. WalazaS. AllamM. IsmailA. MohaleT. GlassA.J. EngelbrechtS. Van ZylG. PreiserW. PetruccioneF. SigalA. HardieD. MaraisG. HsiaoN. KorsmanS. DaviesM.A. TyersL. MudauI. YorkD. MasloC. GoedhalsD. AbrahamsS. Laguda-AkingbaO. Alisoltani-DehkordiA. GodzikA. WibmerC.K. SewellB.T. LourençoJ. AlcantaraL.C.J. Kosakovsky PondS.L. WeaverS. MartinD. LessellsR.J. BhimanJ.N. WilliamsonC. de OliveiraT. Detection of a SARS-CoV-2 variant of concern in South Africa.Nature2021592785443844310.1038/s41586‑021‑03402‑933690265
    [Google Scholar]
  25. FariaN.R. MellanT.A. WhittakerC. ClaroI.M. CandidoD.S. MishraS. CrispimM.A.E. SalesF.C.S. HawrylukI. McCroneJ.T. HulswitR.J.G. FrancoL.A.M. RamundoM.S. de JesusJ.G. AndradeP.S. ColettiT.M. FerreiraG.M. SilvaC.A.M. ManuliE.R. PereiraR.H.M. PeixotoP.S. KraemerM.U.G. GaburoN.Jr CamiloC.C. HoeltgebaumH. SouzaW.M. RochaE.C. de SouzaL.M. de PinhoM.C. AraujoL.J.T. MaltaF.S.V. de LimaA.B. SilvaJ.P. ZauliD.A.G. FerreiraA.C.S. SchnekenbergR.P. LaydonD.J. WalkerP.G.T. SchlüterH.M. dos SantosA.L.P. VidalM.S. Del CaroV.S. FilhoR.M.F. dos SantosH.M. AguiarR.S. Proença-ModenaJ.L. NelsonB. HayJ.A. MonodM. MiscouridouX. CouplandH. SonabendR. VollmerM. GandyA. PreteC.A.Jr NascimentoV.H. SuchardM.A. BowdenT.A. PondS.L.K. WuC.H. RatmannO. FergusonN.M. DyeC. LomanN.J. LemeyP. RambautA. FraijiN.A. CarvalhoM.P.S.S. PybusO.G. FlaxmanS. BhattS. SabinoE.C. Genomics and epidemiology of the P.1 SARS-CoV-2 lineage in Manaus, Brazil.Science2021372654481582110.1126/science.abh264433853970
    [Google Scholar]
  26. GhodsianS. TaghipourN. DeraviN. BehniafarH. LasjerdiZ. Recent researches in effective antileishmanial herbal compounds: Narrative review.Parasitol. Res.2020119123929394610.1007/s00436‑020‑06787‑032803335
    [Google Scholar]
  27. MaY. ChenM. GuoY. LiuJ. ChenW. GuanM. WangY. ZhaoX. WangX. LiH. MengL. WenY. WangY. Prevention and treatment of infectious diseases by traditional Chinese medicine: A commentary.Acta Pathol. Microbiol. Scand. Suppl.2019127537238410.1111/apm.1292831124203
    [Google Scholar]
  28. ChienT.J. LiuC.Y. ChangY.I. FangC.J. PaiJ.H. WuY.X. ChenS.W. Therapeutic effects of herbal-medicine combined therapy for COVID-19: A systematic review and meta-analysis of randomized controlled trials.Front. Pharmacol.20221395001210.3389/fphar.2022.95001236120361
    [Google Scholar]
  29. LiuM. GaoY. YuanY. YangK. ShiS. TianJ. ZhangJ. Efficacy and safety of herbal medicine (Lianhuaqingwen) for treating COVID-19: A systematic review and meta-analysis.Integr. Med. Res.202110110064410.1016/j.imr.2020.10064432864332
    [Google Scholar]
  30. ChangJ.S. WangK.C. YehC.F. ShiehD.E. ChiangL.C. Fresh ginger (Zingiber officinale) has anti-viral activity against human respiratory syncytial virus in human respiratory tract cell lines.J. Ethnopharmacol.2013145114615110.1016/j.jep.2012.10.04323123794
    [Google Scholar]
  31. Abdel-MoneimA. MorsyB.M. MahmoudA.M. Abo-SeifM.A. ZanatyM.I. Beneficial therapeutic effects of Nigella sativa and/or Zingiber officinale in HCV patients in Egypt.EXCLI J.20131294395527298610
    [Google Scholar]
  32. RaalA. VolmerD. SõukandR. HratkevitšS. KalleR. Complementary treatment of the common cold and flu with medicinal plants--results from two samples of pharmacy customers in Estonia.PLoS One201383e5864210.1371/journal.pone.005864223484045
    [Google Scholar]
  33. MagzoubM. Life style guideline of ginger (Zingiber officinale) as prophylaxis and treatment for coronaviruses (SARS-CoV-2) infection (COVID-19).Saudi J Biomed Res20205612512710.36348/sjbr.2020.v05i06.006
    [Google Scholar]
  34. MoezziM.S. Comprehensive in silico screening of flavonoids against SARS-CoV-2 main protease.J. Biomol. Struct. Dyn.2022202211410.1080/07391102.2022.214229736342071
    [Google Scholar]
  35. BabaeekhouL. GhaneM. Abbas-MohammadiM. In silico targeting SARS-CoV-2 spike protein and main protease by biochemical compounds.Biologia202176113547356510.1007/s11756‑021‑00881‑z34565804
    [Google Scholar]
  36. HamdyR. MostafaA. Abo ShamaN.M. SolimanS.S.M. FayedB. Comparative evaluation of flavonoids reveals the superiority and promising inhibition activity of silibinin against SARS‐CoV‐2.Phytother. Res.20223672921293910.1002/ptr.748635596627
    [Google Scholar]
  37. MaoQ.Q. XuX.Y. CaoS.Y. GanR.Y. CorkeH. BetaT. LiH.B. Bioactive compounds and bioactivities of ginger (Zingiber officinale Roscoe).Foods20198618510.3390/foods806018531151279
    [Google Scholar]
  38. ZhangM. ZhaoR. WangD. WangL. ZhangQ. WeiS. LuF. PengW. WuC. Ginger (Zingiber officinale Rosc.) and its bioactive components are potential resources for health beneficial agents.Phytother. Res.202135271174210.1002/ptr.685832954562
    [Google Scholar]
  39. WattJ.M. Breyer-BrandwijkM.G. The medicinal and poisonous plants of southern and eastern Africa.Edinburgh, LondonE and S Livingstone Ltd.1962
    [Google Scholar]
  40. PrasadS. TyagiA.K. Ginger and its constituents: Role in prevention and treatment of gastrointestinal cancer.Gastroenterol. Res. Pract.2015201511110.1155/2015/14297925838819
    [Google Scholar]
  41. MesriM. Esmaeili SaberS.S. GodaziM. Roustaei ShirdelA. MontazerR. KoohestaniH.R. BaghcheghiN. KarimyM. AziziN. The effects of combination of Zingiber officinale and Echinacea on alleviation of clinical symptoms and hospitalization rate of suspected COVID-19 outpatients: A randomized controlled trial.J. Complement. Integr. Med.202118477578110.1515/jcim‑2020‑028333787192
    [Google Scholar]
  42. KaushikS. JangraG. KunduV. YadavJ.P. KaushikS. Anti-viral activity of Zingiber officinale (Ginger) ingredients against the Chikungunya virus.Virusdisease202031327027610.1007/s13337‑020‑00584‑032420412
    [Google Scholar]
  43. WangX. ShenY. ThakurK. HanJ. ZhangJ.G. HuF. WeiZ.J. Antibacterial activity and mechanism of ginger essential oil against Escherichia coli and Staphylococcus aureus. Molecules20202517395510.3390/molecules2517395532872604
    [Google Scholar]
  44. AyanfeOluwaO. The potential of organically cultivated ginger, turmeric and garlic to improve body immune system in combating COVID-19.African.Org. Agric.202025
    [Google Scholar]
  45. RasoolA. KhanM.U. AliM.A. AnjumA.A. AhmedI. AslamA. MustafaG. MasoodS. AliM.A. NawazM. Anti-avian influenza virus H9N2 activity of aqueous extracts of Zingiber officinalis (Ginger) and Allium sativum (Garlic) in chick embryos.Pak. J. Pharm. Sci.20173041341134429039335
    [Google Scholar]
  46. HuS CesaroneMR BelcaroG An oral combination of turmeric-pomegranate (With Ginger) prevents viral (Cold/Flu) episodes in immunocompromised patients.Med. Clin. Res.202165512517
    [Google Scholar]
  47. YantihN ErlinaL MulatsariE SumaryonoW The invention of candidate compounds from strychnine bush, pineapple and ginger as the main protease receptor inhibitor of COVID-19 virus.J. Exp. Biol. Agricul. Sci.20208S202S20910.18006/2020.8(Spl‑1‑SARS‑CoV‑2).S202.S209
    [Google Scholar]
  48. PrasanthD.S.N.B.K. PandaS.P. RaoA.L. ChakravartiG. TejaN. VaniV.B.N. SandhyaT. In-silico strategies of some selected phytoconstituents from zingiber officinale as sars cov-2 main protease (COVID-19) inhibitors.Ind. J. Pharmac. Educ. Res.2020543ss552s55910.5530/ijper.54.3s.154
    [Google Scholar]
  49. AbodunrinO.P. OnifadeO.F. AdegboyegaA.E. Therapeutic capability of five active compounds in typical African medicinal plants against main proteases of SARS-CoV-2 by computational approach.Inform. Med. Unlock.20223110096410.1016/j.imu.2022.10096435647264
    [Google Scholar]
  50. WuC. LiuY. YangY. ZhangP. ZhongW. WangY. WangQ. XuY. LiM. LiX. ZhengM. ChenL. LiH. Analysis of therapeutic targets for SARS-CoV-2 and discovery of potential drugs by computational methods.Acta Pharm. Sin. B202010576678810.1016/j.apsb.2020.02.00832292689
    [Google Scholar]
  51. HoffmannM. Kleine-WeberH. SchroederS. KrügerN. HerrlerT. ErichsenS. SchiergensT.S. HerrlerG. WuN.H. NitscheA. MüllerM.A. DrostenC. PöhlmannS. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor.Cell20201812271280.e810.1016/j.cell.2020.02.05232142651
    [Google Scholar]
  52. ZhaoP. PraissmanJ.L. GrantO.C. CaiY. XiaoT. RosenbalmK.E. AokiK. KellmanB.P. BridgerR. BarouchD.H. BrindleyM.A. LewisN.E. TiemeyerM. ChenB. WoodsR.J. WellsL. Virus-receptor interactions of glycosylated SARS-CoV-2 spike and human ACE2 receptor.Cell. Host. Microbe.2020284586601.e610.1016/j.chom.2020.08.00432841605
    [Google Scholar]
  53. ParviziM.M. ForouhariS. ShahriariradR. ShahriariradS. BradleyR.D. RoostaL. Prevalence and associated factors of complementary and integrative medicine use in patients afflicted with COVID-19.BMC Complem. Med. Therap.202222125110.1186/s12906‑022‑03722‑x36180868
    [Google Scholar]
  54. BoozariM. HosseinzadehH. Natural products for COVID ‐19 prevention and treatment regarding to previous coronavirus infections and novel studies.Phytother. Res.202135286487610.1002/ptr.687332985017
    [Google Scholar]
  55. AhkamA.H. HermantoF.E. AlamsyahA. AliyyahI.H. FatchiyahF. Virtual prediction of antiviral potential of ginger (Zingiber officinale) bioactive compounds against spike and MPro of SARS-CoV2 protein.Berkala. Penelitian. Hayati.2020252525710.23869/bphjbr.25.2.20207
    [Google Scholar]
  56. WijayaR.M. HafidzhahM.A. KharismaV.D. AnsoriA.N.M. ParikesitA.A. COVID-19 in silico drug with Zingiber officinale natural product compound library targeting the Mpro protein.Makara J. Sci.20212535
    [Google Scholar]
  57. LekaK. HamannC. DesdemoustierP. FrédérichM. GariglianyM.M. LedouxA. In vitro antiviral activity against SARS‐CoV ‐2 of common herbal medicinal extracts and their bioactive compounds.Phytother. Res.20223683013301510.1002/ptr.746335396882
    [Google Scholar]
  58. Kumar VermaA. KumarV. SinghS. GoswamiB.C. CampsI. SekarA. YoonS. LeeK.W. Repurposing potential of Ayurvedic medicinal plants derived active principles against SARS-CoV-2 associated target proteins revealed by molecular docking, molecular dynamics and MM-PBSA studies.Biomed. Pharmacother.202113711135610.1016/j.biopha.2021.11135633561649
    [Google Scholar]
  59. OsoB.J. AdeoyeA.O. OlaoyeI.F. Pharmacoinformatics and hypothetical studies on allicin, curcumin, and gingerol as potential candidates against COVID-19-associated proteases.J. Biomol. Struct. 202040138940032876538
    [Google Scholar]
  60. GoswamiD KumarM GhoshSK DasA Natural product compounds in alpinia officinarum and ginger are potent SARS-CoV-2 papain-like protease inhibitors.ChemRxiv202010.26434/chemrxiv.12071997.v1
    [Google Scholar]
  61. ChakotiyaA.S. SharmaR.K. Phytoconstituents of zingiber officinale targeting host-viral protein interaction at entry point of sars-COV-2: A molecular docking study.Def. Life Sci. J.2020268277
    [Google Scholar]
  62. ShaykhovaGI OrtikovBB MirazimovDB Efficacy in assessing the nutritional and biological value of ginger gelatin capsules in patients with covid-19.Cent. Asi. J. Med.20223133142
    [Google Scholar]
  63. KalarikkalS.P. SundaramG.M. Edible plant-derived exosomal microRNAs: Exploiting a cross-kingdom regulatory mechanism for targeting SARS-CoV-2.Toxicol. Appl. Pharmacol.202141411542510.1016/j.taap.2021.11542533516820
    [Google Scholar]
  64. ThotaS.M. BalanV. SivaramakrishnanV. Natural products as home‐based prophylactic and symptom management agents in the setting of COVID‐19.Phytother. Res.202034123148316710.1002/ptr.679432881214
    [Google Scholar]
  65. KodikaraB. UndugodaL. KarunarathneH. KandisaR. Antibacterial and antiviral properties of coriandrum sativum and zingiber officinale against human respiratory tract related bacterial and viral infections: A review with a focus on the case of SARS-CoV.Adv. Technol.2022361381
    [Google Scholar]
  66. KusumawatiN. BaharA. SetiarsoP. MuslimS. AuliyaA.R.S. Ginger and temulawak based herbal tea as potential functional drink products in the era of COVID-19.Rasayan J. Chem.20211431920192610.31788/RJC.2021.1436331
    [Google Scholar]
  67. JahanR PaulAK BondhonTA Zingiber officinale: Ayurvedic uses of the plant and in silico binding studies of selected phytochemicals with Mpro of SARS-CoV-2.Nat. Prod. Commun.202116101934578X211031766
    [Google Scholar]
  68. LiY. YangD. GaoX. JuM. FangH. YanZ. QuH. ZhangY. XieL. WengH. BaiC. SongY. SunZ. GengW. GaoX. Ginger supplement significantly reduced length of hospital stay in individuals with COVID-19.Nutr. Metab.20221918410.1186/s12986‑022‑00717‑w36578045
    [Google Scholar]
  69. AbenojarCJU AmirilFA DyMJTU Ginger (Zingiber officinale) as an airway smooth muscle relaxant: A potential benefit for COVID-19 patients.Int. J. Res. Publ. Rev.202231699707
    [Google Scholar]
  70. JhaK. KumarY. AgarwalM. BhushanD. PatiB.K. KumariA. Role of Dantabija, Haridra, and Zingiber (DHZ) combination to restore health and immunity in mild to moderate COVID-19 patients.J. Family Med. Prim. Care202211106067607310.4103/jfmpc.jfmpc_453_2236618209
    [Google Scholar]
  71. AbdallahH.M. El-HalawanyA.M. DarwishK.M. AlgandabyM.M. MohamedG.A. IbrahimS.R.M. KoshakA.E. ElhadyS.S. FadilS.A. AlqarniA.A. Abdel-NaimA.B. ElfakyM.A. Bio-guided isolation of SARS-CoV-2 main protease inhibitors from medicinal plants: In Vitro assay and molecular dynamics.Plants20221115191410.3390/plants1115191435893619
    [Google Scholar]
  72. PfabF. Buelow-JohansenB. AlberD. KrinerM. KornmannO. StuermerM. Reduction of SARS-CoV-2 viral load in exhaled air by antiseptic chewing gum: A pilot trial.Infection20221536260282
    [Google Scholar]
  73. AdriantaK.A. SomantaraI.G.B. The curcumin and gingerol combination as an immune regulator and anti-inflammatory agent of sars-cov infection according to a nutrigenomic approach: A mini-review.Nat. Prod. J.2023131e19112119813810.2174/2210315511666211119123421
    [Google Scholar]
  74. RajasekaranD. PalomboE.A. Chia YeoT. Lim Siok LeyD. Lee TuC. MalherbeF. GrolloL. Identification of traditional medicinal plant extracts with novel anti-influenza activity.PLoS One2013811e7929310.1371/journal.pone.007929324312177
    [Google Scholar]
  75. WydeP.R. PeavyD.L. CateT.R. Morphological and cytochemical characterization of cells infiltrating mouse lungs after influenza infection.Infect. Immun.197821114014610.1128/iai.21.1.140‑146.1978711312
    [Google Scholar]
  76. GulEE ErdoganHI ErerM KayrakM Herbal syncope: Ginger-provoked bradycardia.Am. J. Emerg. Med.2012302e5e710.1016/j.ajem.2010.12.009
    [Google Scholar]
  77. WangJ. PrinzR.A. LiuX. XuX. In vitro and in vivo antiviral activity of gingerenone A on influenza a virus is mediated by targeting Janus kinase 2.Viruses20201210114110.3390/v1210114133050000
    [Google Scholar]
  78. VahedH. Batool JafriS. JamilN. Propagation of influenza virus in lymphocytes determine by antiviral effects of honey, ginger and garlic decoction.J. Antivir. Antiretrovir.201681121910.4172/jaa.1000129
    [Google Scholar]
  79. DorraN. El-BerrawyM. SallamS. MahmoudR. Evaluation of antiviral and antioxidant activity of selected herbal extracts.J. High. Inst. Publ. Heal.2019491364010.21608/jhiph.2019.29464
    [Google Scholar]
  80. ImanishiN. AndohT. MantaniN. SakaiS. TerasawaK. ShimadaY. SatoM. KatadaY. UedaK. OchiaiH. Macrophage-mediated inhibitory effect of Zingiber officinale Rosc, a traditional oriental herbal medicine, on the growth of influenza A/Aichi/2/68 virus.Am. J. Chin. Med.200634115716910.1142/S0192415X0600372216437748
    [Google Scholar]
  81. HabeballaR.S. AhmedaniE.I. AwadN.S. AbdeinM.A. In vitro antiviral activity of Illicium verum and Zingiber officinale ethanolic extracts.Med. Sci.20202410534693480
    [Google Scholar]
  82. YangD. HuM. ZhuH. ChenJ. WangD. DingM. HanL. Mixed polysaccharides derived from shiitake mushroom, Poriacocos, Ginger, and Tangerine peel prevent the H1N1 virus infections in mice.Biosci. Biotechnol. Biochem.202185122459246510.1093/bbb/zbab17434625799
    [Google Scholar]
  83. ZhuH. HuM. WangD. XuG. YinX. LiuX. DingM. HanL. Mixed polysaccharides derived from shiitake mushroom, poriacocos, ginger, and tangerine peel enhanced protective immune responses in mice induced by inactivated influenza vaccine.Biomed. Pharmacother.202012611004910.1016/j.biopha.2020.11004932172063
    [Google Scholar]
  84. DuttaA. HsiaoS.H. HungC.Y. ChangC.S. LinY.C. LinC.Y. ChenT-C. HuangC-T. Effect of [6]-gingerol on viral neuraminidase and hemagglutinin-specific T cell immunity in severe influenza.Phytomedicine Plus20233110038710.1016/j.phyplu.2022.100387
    [Google Scholar]
  85. KimJ. LeeH. YouS. Dried ginger extract restores the T Helper Type 1/T helper type 2 balance and antibody production in cyclophosphamide-induced immunocompromised mice after flu vaccination.Nutrients2022149198410.3390/nu1409198435565949
    [Google Scholar]
  86. McBrideW.J.H. Bielefeldt-OhmannH. Dengue viral infections; pathogenesisand epidemiology.Microbes Infect.2000291041105010.1016/S1286‑4579(00)01258‑210967284
    [Google Scholar]
  87. GuoC. ZhouZ. WenZ. LiuY. ZengC. XiaoD. OuM. HanY. HuangS. LiuD. YeX. ZouX. WuJ. WangH. ZengE.Y. JingC. YangG. Global epidemiology of dengue outbreaks in 1990–2015: A systematic review and meta-analysis.Front. Cell. Infect. Microbiol.2017731710.3389/fcimb.2017.0031728748176
    [Google Scholar]
  88. BhattS. GethingP.W. BradyO.J. MessinaJ.P. FarlowA.W. MoyesC.L. DrakeJ.M. BrownsteinJ.S. HoenA.G. SankohO. MyersM.F. GeorgeD.B. JaenischT. WintG.R.W. SimmonsC.P. ScottT.W. FarrarJ.J. HayS.I. The global distribution and burden of dengue.Nature2013496744650450710.1038/nature1206023563266
    [Google Scholar]
  89. SharmaB.K. RamosJ.D. Regulation of matrixmetalloproteinase (MMP)-2, MMP-9 and tissue inhibitor of metalloproteinase (TIMP)-1, TIMP-2 expression by [6]-gingerol in dengue virus infected cell.Int. J. Pharma Bio Sci.2015
    [Google Scholar]
  90. LuplerdlopN. MisséD. BrayD. DeleuzeV. GonzalezJ.P. LeardkamolkarnV. YsselH. VeasF. Dengue‐virus‐infected dendritic cells trigger vascular leakage through metalloproteinase overproduction.EMBO Rep.20067111176118110.1038/sj.embor.740081417028575
    [Google Scholar]
  91. SunJ. Matrix metalloproteinases and tissue inhibitor of metalloproteinases are essential for the inflammatory response in cancer cells.J. Signal Transduct.201020101710.1155/2010/98513221152266
    [Google Scholar]
  92. GoldbergG.I. MarmerB.L. GrantG.A. EisenA.Z. WilhelmS. HeC.S. Human 72-kilodalton type IV collagenase forms a complex with a tissue inhibitor of metalloproteases designated TIMP-2.Proc. Natl. Acad. Sci. USA198986218207821110.1073/pnas.86.21.82072554304
    [Google Scholar]
  93. RodríguezD. MorrisonC.J. OverallC.M. Matrix metalloproteinases: What do they not do? New substrates and biological roles identified by murine models and proteomics.Biochim. Biophys. Acta Mol. Cell Res.201018031395410.1016/j.bbamcr.2009.09.01519800373
    [Google Scholar]
  94. VisseR. NagaseH. Matrix metalloproteinases and tissue inhibitors of metalloproteinases: structure, function, and biochemistry.Circ. Res.200392882783910.1161/01.RES.0000070112.80711.3D12730128
    [Google Scholar]
  95. KunduJ.K. NaH.K. SurhY.J. Ginger-derived phenolic substances with cancer preventive and therapeutic potential.Forum Nutr.20096118219210.1159/00021275019367122
    [Google Scholar]
  96. Last Name Anti-metalloproteinase-9 activities of selected indonesian zingiberaceae rhizome extracts in lipopolysaccharide-induced human vascular endothelial cells In Vitro. Am. J. Biochem. Biotechnol.2011711910.3844/ajbbsp.2011.1.9
    [Google Scholar]
  97. LeeH. SeoE. KangN. KimW. [6]-Gingerol inhibits metastasis of MDA-MB-231 human breast cancer cells.J. Nutr. Biochem.200819531331910.1016/j.jnutbio.2007.05.00817683926
    [Google Scholar]
  98. WengC.J. WuC.F. HuangH.W. HoC.T. YenG.C. Anti-invasion effects of 6-shogaol and 6-gingerol, two active components in ginger, on human hepatocarcinoma cells.Mol. Nutr. Food Res.201054111618162710.1002/mnfr.20100010820521273
    [Google Scholar]
  99. LingH. YangH. TanS-H. ChuiW-K. ChewE-H. 6-Shogaol, an active constituent of ginger, inhibits breast cancer cell invasion by reducing matrix metalloproteinase-9 expression via blockade of nuclear factor-κB activation.Br. J. Pharmacol.201016181763177710.1111/j.1476‑5381.2010.00991.x20718733
    [Google Scholar]
  100. SharmaB.K. KlinzingD.C. RamosJ.D. Zingiber officinale Roscoe aqueous extract modulates Matrixmetalloproteinases and tissue inhibitors of Metalloproteinases expressions in Dengue virus-infected cells: implications for prevention of vascular permeability.Trop. J. Pharm. Res.2015148137110.4314/tjpr.v14i8.8
    [Google Scholar]
  101. SharmaB.K. KlinzingD.C. RamosJ.D. Modulatory activities of Zingiber officinale Roscoe methanol extract on the expression and activity of MMPs and TIMPs on dengue virus infected cells.Asian Pac. J. Trop. Dis.20155S19S2610.1016/S2222‑1808(15)60849‑0
    [Google Scholar]
  102. Koirala SharmaB. Effect of zingiber officinale rhizome extracts and [6]-gingerol on the activity and expression of mmp-2,-9 and timp-1, 2 involved in vascular leakage in an in vitro model of dengue virus-3 infection.2018
    [Google Scholar]
  103. HalimJ.A.N. HalimS.N. DenisD. HaryantoS. DharmanaE. HapsariR. SasmonoR.T. YohanB. Antiviral activities of curcumin and 6‐gingerol against infection of four dengue virus serotypes in A549 human cell line in vitro. Indones. J. Biotechnol.20212614110.22146/ijbiotech.60174
    [Google Scholar]
  104. WangW.K. ChaoD.Y. KaoC.L. WuH.C. LiuY.C. LiC.M. LinS.C. HoS.T. HuangJ.H. KingC.C. High levels of plasma dengue viral load during defervescence in patients with dengue hemorrhagic fever: implications for pathogenesis.Virology2003305233033810.1006/viro.2002.170412573578
    [Google Scholar]
  105. LemonS.M. OttJ.J. Van DammeP. ShouvalD. Type A viral hepatitis: A summary and update on the molecular virology, epidemiology, pathogenesis and prevention.J. Hepatol.2017S0168-8278(17)32278-X28887164
    [Google Scholar]
  106. ScallanE. HoekstraR.M. MahonB.E. JonesT.F. GriffinP.M. An assessment of the human health impact of seven leading foodborne pathogens in the United States using disability adjusted life years.Epidemiol. Infect.2015143132795280410.1017/S095026881400318525633631
    [Google Scholar]
  107. FioreA.E. Hepatitis A transmitted by food.Clin. Infect. Dis.200438570571510.1086/38167114986256
    [Google Scholar]
  108. SilvaF.V.M. GibbsP.A. Thermal pasteurization requirements for the inactivation of Salmonella in foods.Food Res. Int.201245269569910.1016/j.foodres.2011.06.018
    [Google Scholar]
  109. PatwardhanM. MorganM.T. DiaV. D’SouzaD.H. Heat sensitization of hepatitis A virus and Tulane virus using grape seed extract, gingerol and curcumin.Food Microbiol.20209010346110.1016/j.fm.2020.10346132336357
    [Google Scholar]
  110. Galán-HuertaK.A. Rivas-EstillaA.M. Fernández-SalasI. Farfan-AleJ.A. Ramos-JiménezJ. Chikungunya virus: A general overview.Medicina Universitaria2015176817518310.1016/j.rmu.2015.06.001
    [Google Scholar]
  111. HayatiR.F. BetterC.D. DenisD. KomarudinA.G. BowolaksonoA. YohanB. SasmonoR.T. [6]-gingerol inhibits chikungunya virus infection by suppressing viral replication.BioMed Res. Int.202120211710.1155/2021/662340033855075
    [Google Scholar]
  112. Human Immunodeficiency Virus (HIV).Transfus. Med. Hemother.201643320322210.1159/00044585227403093
    [Google Scholar]
  113. AshrafiE. KasmaeiP. MehrabianF. OmidiS. ZarebanI. HaryalchiK. Predictive factors of behavioral intention in AIDS prevention in nursing and midwifery students at guilan university of medical sciences.Drug Invention Today.201912239242
    [Google Scholar]
  114. AshrafiE. KasmaeiP. MehrabianF. OmidiS. ZarebanI. KarimyM. HaryalchiK. Izadi RadH. TonekaboniN.R. The effect of educational program based on the theory of planned behavior on HIV prevention skills.HIV AIDS Rev.202019318018610.5114/hivar.2020.99689
    [Google Scholar]
  115. MontessoriV. PressN. HarrisM. AkagiL. MontanerJ.S.G. Adverse effects of antiretroviral therapy for HIV infection.CMAJ2004170222923814734438
    [Google Scholar]
  116. DabaghzadehF. KhaliliH. Dashti-KhavidakiS. AbbasianL. MoeinifardA. Ginger for prevention of antiretroviral-induced nausea and vomiting: A randomized clinical trial.Expert Opin. Drug Saf.201413785986610.1517/14740338.2014.91417024820858
    [Google Scholar]
  117. FengT. SuJ. DingZ.H. ZhengY.T. LiY. LengY. LiuJ.K. Chemical constituents and their bioactivities of “Tongling White Ginger” (Zingiber officinale).J. Agric. Food Chem.20115921116901169510.1021/jf202544w21954969
    [Google Scholar]
  118. ChiH.M. MooreM.L. PeeblesR.S. 11 - The intersection of respiratory syncytial virus infection, innate immunity and allergic lung disease. WilliamsMA. Allergens and Respiratory PollutantsWoodhead Publishing2011229243
    [Google Scholar]
  119. CollinsP.L. FearnsR. GrahamB.S. Respiratory syncytial virus: Virology, reverse genetics, and pathogenesis of disease.Curr. Top. Microbiol. Immunol.201337233810.1007/978‑3‑642‑38919‑1_124362682
    [Google Scholar]
  120. de GraafM. van BeekJ. KoopmansM.P.G. Human norovirus transmission and evolution in a changing world.Nat. Rev. Microbiol.201614742143310.1038/nrmicro.2016.4827211790
    [Google Scholar]
  121. AboubakrH.A. NauertzA. LuongN.T. AgrawalS. El-SohaimyS.A.A. YoussefM.M. GoyalS.M. In Vitro antiviral activity of clove and ginger aqueous extracts against feline calicivirus, a surrogate for human norovirus.J. Food Prot.20167961001101210.4315/0362‑028X.JFP‑15‑59327296605
    [Google Scholar]
  122. BasnetS. PalmenbergA.C. GernJ.E. Rhinoviruses and their receptors.Chest201915551018102510.1016/j.chest.2018.12.01230659817
    [Google Scholar]
  123. DenyerC.V. JacksonP. LoakesD.M. EllisM.R. YoungD.A.B. Isolation of antirhinoviral sesquiterpenes from ginger (Zingiber officinale).J. Nat. Prod.199457565866210.1021/np50107a0178064299
    [Google Scholar]
  124. RastogiN. DuggalS. SinghS.K. PorwalK. SrivastavaV.K. MauryaR. BhattM.L.B. MishraD.P. Proteasome inhibition mediates p53 reactivation and anti-cancer activity of 6-Gingerol in cervical cancer cells.Oncotarget2015641433104332510.18632/oncotarget.638326621832
    [Google Scholar]
  125. KharismaV.D. AnsoriA.N.M. NugrahaA.P. Computational study of ginger (Zingiber officinale) as E6 inhibitor in human papillomavirus type 16 (HPV-16) infection.Biochem. Cell. Arch.202020131553159
    [Google Scholar]
  126. ZhaoX-Y. ZhangM. ZhuZ-H. HouJ-C. LiuB. ZhangW. Effect and mechanism of 6-gingerol on invasion and migration of HPV-positive and negative cervical cancer cells.Med. J. Chin. People.Lib. Army.2020457691696
    [Google Scholar]
  127. KochC. ReichlingJ. SchneeleJ. SchnitzlerP. Inhibitory effect of essential oils against herpes simplex virus type 2.Phytomedicine2008151-2717810.1016/j.phymed.2007.09.00317976968
    [Google Scholar]
  128. ReusserP. Herpesvirus resistance to antiviral drugs: A review of the mechanisms, clinical importance and therapeutic options.J. Hosp. Infect.199633423524810.1016/S0195‑6701(96)90010‑98864937
    [Google Scholar]
  129. CassadyK.A. WhitleyR.J. New therapeutic approaches to the alphaherpesvirus infections.J. Antimicrob. Chemother.199739211912810.1093/jac/39.2.1199069530
    [Google Scholar]
  130. WhitleyR.J. LevinM. BartonN. HersheyB.J. DavisG. KeeneyR.E. WhelchelJ. DiethelmA.G. KartusP. SoongS.J. Infections caused by herpes simplex virus in the immunocompromised host: Natural history and topical acyclovir therapy.J. Infect. Dis.1984150332332910.1093/infdis/150.3.3236090539
    [Google Scholar]
  131. CameroM. LanaveG. CatellaC. CapozzaP. GentileA. FracchiollaG. BrittiD. MartellaV. BuonavogliaC. TempestaM. Virucidal activity of ginger essential oil against caprine alphaherpesvirus-1.Vet. Microbiol.201923015015510.1016/j.vetmic.2019.02.00130827382
    [Google Scholar]
  132. ReichlingJ SuschkeU SchneeleJ GeissHK Antibacterial activity and irritation potential of selected essential oil components–structure-activity relationship.Nat. Prod. Commun.200611110031210.1177/1934578X0600101116
    [Google Scholar]
  133. PolliniM. SanninoA. PaladiniF. Combining inorganic antibacterial# nanophases and essential oils recent findings and prospects. Essential Oils and Nanotechnology for Treatment of Microbial Diseases.CRC Press2017279293
    [Google Scholar]
  134. TeixeiraB. MarquesA. RamosC. BatistaI. SerranoC. MatosO. NengN.R. NogueiraJ.M.F. SaraivaJ.A. NunesM.L. European pennyroyal (Mentha pulegium) from Portugal: Chemical composition of essential oil and antioxidant and antimicrobial properties of extracts and essential oil.Ind. Crops Prod.2012361818710.1016/j.indcrop.2011.08.011
    [Google Scholar]
  135. SchnitzlerP. KochC. ReichlingJ. Susceptibility of drug-resistant clinical herpes simplex virus type 1 strains to essential oils of ginger, thyme, hyssop, and sandalwood.Antimicrob. Agents Chemother.20075151859186210.1128/AAC.00426‑0617353250
    [Google Scholar]
  136. GaoX. WangH. SairenjiT. Inhibition of Epstein-Barr virus (EBV) reactivation by short interfering RNAs targeting p38 mitogen-activated protein kinase or c-myc in EBV-positive epithelial cells.J. Virol.20047821117981180610.1128/JVI.78.21.11798‑11806.200415479821
    [Google Scholar]
  137. KerrJ.R. Epstein-Barr virus (EBV) reactivation and therapeutic inhibitors.J. Clin. Pathol.2019721065165810.1136/jclinpath‑2019‑20582231315893
    [Google Scholar]
  138. VimalaS. NorhanomA.W. YadavM. Anti-tumour promoter activity in Malaysian ginger rhizobia used in traditional medicine.Br. J. Cancer1999801-211011610.1038/sj.bjc.669032910389986
    [Google Scholar]
/content/journals/ctm/10.2174/0122150838250624230926043708
Loading
/content/journals/ctm/10.2174/0122150838250624230926043708
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): antiviral; COVID-19; Ginger; SARS-CoV-2; zingerone; Zingiber officinale
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test