Skip to content
2000
Volume 5, Issue 1
  • ISSN: 2950-4023
  • E-ISSN: 2950-4031

Abstract

Carbon Quantum Dots (CQDs) are a promising class of nanomaterials with unique optical properties, making them highly suitable for applications in bioimaging, drug delivery, and sensors. However, traditional synthesis methods often rely on toxic precursors and harsh conditions, raising concerns about environmental sustainability and safety. To address these issues, green synthesis methods have garnered attention as eco-friendly alternatives, utilizing renewable resources such as plant extracts, biomass, and waste materials. These sustainable approaches not only minimize environmental impact but also enhance the functional properties of CQDs, making them more suitable for biomedical and technological applications. The green synthesis of CQDs typically involves hydrothermal or solvothermal processes, where renewable precursors are converted into CQDs under mild conditions. This results in CQDs with excellent photoluminescence, stability, and biocompatibility, which are essential for their integration into practical applications. Moreover, the use of natural compounds during synthesis can impart bioactive properties to CQDs, expanding their potential for cancer therapy, environmental monitoring, and photocatalysis. Despite the progress in green synthesis, challenges remain in optimizing the synthesis parameters and scaling up production for industrial use. Future research should focus on refining these methods to improve yield, enhance the functional properties of CQDs, and reduce the environmental impact associated with their production. This review underscores the significance of green synthesis approaches in the development of CQDs, highlighting key techniques such as hydrothermal and solvothermal methods and exploring their potential applications in various fields. The promising advances in green synthesis position CQDs as a sustainable solution for numerous technological and biomedical applications.

Loading

Article metrics loading...

/content/journals/ctc/10.2174/0129504023374533250304072612
2025-03-13
2025-10-25
Loading full text...

Full text loading...

References

  1. KoçÖ.K. ÜzerA. ApakR. High quantum yield nitrogen-doped carbon quantum dot-based fluorescent probes for selective sensing of 2, 4, 6-trinitrotoluene.ACS Appl. Nano Mater.2022545868588110.1021/acsanm.2c00717
    [Google Scholar]
  2. MajoodM. SelvamA. AgrawalO. ChaurasiaR. RawatS. MohantyS. MukherjeeM. Biogenic carbon quantum dots as a neoteric inducer in the game of directing chondrogenesis.ACS Appl. Mater. Interfaces20231516199972001110.1021/acsami.3c0200737042793
    [Google Scholar]
  3. DeviS. KumarM. TiwariA. TiwariV. KaushikD. VermaR. BhattS. SahooB.M. BhattacharyaT. AlshehriS. GhoneimM.M. BabalghithA.O. BatihaG.E-S. Quantum dots: An emerging approach for cancer therapy.Front. Mater.2022879844010.3389/fmats.2021.798440
    [Google Scholar]
  4. ZouF. SuB. LengH. XinN. JiangS. WeiD. YangM. WangY. FanH. Red-emissive carbon quantum dots minimize phototoxicity for rapid and long-term lipid droplet monitoring.Chin. Chem. Lett.2024351010952310.1016/j.cclet.2024.109523
    [Google Scholar]
  5. NazariS. Akbar ZinatizadehA. RezaeiH. MohammadiP. ZinadiniS. LiQ. Properties on demand in CQDs for tailored design of liquid separation performance in membranes.Chem. Eng. J.202449715486210.1016/j.cej.2024.154862
    [Google Scholar]
  6. ShilpiS. ThakurA. A review of the application of carbon quantum dots.AIP Conf. Proc.2023253503000610.1063/5.0111342
    [Google Scholar]
  7. RoccoD. MoldoveanuV.G. FerociM. BortolamiM. VeticaF. Electrochemical synthesis of carbon quantum dots.ChemElectroChem2023103e20220110410.1002/celc.20220110437502311
    [Google Scholar]
  8. TanT.L. NulitR. JusohM. RashidS.A. Recent developments, applications and challenges for carbon quantum dots as a photosynthesis enhancer in agriculture.RSC Adv.20231336250932511710.1039/D3RA01217D37622012
    [Google Scholar]
  9. AkramZ. RazaA. MehdiM. ArshadA. DengX. SunS. Recent advancements in metal and non-metal mixed-doped carbon quantum dots: Synthesis and emerging potential applications.Nanomaterials (Basel)20231316233610.3390/nano1316233637630922
    [Google Scholar]
  10. RawatP. NainP. SharmaS. SharmaP.K. MalikV. MajumderS. VermaV.P. RawatV. RhyeeJ.S. An overview of synthetic methods and applications of photoluminescence properties of carbon quantum dots.Luminescence202338784586610.1002/bio.425535419945
    [Google Scholar]
  11. KumarV.B. SherI. Rencus-LazarS. RotenstreichY. GazitE. Functional carbon quantum dots for ocular imaging and therapeutic applications.Small2023197220575410.1002/smll.20220575436461689
    [Google Scholar]
  12. WangJ. JiangJ. LiF. ZouJ. XiangK. WangH. LiY. LiX. Emerging carbon-based quantum dots for sustainable photocatalysis.Green Chem.2023251325810.1039/D2GC03160D
    [Google Scholar]
  13. KaurJ. BhattuM. RawatM. VarmaR.S. AcevedoR. ShabanM. Al-SaeediS.I. SinghJ. Facile synthesis of carbon quantum dot/silver nanocomposite and its antimicrobial, catalytic and sensing applications.Environ. Res.2023237Pt 111691910.1016/j.envres.2023.11691937597826
    [Google Scholar]
  14. Al-HettyH.R.A.K. JalilA.T. Al-TamimiJ.H.Z. ShakierH.G. KandeelM. SalehM.M. NaderifarM. Engineering and surface modification of carbon quantum dots for cancer bioimaging.Inorg. Chem. Commun.202314911043310.1016/j.inoche.2023.110433
    [Google Scholar]
  15. BhakareM.A. BondardeM.P. LokhandeK.D. DhumalP.S. SomeS. Quick transformation of polymeric waste into high valuable N-self doped carbon quantum dot for detection of heavy metals from wastewater.Chem. Eng. Sci.202328111915010.1016/j.ces.2023.119150
    [Google Scholar]
  16. ManikandanV. MinS.C. Biofabrication of carbon quantum dots and their food packaging applications: A review.Food Sci. Biotechnol.20233291159117110.1007/s10068‑023‑01309‑x37362813
    [Google Scholar]
  17. SharmaA SandhuA PandeyT. A mini-review on carbon quantum dots and its applications.Int. J. Medi. Toxicol. Leg. Medi.2023261-216316610.5958/0974‑4614.2023.00026.8
    [Google Scholar]
  18. NazibudinN.A. ZainuddinM.F. AbdullahC.A. Hydrothermal synthesis of carbon quantum dots: An updated review.J. Adv. Res. Flu. Mech. Ther. Sci.2023101119220610.37934/arfmts.101.1.192206
    [Google Scholar]
  19. DhandapaniE. MaadeswaranP. Mohan RajR. RajV. KandiahK. DuraisamyN. A potential forecast of carbon quantum dots (CQDs) as an ultrasensitive and selective fluorescence probe for Hg (II) ions sensing.Mater. Sci. Eng. B202328711609810.1016/j.mseb.2022.116098
    [Google Scholar]
  20. MagdyG. EbrahimS. BelalF. El-DomanyR.A. Abdel-MegiedA.M. Sulfur and nitrogen co-doped carbon quantum dots as fluorescent probes for the determination of some pharmaceutically-important nitro compounds.Sci. Rep.2023131550210.1038/s41598‑023‑32494‑837015951
    [Google Scholar]
  21. XuX. MinH. LiY. Preparation and application of carbon quantum dot fluorescent probes combined with rare earth ions.Anal. Meth.202315435731575310.1039/D3AY01318A
    [Google Scholar]
  22. ThakurS. BainsA. SridharK. KaushikR. ChawlaP. SharmaM. Valorization of food industrial waste: Green synthesis of carbon quantum dots and novel applications.Chemosphere202434714065610.1016/j.chemosphere.2023.14065637951400
    [Google Scholar]
  23. WangL. WengS. SuS. WangW. Progress on the luminescence mechanism and application of carbon quantum dots based on biomass synthesis.RSC Adv.20231328191731919410.1039/D3RA02519E37362342
    [Google Scholar]
  24. MarkovićZ.M. MišovićA.S. ZmejkoskiD.Z. ZdravkovićN.M. KovačJ. Bajuk-BogdanovićD.V. MilivojevićD.D. MojsinM.M. StevanovićM.J. PavlovićV.B. MarkovićB.M.T. Employing gamma-ray-modified carbon quantum dots to combat a wide range of bacteria.Antibiotics (Basel)202312591910.3390/antibiotics1205091937237822
    [Google Scholar]
  25. AmbadeR.B. AliM. LeeK.H. JeongW. JeongS.H. HanT.H. Nitrogen and sulfur co-doped carbon quantum dot-engineered TiO 2 graphene on carbon fabric for photocatalysis applications.ACS Appl. Nano Mater.2023617157821579410.1021/acsanm.3c02661
    [Google Scholar]
  26. EssaL.A. JamalR.K. Studying the structural and optical properties of carbon quantum dots prepared by electro-chemical method.J. Opt.2023531574158010.1007/s12596‑023‑01328‑1
    [Google Scholar]
  27. AyadM.M. AbdelghafarM.E. ToradN.L. YamauchiY. AmerW.A. Green synthesis of carbon quantum dots toward highly sensitive detection of formaldehyde vapors using QCM sensor.Chemosphere2023312Pt 113703110.1016/j.chemosphere.2022.13703136397304
    [Google Scholar]
  28. HebbarA. SelvarajR. VinayagamR. VaradavenkatesanT. KumarP.S. DucP.A. RangasamyG. A critical review on the environmental applications of carbon dots.Chemosphere202331313730810.1016/j.chemosphere.2022.13730836410502
    [Google Scholar]
  29. Ghanbari AdiviM. ShojaeiA. A review on carbon quantum dots and their potential applications as filler in rubber nanocomposites.Adv. Coll. Interf. Sci.202327810212410.1016/j.cis.2020.10212432142942
    [Google Scholar]
  30. CharyK.J. SharmaA. SinghA. Carbon Quantum Dots in Healthcare: A Promising Solution for Sustainable Healthcare and Biomedical Practices.E3S Web of Conferences.LondonEDP Sciences20234530101710.1051/e3sconf/202345301017
    [Google Scholar]
  31. AnpalaganK. KarakkatJ.V. JelinekR. KadamannilN.N. ZhangT. ColeI. NurgaliK. YinH. LaiD.T.H. A green synthesis route to derive carbon quantum dots for bioimaging cancer cells.Nanomaterials (Basel)20231314210310.3390/nano1314210337513114
    [Google Scholar]
  32. WangZ. YaoB. XiaoY. TianX. WangY. Fluorescent quantum dots and its composites for highly sensitive detection of heavy metal ions and pesticide residues: A review.Chemosensors (Basel)202311740510.3390/chemosensors11070405
    [Google Scholar]
  33. LinC. DongB. XuZ. A value product after the hydrothermal treatment of sludge: Carbon quantum dots and its application.J. Environ. Chem. Eng.202311611143010.1016/j.jece.2023.111430
    [Google Scholar]
  34. SuH. WangW. ShiR. TangH. SunL. WangL. LiuQ. ZhangT. Recent advances in quantum dot catalysts for hydrogen evolution: Synthesis, characterization, and photocatalytic application.Carbon Energy202359e28010.1002/cey2.280
    [Google Scholar]
  35. BaslakC. DemirelS. KocyigitA. ErdalM.O. YıldırımM. Electrolyte performance of green synthesized carbon quantum dots from fermented tea for high-speed capacitors.Diamond Related Materials202313911027510.1016/j.diamond.2023.110275
    [Google Scholar]
  36. KhanS.H. Green nanotechnology for the environment and sustainable development.Green Materials for Wastewater TreatmentChamSpringer202038134610.1007/978‑3‑030‑17724‑9_2
    [Google Scholar]
  37. BackxB.P. Green nanotechnology: Only the final product that matters?Nat. Prod. Res.202236133507350933280439
    [Google Scholar]
  38. PalitS. Frontiers of applications of nanotechnology in biological sciences and green chemistry.Green Chemistry and Sustainable Technology1st Ed.Florida, USAApple Academic Press20202510.1201/9780367808310‑7
    [Google Scholar]
  39. RatanZ.A. HaidereM.F. NurunnabiM. ShahriarS.M. AhammadA.J.S. ShimY.Y. ReaneyM.J.T. ChoJ.Y. Green chemistry synthesis of silver nanoparticles and their potential anticancer effects.Cancers (Basel)202012485510.3390/cancers1204085532244822
    [Google Scholar]
  40. García-QuinteroA. PalenciaM. A critical analysis of environmental sustainability metrics applied to green synthesis of nanomaterials and the assessment of environmental risks associated with the nanotechnology.Sci. Total Environ.202179314852410.1016/j.scitotenv.2021.14852434182452
    [Google Scholar]
  41. NabipourH. HuY. 4 - Sustainable drug delivery systems through green nanotechnology.Nanoenginee. Biomater. Adv. Drug Deli.20208616910.1016/B978‑0‑08‑102985‑5.00004‑8
    [Google Scholar]
  42. FalsiniS. BardiU. Abou-HassanA. RistoriS. Sustainable strategies for large-scale nanotechnology manufacturing in the biomedical field.Green Chem.201820173897390710.1039/C8GC01248B
    [Google Scholar]
  43. SoltysL. OlkhovyyO. TatarchukT. NaushadM. Green synthesis of metal and metal oxide nanoparticles: Principles of green chemistry and raw materials.Magnetochemistry202171114510.3390/magnetochemistry7110145
    [Google Scholar]
  44. CaoJ. PanY. JiangY. QiR. YuanB. JiaZ. JiangJ. WangQ. Computer-aided nanotoxicology: Risk assessment of metal oxide nanoparticles via nano-QSAR.Green Chem.202022113512352110.1039/D0GC00933D
    [Google Scholar]
  45. FahmyS. PreisE. BakowskyU. AzzazyH.M. Palladium nanoparticles fabricated by green chemistry: Promising chemotherapeutic, antioxidant and antimicrobial agents.Materials (Basel)20201317366110.3390/ma1317366132825057
    [Google Scholar]
  46. CamposD.A. RibeiroT.B. TeixeiraJ.A. PastranaL. PintadoM.M. Integral valorization of pineapple (Ananas comosus L.) by-products through a green chemistry approach towards added value ingredients.Foods2020916010.3390/foods901006031936041
    [Google Scholar]
  47. Payal PandeyP. Role of nanotechnology in electronics: A review of recent developments and patents.Recent Pat. Nanotechnol.2022161456610.2174/187221051566621012011450433494686
    [Google Scholar]
  48. JordanC.C. KaiserI. MooreV.C. 2013 nanotechnology patent literature review: Graphitic carbon-based nanotechnology and energy applications are on the rise.Nanotech. L. & Bus.201411111
    [Google Scholar]
  49. KrishnaswamyK. PandianP. A novel carbon quantum dots and its applications in drug delivery system: A review.Int. Res. J. Pharmacop.2022131627110.51847/xvYP9Hw9fG
    [Google Scholar]
  50. PradeepP. KumarP. ChoonaraY.E. PillayV. Targeted nanotechnologies for cancer intervention: A patent review (2010-2016).Expert Opin. Ther. Pat.20172791005101910.1080/13543776.2017.134421628621571
    [Google Scholar]
  51. PawarG. Sphingosomes: Highlights of the progressive journey and their application perspectives in modern drug delivery.Int. J. Med. Phar. Sci.2022121110.31782/IJMPS.2022.12101
    [Google Scholar]
  52. Mansoori-KermaniA. KhalighiS. AkbarzadehI. NiavolF.R. MotasadizadehH. MahdiehA. JahedV. AbdinezhadM. RahbariasrN. HosseiniM. AhmadkhaniN. PanahiB. FatahiY. MozafariM. KumarA.P. MostafaviE. Engineered hyaluronic acid-decorated niosomal nanoparticles for controlled and targeted delivery of epirubicin to treat breast cancer.Mater. Today Bio20221610034910.1016/j.mtbio.2022.10034935875198
    [Google Scholar]
  53. JinS. AllamO. LeeK. LimJ. LeeM.J. LohS.H. JangS.S. LeeS.W. Carbon quantum dot modified reduced graphene oxide framework for improved alkali metal ion storage performance.Small20221835220289810.1002/smll.20220289835927029
    [Google Scholar]
  54. HoanB.T. TamP.D. PhamV.H. Green synthesis of highly luminescent carbon quantum dots from lemon juice.J. Nanotechnol.201920191910.1155/2019/2852816
    [Google Scholar]
  55. Safardoust-HojaghanH. Salavati-NiasariM. AmiriO. RashkiS. AshrafiM. Green synthesis, characterization and antimicrobial activity of carbon quantum dots-decorated ZnO nanoparticles.Ceram. Int.20214745187519710.1016/j.ceramint.2020.10.097
    [Google Scholar]
  56. WeiY. ZhangD. FangY. WangH. LiuY. XuZ. WangS. GuoY. Detection of ascorbic acid using green synthesized carbon quantum dots.J. Sens.2019201911010.1155/2019/9869682
    [Google Scholar]
  57. BawejaH JeetK Economical and green synthesis of graphene and carbon quantum dots from agricultural waste.Mater. Res. Expr.2019680850g810.1088/2053‑1591/ab28e5
    [Google Scholar]
  58. ZhaoX. LiaoS. WangL. LiuQ. ChenX. Facile green and one-pot synthesis of purple perilla derived carbon quantum dot as a fluorescent sensor for silver ion.Talanta20192011810.1016/j.talanta.2019.03.09531122398
    [Google Scholar]
  59. WangR.C. LuJ.T. LinY.C. High-performance nitrogen doped carbon quantum dots: Facile green synthesis from waste paper and broadband photodetection by coupling with ZnO nanorods.J. Alloys Compd.202081315220110.1016/j.jallcom.2019.152201
    [Google Scholar]
  60. ChandraS. BanoD. SahooK. KumarD. KumarV. Kumar YadavP. Hadi HasanS. Synthesis of fluorescent carbon quantum dots from Jatropha fruits and their application in fluorometric sensor for the detection of chlorpyrifos.Microchem. J.202217210695310.1016/j.microc.2021.106953
    [Google Scholar]
  61. WangR. LuK.Q. TangZ.R. XuY.J. Recent progress in carbon quantum dots: Synthesis, properties and applications in photocatalysis.J. Mater. Chem. A Mater. Energy Sustain.2017583717373410.1039/C6TA08660H
    [Google Scholar]
  62. ShenT. WangQ. GuoZ. KuangJ. CaoW. Hydrothermal synthesis of carbon quantum dots using different precursors and their combination with TiO2 for enhanced photocatalytic activity.Ceram. Int.20184410118281183410.1016/j.ceramint.2018.03.271
    [Google Scholar]
  63. NammahachakN. Aup-NgoenK.K. AsanithiP. HorpratumM. ChuangchoteS. RatanaphanS. SurareungchaiW. Hydrothermal synthesis of carbon quantum dots with size tunability via heterogeneous nucleation.RSC Adv.20221249317293173310.1039/D2RA05989D36380919
    [Google Scholar]
  64. ShenT.Y. JiaP.Y. ChenD.S. WangL.N. Hydrothermal synthesis of N-doped carbon quantum dots and their application in ion-detection and cell-imaging.Spectrochim. Acta A Mol. Biomol. Spectrosc.202124811928210.1016/j.saa.2020.11928233316652
    [Google Scholar]
  65. HuS.L. NiuK.Y. SunJ. YangJ. ZhaoN.Q. DuX.W. One-step synthesis of fluorescent carbon nanoparticles by laser irradiation.J. Mater. Chem.200919448448810.1039/B812943F
    [Google Scholar]
  66. HasanM.R. SahaN. QuaidT. RezaM.T. Formation of carbon quantum dots via hydrothermal carbonization: Investigate the effect of precursors.Energies202114498610.3390/en14040986
    [Google Scholar]
  67. LiC. ZengJ. GuoD. LiuL. XiongL. LuoX. HuZ. WuF. Cobalt-doped carbon quantum dots with peroxidase-mimetic activity for ascorbic acid detection through both fluorometric and colorimetric methods.ACS Appl. Mater. Interfaces20211341494534946110.1021/acsami.1c1319834609826
    [Google Scholar]
  68. HumaeraN.A. FahriA.N. ArmynahB. TahirD. Natural source of carbon dots from part of a plant and its applications: A review.Luminescence20213661354136410.1002/bio.408433982393
    [Google Scholar]
  69. WenF. LiP. ZhangY. ZhongH. YanH. SuW. Preparation, characterization of green tea carbon quantum dots/curcumin antioxidant and antibacterial nanocomposites.J. Mol. Struct.2023127313424710.1016/j.molstruc.2022.134247
    [Google Scholar]
  70. HeM. ZhangJ. WangH. KongY. XiaoY. XuW. Material and optical properties of fluorescent carbon quantum dots fabricated from lemon juice via hydrothermal reaction.Nanoscale Res. Lett.201813117510.1186/s11671‑018‑2581‑729882047
    [Google Scholar]
  71. DP. SinghL. ThakurA. KumarP. Green synthesis of glowing carbon dots from Carica papaya waste pulp and their application as a label-freechemo probe for chromium detection in water.Sens. Actuators B Chem.201928336337210.1016/j.snb.2018.12.027
    [Google Scholar]
  72. DoshiK. MungrayA.A. Bio-route synthesis of carbon quantum dots from tulsi leaves and its application as a draw solution in forward osmosis.J. Environ. Chem. Eng.20208510417410.1016/j.jece.2020.104174
    [Google Scholar]
  73. ZhangD. ZhangF. LiaoY. WangF. LiuH. Carbon quantum dots from pomelo peel as fluorescence probes for “turn-off–on” high-sensitivity detection of Fe3+ and L-cysteine.Molecules20222713409910.3390/molecules2713409935807347
    [Google Scholar]
  74. SongJ. ZhaoL. WangY. XueY. DengY. ZhaoX. LiQ. Carbon quantum dots prepared with chitosan for synthesis of CQDs/AuNPs for iodine ions detection.Nanomaterials (Basel)2018812104310.3390/nano812104330551611
    [Google Scholar]
  75. YuC. JiangX. QinD. MoG. ZhengX. DengB. Facile syntheses of s, n-codoped carbon quantum dots and their applications to a novel off–on nanoprobe for detection of 6-thioguanine and its bioimaging.ACS Sustain. Chem.& Eng.2019719161121612010.1021/acssuschemeng.9b02886
    [Google Scholar]
  76. NairA. HaponiukJ.T. ThomasS. GopiS. Natural carbon-based quantum dots and their applications in drug delivery: A review.Biomed. Pharmacother.202013211083410.1016/j.biopha.2020.11083433035830
    [Google Scholar]
  77. YadavP.K. SinghV.K. ChandraS. BanoD. KumarV. TalatM. HasanS.H. Green synthesis of fluorescent carbon quantum dots from azadirachta indica leaves and their peroxidase-mimetic activity for the detection of H2O2 and ascorbic acid in common fresh fruits.ACS Biomater. Sci. Eng.20195262363210.1021/acsbiomaterials.8b0152833405826
    [Google Scholar]
  78. AnsiV.A. RenukaN.K. Sucrose derived luminescent carbon dots as a promising bio-medical agent.Mater. Today Proc.2019181724172810.1016/j.matpr.2019.05.269
    [Google Scholar]
  79. GuoX. ZhangH. SunH. TadeM.O. WangS. Green synthesis of carbon quantum dots for sensitized solar cells.ChemPhotoChem20171411611910.1002/cptc.201600038
    [Google Scholar]
  80. Sariga Ayilliath KolaprathM.K. BennyL. VargheseA. A facile, green synthesis of carbon quantum dots from Polyalthia longifolia and its application for the selective detection of cadmium.Dyes Pigments202321011104810.1016/j.dyepig.2022.111048
    [Google Scholar]
  81. YenY.C. LinC.C. ChenP.Y. KoW.Y. TienT.R. LinK.J. Green synthesis of carbon quantum dots embedded onto titanium dioxide nanowires for enhancing photocurrent.R. Soc. Open Sci.20174516105110.1098/rsos.16105128572996
    [Google Scholar]
  82. GhorbaniM. TajikH. MoradiM. MolaeiR. AlizadehA. One-pot microbial approach to synthesize carbon dots from baker’s yeast-derived compounds for the preparation of antimicrobial membrane.J. Environ. Chem. Eng.202210310752510.1016/j.jece.2022.107525
    [Google Scholar]
  83. ChahalS. MacairanJ.R. YousefiN. TufenkjiN. NaccacheR. Green synthesis of carbon dots and their applications.RSC Adv.20211141253542536310.1039/D1RA04718C35478913
    [Google Scholar]
  84. de OliveiraB.P. da Silva AbreuF.O.M. Carbon quantum dots synthesis from waste and by-products: Perspectives and challenges.Mater. Lett.202128212876410.1016/j.matlet.2020.128764
    [Google Scholar]
  85. Abo ZaidM.H. El-EnanyN. MostafaA.E. HadadG.M. BelalF. Highly fluorescent nitrogen‐doped carbon quantum dots prepared using sucrose and urea: Green synthesis, characterization, and use for determination of torsemide in its tablets and plasma samples.Luminescence2024393e471010.1002/bio.471038481364
    [Google Scholar]
  86. UmarE. IkramM. HaiderJ. NabganW. HaiderA. ImranM. NazirG. A state-of-the-art review on carbon quantum dots: Prospective, advances, zebrafish biocompatibility and bioimaging in vivo and bibliometric analysis.Sustain. Mater. Technol.202335e0052910.1016/j.susmat.2022.e00529
    [Google Scholar]
  87. UnnikrishnanE. KrishnamoorthyA. ShajiS.P. KamathA.S. UlaganathanM. Electrocatalytic behavior of carbon quantum dots in sustainable applications: A review.Curr. Opin. Electrochem.20234310143610.1016/j.coelec.2023.101436
    [Google Scholar]
  88. PourmadadiM. RahmaniE. Rajabzadeh-KhosroshahiM. SamadiA. BehzadmehrR. RahdarA. FerreiraL.F.R. Properties and application of carbon quantum dots (CQDs) in biosensors for disease detection: A comprehensive review.J. Drug Deliv. Sci. Technol.20238010415610.1016/j.jddst.2023.104156
    [Google Scholar]
  89. DuaS. KumarP. PaniB. KaurA. KhannaM. BhattG. Stability of carbon quantum dots: A critical review.RSC Adv.20231320138451386110.1039/D2RA07180K37181523
    [Google Scholar]
  90. GiordanoM.G. SegantiG. BartoliM. TagliaferroA. An overview on carbon quantum dots optical and chemical features.Molecules2023286277210.3390/molecules2806277236985743
    [Google Scholar]
  91. KhanA. EzatiP. KimJ.T. RhimJ.W. Biocompatible carbon quantum dots for intelligent sensing in food safety applications: Opportunities and sustainability.Mater. Tod. Sustain.20232110030610.1016/j.mtsust.2022.100306
    [Google Scholar]
  92. Palacio-VergaraM Álvarez-GómezM GallegoJ LópezD Biomass solvothermal treatment methodologies to obtain carbon quantum dots: A systematic review.Talanta Open2023810024410.1016/j.talo.2023.100244
    [Google Scholar]
  93. PrakashA. YadavS. YadavU. SaxenaP.S. SrivastavaA. Recent advances on nitrogen-doped carbon quantum dots and their applications in bioimaging: A review.Bull. Mater. Sci.2023461710.1007/s12034‑022‑02846‑7
    [Google Scholar]
  94. KorkutS. VatanpourV. KoyuncuI. Carbon-based quantum dots in fabrication and modification of membranes: A review.Separ. Purif. Tech.202332612487610.1016/j.seppur.2023.124876
    [Google Scholar]
  95. YangH.L. BaiL.F. GengZ.R. ChenH. XuL.T. XieY.C. WangD.J. GuH.W. WangX.M. Carbon quantum dots: Preparation, optical properties, and biomedical applications.Materials Today Adv.20231810037610.1016/j.mtadv.2023.100376
    [Google Scholar]
  96. SelvarajuN. RavichandranK. VenugopalG. A short review of the kinetic parameters of carbon quantum dots for Electrocatalytic Hydrogen evolution reaction.Int. J. Hydrogen Energy202348103807382310.1016/j.ijhydene.2022.10.203
    [Google Scholar]
  97. AbuN. ChinnathambiS. KumarM. EtezadiF. BakhoriN.M. ZubirZ.A. Md SallehS.N. ShuebR.H. KarthikeyanS. ThangavelV. AbdullahJ. PandianG.N. Development of biomass waste-based carbon quantum dots and their potential application as non-toxic bioimaging agents.RSC Adv.20231340282302824910.1039/D3RA05840A37753403
    [Google Scholar]
  98. EskalenH. UruşS. KavgacıM. KalmışH.V. TahtaB. Carbon quantum dots derived from pomegranate peel: Highly effective Fe(III) sensor.Biomass Convers. Biorefin.20241411201121410.1007/s13399‑023‑04048‑5
    [Google Scholar]
  99. SinghH. BamrahA. KhatriM. BhardwajN. One-pot hydrothermal synthesis and characterization of carbon quantum dots (CQDs).Mater. Today Proc.2020281891189410.1016/j.matpr.2020.05.297
    [Google Scholar]
  100. ZhangY. YangX. GaoZ. In situ polymerization of aniline on carbon quantum dots: A new platform for ultrasensitive detection of glucose and hydrogen peroxide.RSC Adv.2015528216752168010.1039/C5RA00146C
    [Google Scholar]
  101. OnatE İzgiMS ŞahinÖ Comparison of the production of hydrogen from the hydrolysis of Nabh4 and Kbh4 in the presence of novel effective ruthenium catalyst supported by carbon quantum dots generated from sucrose.SSRn20241494562210.2139/ssrn.4945622
    [Google Scholar]
  102. EtefaH.F. TessemaA.A. DejeneF.B. Carbon dots for future prospects: Synthesis, characterizations and recent applications: A review (2019–2023).C.20241036010.3390/c10030060
    [Google Scholar]
  103. UsmanM. ChengS. Recent trends and advancements in green synthesis of biomass-derived carbon dots.Eng2024532223226310.3390/eng5030116
    [Google Scholar]
  104. SperanzaG. Carbon nanomaterials: Synthesis, functionalization and sensing applications.Nanomaterials (Basel)202111496710.3390/nano1104096733918769
    [Google Scholar]
  105. FarmandM JahanpeymaF GholaminejadA AzimzadehM MalaeiF ShoaieN. Carbon nanostructures: A comprehensive review of potential applications and toxic effects.3 Biotech.202212815910.1007/s13205‑022‑03175‑635814038
    [Google Scholar]
  106. CastellettoS. BorettiA. Advantages, limitations, and future suggestions in studying graphene-based desalination membranes.RSC Adv.202111147981800210.1039/D1RA00278C35423337
    [Google Scholar]
  107. ProlongoS.G. MoricheR. Jiménez-SuárezA. SánchezM. UreñaA. Advantages and disadvantages of the addition of graphene nanoplatelets to epoxy resins.Eur. Polym. J.20146120621410.1016/j.eurpolymj.2014.09.022
    [Google Scholar]
  108. XiaC. ZhuS. FengT. YangM. YangB. Evolution and synthesis of carbon dots: From carbon dots to carbonized polymer dots.Adv. Sci. (Weinh.)2019623190131610.1002/advs.20190131631832313
    [Google Scholar]
  109. LeCroyG.E. SonkarS.K. YangF. VecaL.M. WangP. TackettK.N.II YuJ.J. VasileE. QianH. LiuY. LuoP.G. SunY.P. Toward structurally defined carbon dots as ultracompact fluorescent probes.ACS Nano2014854522452910.1021/nn406628s24702526
    [Google Scholar]
  110. PengH. Travas-SejdicJ. Simple aqueous solution route to luminescent carbogenic dots from carbohydrates.Chem. Mater.200921235563556510.1021/cm901593y
    [Google Scholar]
  111. YanX. CuiX. LiB. LiL. Large, solution-processable graphene quantum dots as light absorbers for photovoltaics.Nano Lett.20101051869187310.1021/nl101060h20377198
    [Google Scholar]
  112. DeyS. GovindarajA. BiswasK. RaoC.N.R. Luminescence properties of boron and nitrogen doped graphene quantum dots prepared from arc-discharge-generated doped graphene samples.Chem. Phys. Lett.2014595-59620320810.1016/j.cplett.2014.02.012
    [Google Scholar]
  113. NguyenV. YanL. SiJ. HouX. Femtosecond laser-induced size reduction of carbon nanodots in solution: Effect of laser fluence, spot size, and irradiation time.J. Appl. Phys.2015117808430410.1063/1.4909506
    [Google Scholar]
  114. GeG. LiL. WangD. ChenM. ZengZ. XiongW. WuX. GuoC. Carbon dots: Synthesis, properties and biomedical applications.J. Mater. Chem. B Mater. Biol. Med.20219336553657510.1039/D1TB01077H34328147
    [Google Scholar]
  115. HouH. BanksC.E. JingM. ZhangY. JiX. Carbon quantum dots and their derivative 3D porous carbon frameworks for sodium‐ion batteries with ultralong cycle life.Adv. Mater.201527477861786610.1002/adma.20150381626506218
    [Google Scholar]
  116. WangL. ChenX. LuY. LiuC. YangW. Carbon quantum dots displaying dual-wavelength photoluminescence and electrochemiluminescence prepared by high-energy ball milling.Carbon20159447247810.1016/j.carbon.2015.06.084
    [Google Scholar]
  117. ZulfajriM. AbdelhamidH.N. SudewiS. DayalanS. RasoolA. HabibA. HuangG.G. Plant part-derived carbon dots for biosensing.Biosensors (Basel)20201066810.3390/bios1006006832560540
    [Google Scholar]
  118. ZhangY.Q. MaD.K. ZhuangY. ZhangX. ChenW. HongL.L. YanQ.X. YuK. HuangS.M. One-pot synthesis of N-doped carbon dots with tunable luminescence properties.J. Mater. Chem.20122233167141671810.1039/c2jm32973e
    [Google Scholar]
  119. GaoR. YiX. LiuX. WangH. WangL. ZengB. ChenG. XuY. YuanC. DaiL. Phosphorus-doped carbon dots as an effective flame retardant for transparent PVA composite films with enhanced UV shielding property.React. Funct. Polym.202419710587710.1016/j.reactfunctpolym.2024.105877
    [Google Scholar]
/content/journals/ctc/10.2174/0129504023374533250304072612
Loading
/content/journals/ctc/10.2174/0129504023374533250304072612
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test