Skip to content
2000
Volume 5, Issue 1
  • ISSN: 2950-4023
  • E-ISSN: 2950-4031

Abstract

The most prevalent infectious disease that affects the respiratory system is tuberculosis. The treatment for tuberculosis includes a combination of multiple antibiotics, including ethambutol, pyrazinamide, and rifampicin, which must be administered over an extended duration to effectively eliminate the mycobacteria. The main aim of the present work was to review the mechanisms and structural features of small molecules that affect mycobacterial ATP synthesis and ATP homeostasis. The mycobacteria can produce ATP in both aerobic and hypoxic environments. The enzyme ATP synthase is necessary for ATP production in both latent and developing mycobacteria. Research indicates that ATP synthase targeting small chemical compounds exhibits efficacy against latent and resistant forms of tuberculosis. The significance of mycobacterial energy metabolism as a potential target for anti-TB medications was highlighted by the FDA-approved ATP synthase inhibitor bedaquiline and a clinical candidate Q203, which interfered with the cytochrome bc1 complex of ATP synthase.

Loading

Article metrics loading...

/content/journals/ctc/10.2174/0129504023342762250325065553
2025-05-08
2025-10-25
Loading full text...

Full text loading...

References

  1. World Health Organization Global Tuberculosis Report 2020.World Health Organization2020232
    [Google Scholar]
  2. SegalL.N. ClementeJ.C. LiY. RuanC. CaoJ. DanckersM. MorrisA. TapyrikS. WuB.G. DiazP. CalligaroG. DawsonR. van Zyl-SmitR.N. DhedaK. RomW.N. WeidenM.D. Anaerobic bacterial fermentation products increase tuberculosis risk in antiretroviral-drug-treated HIV patients.Cell Host Microbe2017214530537.e410.1016/j.chom.2017.03.00328366509
    [Google Scholar]
  3. GomezJ.E. McKinneyJ.D.M. tuberculosis persistence, latency, and drug tolerance.Tuberculosis2004841-2294410.1016/j.tube.2003.08.00314670344
    [Google Scholar]
  4. SacchettiniJ.C. RubinE.J. FreundlichJ.S. Drugs versus bugs: In pursuit of the persistent predator Mycobacterium tuberculosis.Nat. Rev. Microbiol.200861415210.1038/nrmicro181618079742
    [Google Scholar]
  5. MaZ. LienhardtC. McIlleronH. NunnA.J. WangX. Global tuberculosis drug development pipeline: The need and the reality.Lancet201037597312100210910.1016/S0140‑6736(10)60359‑920488518
    [Google Scholar]
  6. GüntherG. MhuuluL. DiergaardtA. DreyerV. MosesM. AnyoloK. RuswaN. ClaassensM. NiemannS. NepoloE. Bedaquiline resistance after effective treatment of multidrug-resistant tuberculosis, Namibia.Emerg. Infect. Dis.202430356857110.3201/eid3003.24013438407158
    [Google Scholar]
  7. BhanuM.L. Anti-tuberculosis drugs and mechanisms of action.Int. J. Infect. Dis.20234217
    [Google Scholar]
  8. GhajavandH. Kargarpour KamakoliM. KhanipourS. Pourazar DizajiS. MasoumiM. Rahimi JamnaniF. FatehA. SiadatS.D. VaziriF. High prevalence of bedaquiline resistance in treatment-naive tuberculosis patients and verapamil effectiveness.Antimicrob. Agents Chemother.2019633e02530e1810.1128/AAC.02530‑1830602521
    [Google Scholar]
  9. NimmoC. MillardJ. van DorpL. BrienK. MoodleyS. WolfA. GrantA.D. PadayatchiN. PymA.S. BallouxF. O’DonnellM. Population-level emergence of bedaquiline and clofazimine resistance-associated variants among patients with drug-resistant tuberculosis in Southern Africa: A phenotypic and phylogenetic analysis.Lancet Microbe202014e165e17410.1016/S2666‑5247(20)30031‑832803174
    [Google Scholar]
  10. QuémardA. SacchettiniJ.C. DessenA. VilchezeC. BittmanR. JacobsW.R.Jr BlanchardJ.S. Enzymatic characterization of the target for isoniazid in Mycobacterium tuberculosis.Biochemistry199534268235824110.1021/bi00026a0047599116
    [Google Scholar]
  11. BaulardA.R. BettsJ.C. Engohang-NdongJ. QuanS. McAdamR.A. BrennanP.J. LochtC. BesraG.S. Activation of the pro-drug ethionamide is regulated in mycobacteria.J. Biol. Chem.200027536283262833110.1074/jbc.M00374420010869356
    [Google Scholar]
  12. ManjunathaU.H. BoshoffH. DowdC.S. ZhangL. AlbertT.J. NortonJ.E. DanielsL. DickT. PangS.S. BarryC.E.III Identification of a nitroimidazo-oxazine-specific protein involved in PA-824 resistance in Mycobacterium tuberculosis.Proc. Natl. Acad. Sci. USA2006103243143610.1073/pnas.050839210316387854
    [Google Scholar]
  13. DickT. Dormant tubercle bacilli: The key to more effective TB chemotherapy?J. Antimicrob. Chemother.200147111711810.1093/jac/47.1.11711152444
    [Google Scholar]
  14. WayneL.G. SohaskeyC.D. Nonreplicating persistence of Mycobacterium tuberculosis.Annu. Rev. Microbiol.200155113916310.1146/annurev.micro.55.1.13911544352
    [Google Scholar]
  15. HengY. SeahP.G. SiewJ.Y. TayH.C. SinghalA. MathysV. KiassM. BifaniP. DartoisV. HervéM. Mycobacterium tuberculosis infection induces hypoxic lung lesions in the rat.Tuberculosis201191433934110.1016/j.tube.2011.05.00321636324
    [Google Scholar]
  16. ViaL.E. LinP.L. RayS.M. CarrilloJ. AllenS.S. EumS.Y. TaylorK. KleinE. ManjunathaU. GonzalesJ. LeeE.G. ParkS.K. RaleighJ.A. ChoS.N. McMurrayD.N. FlynnJ.L. BarryC.E.III Tuberculous granulomas are hypoxic in guinea pigs, rabbits, and nonhuman primates.Infect. Immun.20087662333234010.1128/IAI.01515‑0718347040
    [Google Scholar]
  17. ParkH.D. GuinnK.M. HarrellM.I. LiaoR. VoskuilM.I. TompaM. SchoolnikG.K. ShermanD.R. Rv3133c/dosR is a transcription factor that mediates the hypoxic response of Mycobacterium tuberculosis.Mol. Microbiol.200348383384310.1046/j.1365‑2958.2003.03474.x12694625
    [Google Scholar]
  18. MuttucumaruD.G.N. RobertsG. HindsJ. StablerR.A. ParishT. Gene expression profile of Mycobacterium tuberculosis in a non-replicating state.Tuberculosis2004843-423924610.1016/j.tube.2003.12.00615207493
    [Google Scholar]
  19. SchnappingerD. EhrtS. VoskuilM.I. LiuY. ManganJ.A. MonahanI.M. DolganovG. EfronB. ButcherP.D. NathanC. SchoolnikG.K. Transcriptional adaptation of Mycobacterium tuberculosis within macrophages: Insights into the phagosomal environment.J. Exp. Med.2003198569370410.1084/jem.2003084612953091
    [Google Scholar]
  20. LeistikowR.L. MortonR.A. BartekI.L. FrimpongI. WagnerK. VoskuilM.I. The Mycobacterium tuberculosis DosR regulon assists in metabolic homeostasis and enables rapid recovery from nonrespiring dormancy.J. Bacteriol.201019261662167010.1128/JB.00926‑0920023019
    [Google Scholar]
  21. RustadT.R. HarrellM.I. LiaoR. ShermanD.R. The enduring hypoxic response of Mycobacterium tuberculosis.PLoS One200831e150210.1371/journal.pone.000150218231589
    [Google Scholar]
  22. RaoS.P.S. AlonsoS. RandL. DickT. PetheK. The protonmotive force is required for maintaining ATP homeostasis and viability of hypoxic, nonreplicating Mycobacterium tuberculosis.Proc. Natl. Acad. Sci. USA200810533119451195010.1073/pnas.071169710518697942
    [Google Scholar]
  23. WatanabeS. ZimmermannM. GoodwinM.B. SauerU. BarryC.E.III BoshoffH.I. Fumarate reductase activity maintains an energized membrane in anaerobic Mycobacterium tuberculosis.PLoS Pathog.2011710e100228710.1371/journal.ppat.100228721998585
    [Google Scholar]
  24. DiaconA.H. PymA. GrobuschM. PatientiaR. RustomjeeR. Page-ShippL. PistoriusC. KrauseR. BogoshiM. ChurchyardG. VenterA. AllenJ. PalominoJ.C. De MarezT. van HeeswijkR.P.G. LounisN. MeyvischP. VerbeeckJ. ParysW. de BeuleK. AndriesK. NeeleyD.F.M. The diarylquinoline TMC207 for multidrug-resistant tuberculosis.N. Engl. J. Med.2009360232397240510.1056/NEJMoa080842719494215
    [Google Scholar]
  25. AndriesK. VerhasseltP. GuillemontJ. GöhlmannH.W.H. NeefsJ.M. WinklerH. Van GestelJ. TimmermanP. ZhuM. LeeE. WilliamsP. de ChaffoyD. HuitricE. HoffnerS. CambauE. Truffot-PernotC. LounisN. JarlierV. A diarylquinoline drug active on the ATP synthase of Mycobacterium tuberculosis.Science2005307570722322710.1126/science.110675315591164
    [Google Scholar]
  26. AlbertsB. BrayD. LewisJ. RaffM. RobertsK. WatsonJ.D. Molecular Biology of the Cell.New YorkGarland Science1994
    [Google Scholar]
  27. LuP. LillH. BaldD. ATP synthase in mycobacteria: Special features and implications for a function as drug target.Biochim. Biophys. Acta Bioenerg.2014183771208121810.1016/j.bbabio.2014.01.02224513197
    [Google Scholar]
  28. BlackP.A. WarrenR.M. LouwG.E. van HeldenP.D. VictorT.C. KanaB.D. Energy metabolism and drug efflux in Mycobacterium tuberculosis.Antimicrob. Agents Chemother.20145852491250310.1128/AAC.02293‑13
    [Google Scholar]
  29. BerneyM. CookG.M. Respiration and oxidative phosphorylation in mycobacteria.The Structural Basis of Biological Energy Generation. Advances in Photosynthesis and RespirationSpringer: Dordrecht20143927729310.1007/978‑94‑017‑8742‑0_15
    [Google Scholar]
  30. KoulA. VranckxL. DendougaN. BalemansW. Van den WyngaertI. VergauwenK. GöhlmannH.W.H. WillebrordsR. PonceletA. GuillemontJ. BaldD. AndriesK. Diarylquinolines are bactericidal for dormant mycobacteria as a result of disturbed ATP homeostasis.J. Biol. Chem.200828337252732528010.1074/jbc.M80389920018625705
    [Google Scholar]
  31. HaagsmaA.C. DriessenN.N. HahnM.M. LillH. BaldD. ATP synthase in slow- and fast-growing mycobacteria is active in ATP synthesis and blocked in ATP hydrolysis direction.FEMS Microbiol. Lett.20103131687410.1111/j.1574‑6968.2010.02123.x21039782
    [Google Scholar]
  32. BerneyM. CookG.M. Unique flexibility in energy metabolism allows mycobacteria to combat starvation and hypoxia.PLoS One201051e861410.1371/journal.pone.000861420062806
    [Google Scholar]
  33. VestergaardM. BaldD. IngmerH. Targeting the ATP synthase in bacterial and fungal pathogens: Beyond Mycobacterium tuberculosis.J. Glob. Antimicrob. Resist.202229294110.1016/j.jgar.2022.01.02635131507
    [Google Scholar]
  34. HarikishoreA. WongC.F. RagunathanP. JoonS. DickT. GrüberG. Mycobacterial F-ATP Synthase: From Structures to Target Sites to Inhibitors.Translational Research in Biomedical Sciences: Recent Progress and Future Prospects. ParthasarathyK. ManikkamR. SingaporeSpringer2024818910.1007/978‑981‑97‑1777‑4_5
    [Google Scholar]
  35. HarikishoreA. WongC.F. RagunathanP. LittyD. MüllerV. GrüberG. Targeting mycobacterial F-ATP synthase C-terminal α subunit interaction motif on rotary subunit γ.Antibiotics20211012145610.3390/antibiotics1012145634943667
    [Google Scholar]
  36. HarikishoreA. GrüberG. Mycobacterium tuberculosis F-ATP synthase inhibitors and targets. antibiotics20241312116910.3390/antibiotics1312116939766559
    [Google Scholar]
  37. BarryC.E.III Unorthodox approach to the development of a new antituberculosis therapy.N. Engl. J. Med.2009360232466246710.1056/NEJMe090301219494223
    [Google Scholar]
  38. ShanthaT.R. Innovative methods of treatmenting tuberculosis.Patent US20160074480A12016
  39. DiaconA.H. PymA. GrobuschM. PatientiaM. RustomjeeR. Page-ShippL. PistoriusC. KrauseR. BogoshiM. ChuryardG. VenterA. The investigational diarylquinoline TMC207 for multidrug-resistant TB.N. Engl. J. Med.20093602397240510.1056/NEJMoa080842719494215
    [Google Scholar]
  40. PetrellaS. CambauE. ChauffourA. AndriesK. JarlierV. SougakoffW. Genetic basis for natural and acquired resistance to the diarylquinoline R207910 in mycobacteria.Antimicrob. Agents Chemother.20065082853285610.1128/AAC.00244‑0616870785
    [Google Scholar]
  41. HuitricE. VerhasseltP. AndriesK. HoffnerS.E. In vitro antimycobacterial spectrum of a diarylquinoline ATP synthase inhibitor.Antimicrob. Agents Chemother.200751114202420410.1128/AAC.00181‑0717709466
    [Google Scholar]
  42. SarathyJ.P. GruberG. DickT. Re-understanding the mechanisms of action of the anti-mycobacterial Drug bedaquiline.Antibiotics20198426110.3390/antibiotics804026131835707
    [Google Scholar]
  43. RagunathanP. Sae-LaoP. HamelaC. AlcarazM. KrahA. PohW.H. Ern PeeC.J. Hou LimA.Y. RiceS.A. PetheK. BondP.J. DickT. KremerL. BatesR.W. GrüberG. High efficacy of the F-ATP synthase inhibitor TBAJ-5307 against nontuberculous mycobacteria in vitro and in vivo.J. Biol. Chem.2024300210561810563010.1016/j.jbc.2023.10561838176652
    [Google Scholar]
  44. RustomjeeR. DiaconA.H. AllenJ. VenterA. ReddyC. PatientiaR.F. MthiyaneT.C.P. De MarezT. van HeeswijkR. KerstensR. KoulA. De BeuleK. DonaldP.R. McNeeleyD.F. Early bactericidal activity and pharmacokinetics of the diarylquinoline TMC207 in treatment of pulmonary tuberculosis.Antimicrob. Agents Chemother.20085282831283510.1128/AAC.01204‑0718505852
    [Google Scholar]
  45. KoulA. DendougaN. VergauwenK. MolenberghsB. VranckxL. WillebrordsR. RisticZ. LillH. DorangeI. GuillemontJ. BaldD. AndriesK. Diarylquinolines target subunit c of mycobacterial ATP synthase.Nat. Chem. Biol.20073632332410.1038/nchembio88417496888
    [Google Scholar]
  46. LakshmananM. XavierA.S. Bedaquiline – The first ATP synthase inhibitor against multi drug resistant tuberculosis.J. Young Pharm.20135411211510.1016/j.jyp.2013.12.00224563587
    [Google Scholar]
  47. LoboM.J. RayR. ShenoyG.G. Gaining deeper insights into the surface binding of bedaquiline analogues with the ATP synthase subunit C of Mycobacterium tuberculosis using molecular docking, molecular dynamics simulation and 3D-QSAR techniques.New J. Chem.20204443188311885210.1039/D0NJ02062A
    [Google Scholar]
  48. GuoH. CourbonG.M. BuelerS.A. MaiJ. LiuJ. RubinsteinJ.L. Structure of mycobacterial ATP synthase bound to the tuberculosis drug bedaquiline.Nature2020589784014314710.1038/s41586‑020‑3004‑333299175
    [Google Scholar]
  49. ZhangY. LaiY. ZhouS. RanT. ZhangY. ZhaoZ. FengZ. YuL. XuJ. ShiK. WangJ. PangY. LiL. ChenH. GuddatL.W. GaoY. LiuF. RaoZ. GongH. Inhibition of] M. tuberculosis and human ATP synthase by BDQ and TBAJ-587.Nature2024631802040941410.1038/s41586‑024‑07605‑838961288
    [Google Scholar]
  50. DennyW.A. Inhibitors of F1F0-ATP synthase enzymes for the treatment of tuberculosis and cancer.Future Med. Chem.2021131091192610.4155/fmc‑2021‑001033845594
    [Google Scholar]
  51. BlaserA. SutherlandH.S. TongA.S.T. ChoiP.J. ConoleD. FranzblauS.G. CooperC.B. UptonA.M. LotlikarM. DennyW.A. PalmerB.D. Structure-activity relationships for unit C pyridyl analogues of the tuberculosis drug bedaquiline.Bioorg. Med. Chem.20192771283129110.1016/j.bmc.2019.02.02530792104
    [Google Scholar]
  52. MunnaluriR.K. MangaV. In silico quest guided by physico-chemical de scriptors of bedaquiline for new scaffolds with potential inhibitory capacity against homology model of Mycobacterium F1F0 ATP synthase.Asian J. Chem.201830490491210.14233/ajchem.2018.21145
    [Google Scholar]
  53. IsaM.A. AbubakarM.B. MohammedM.M. IbrahimM.M. GubioF.A. Identification of potent inhibitors of ATP synthase subunit c (AtpE) from Mycobacterium tuberculosis using in silico approach.Heliyon2021712e0848210.1016/j.heliyon.2021.e0848234934830
    [Google Scholar]
  54. HeC. PreissL. WangB. FuL. WenH. ZhangX. CuiH. MeierT. YinD. Structural simplification of bedaquiline: the discovery of 3-(4-(N, N-Dime thylaminomethyl) phenyl) quinoline-Derived antitubercular lead compounds.ChemMedChem201712210611910.1002/cmdc.20160044127792278
    [Google Scholar]
  55. CourbonG.M. PalmeP.R. MannL. RichterA. ImmingP. RubinsteinJ.L. Mechanism of mycobacterial ATP synthase inhibition by squaramides and second generation diarylquinolines.EMBO J.20234215e11368710.15252/embj.202311368737377118
    [Google Scholar]
  56. CourbonG.M. PalmeP.R. MannL. RichterA. ImmingP. RubinsteinJ.L. Structural basis for inhibition of mycobacterial ATP synthase by squaramides and second generation diarylquinolines.BioRxiv202310.1101/2023.02.03.527018
    [Google Scholar]
  57. TantryS.J. MarkadS.D. ShindeV. BhatJ. BalakrishnanG. GuptaA.K. AmbadyA. RaichurkarA. KedariC. SharmaS. MudugalN.V. NarayanA. Naveen KumarC.N. NanduriR. BharathS. ReddyJ. PandugaV. PrabhakarK.R. KandaswamyK. SaralayaR. KaurP. DineshN. GupthaS. RichK. MurrayD. PlantH. PrestonM. AshtonH. PlantD. WalshJ. AlcockP. NaylorK. CollierM. WhiteakerJ. McLaughlinR.E. MallyaM. PandaM. RudrapatnaS. RamachandranV. ShandilR. SambandamurthyV.K. MdluliK. CooperC.B. RubinH. YanoT. IyerP. NarayananS. KavanaghS. MukherjeeK. BalasubramanianV. HosagraharaV.P. SolapureS. RavishankarS. Discovery of imidazo[1,2-a]pyridine ethers and squaramides as selective and potent inhibitors of mycobacterial adenosine triphosphate (ATP) synthesis.J. Med. Chem.201760413791399
    [Google Scholar]
  58. SuraseY.B. SambyK. AmaleS.R. SoodR. PurnapatreK.P. PareekP.K. DasB. NandaK. KumarS. VermaA.K. Identification and synthesis of novel inhibitors of Mycobacterium ATP synthase.Bioorg. Med. Chem. Lett.201727153454345910.1016/j.bmcl.2017.05.08128587823
    [Google Scholar]
  59. TantryS.J. ShindeV. BalakrishnanG. MarkadS.D. GuptaA.K. BhatJ. NarayanA. RaichurkarA. JenaL.K. SharmaS. KumarN. NanduriR. BharathS. ReddyJ. PandugaV. PrabhakarK.R. KandaswamyK. KaurP. DineshN. GupthaS. SaralayaR. PandaM. RudrapatnaS. MallyaM. RubinH. YanoT. MdluiliK. CooperC.B. BalasubramanianV. SambandamurthyV.K. RamachandranV. ShandilR. KavanaghS. NarayananS. IyerP. MukherjeeK. HosagraharaV.P. SolapureS. HameedP. S.; Ravishankar, S. Scaffold morphing leading to evolution of 2,4-diaminoquinolines and aminopyrazolopyrimidines as inhibitors of the ATP synthesis pathway.MedChemComm2016751022103210.1039/C5MD00589B
    [Google Scholar]
  60. PruksakornP. AraiM. LiuL. MoodleyP. JacobsW.R.Jr KobayashiM. Action-mechanism of trichoderin A, an anti-dormant mycobacterial aminolipopeptide from marine sponge-derived Trichoderma sp.Biol. Pharm. Bull.20113481287129010.1248/bpb.34.128721804219
    [Google Scholar]
  61. MakP.A. RaoS.P.S. TanP. M.; Lin, X.; Chyba, J.; Tay, J.; Ng, S.H.; Tan, B.H.; Cherian, J.; Duraiswamy, J.; Bifani, P.; Lim, V.; Lee, B.H.; Ling Ma, N.; Beer, D.; Thayalan, P.; Kuhen, K.; Chatterjee, A.; Supek, F.; Glynne, R.; Zheng, J.; Boshoff, H.I.; Barry, C.E., III; Dick, T.; Pethe, K.; Camacho, L.R. A high-throughput screen to identify inhibitors of ATP homeostasis in non-replicating Mycobacterium tuberculosis.ACS Chem. Biol.2012771190119710.1021/cb200488422500615
    [Google Scholar]
  62. PetheK. SequeiraP.C. AgarwallaS. RheeK. KuhenK. PhongW.Y. PatelV. BeerD. WalkerJ.R. DuraiswamyJ. JiricekJ. KellerT.H. ChatterjeeA. TanM.P. UjjiniM. RaoS.P.S. CamachoL. BifaniP. MakP.A. MaI. BarnesS.W. ChenZ. PlouffeD. ThayalanP. NgS.H. AuM. LeeB.H. TanB.H. RavindranS. NanjundappaM. LinX. GohA. LakshminarayanaS.B. ShoenC. CynamonM. KreiswirthB. DartoisV. PetersE.C. GlynneR. BrennerS. DickT. A chemical genetic screen in Mycobacterium tuberculosis identifies carbon-source-dependent growth inhibitors devoid of in vivo efficacy.Nat. Commun.2010115710.1038/ncomms106020975714
    [Google Scholar]
  63. PruksakornP. AraiM. KotokuN. VilchèzeC. BaughnA.D. MoodleyP. JacobsW.R.Jr KobayashiM. Trichoderins, novel aminolipopeptides from a marine sponge-derived Trichoderma sp., are active against dormant mycobacteria.Bioorg. Med. Chem. Lett.201020123658366310.1016/j.bmcl.2010.04.10020483615
    [Google Scholar]
  64. VilchèzeC. WangF. AraiM. HazbónM.H. ColangeliR. KremerL. WeisbrodT.R. AllandD. SacchettiniJ.C. JacobsW.R.Jr Transfer of a point mutation in Mycobacterium tuberculosis inhA resolves the target of isoniazid.Nat. Med.20061291027102910.1038/nm146616906155
    [Google Scholar]
  65. NikaidoH. Galactose-sensitive mutants of Salmonella I. Metabolism of galactose.Biochim. Biophys. Acta196148346046910.1016/0006‑3002(61)90044‑013729042
    [Google Scholar]
  66. FukasawaT. NikaidoH. Galactose-sensitive mutants of Salmonella II. Bacteriolysis induced by galactose.Biochim. Biophys. Acta196148347048310.1016/0006‑3002(61)90045‑213702505
    [Google Scholar]
  67. Kiyoshi KurahashiK. Wahba, A.J. Interference with growth of certain Escherichia coli mutants by galactose.Biochim. Biophys. Acta195830229830210.1016/0006‑3002(58)90054‑413607446
    [Google Scholar]
  68. CozzarelliN.R. KochJ.P. HayashiS. LinE.C.C. Growth stasis by accumulated L-α-glycerophosphate in Escherichia coli.J. Bacteriol.19659051325132910.1128/jb.90.5.1325‑1329.19655321485
    [Google Scholar]
  69. HennenP.E. CarterH.B. NunnW.D. Changes in macromolecular synthesis and nucleoside triphosphate levels during glycerol-induced growth stasis of Escherichia coli.J. Bacteriol.1978136392993510.1128/jb.136.3.929‑935.1978363698
    [Google Scholar]
  70. GrundnerC. PerrinD. Hooft van HuijsduijnenR. SwinnenD. GonzalezJ. GeeC.L. WellsT.N. AlberT. Structural basis for selective inhibition of Mycobacterium tuberculosis protein tyrosine phosphatase PtpB.Structure200715449950910.1016/j.str.2007.03.00317437721
    [Google Scholar]
  71. AggarwalA. ParaiM.K. ShettyN. WallisD. WoolhiserL. HastingsC. DuttaN.K. GalavizS. DhakalR.C. ShresthaR. WakabayashiS. WalpoleC. MatthewsD. FloydD. ScullionP. RileyJ. EpemoluO. NorvalS. SnavelyT. RobertsonG.T. RubinE.J. IoergerT.R. SirgelF.A. van der MerweR. van HeldenP.D. KellerP. BöttgerE.C. KarakousisP.C. LenaertsA.J. SacchettiniJ.C. Development of a novel lead that targets M. tuberculosis Polyketide synthase 13.Cell20171702249259.e2510.1016/j.cell.2017.06.02528669536
    [Google Scholar]
  72. ScheichC. PuetterV. SchadeM. Novel small molecule inhibitors of MDR Mycobacterium tuberculosis by NMR fragment screening of antigen 85C.J. Med. Chem.201053238362836710.1021/jm100993z21073150
    [Google Scholar]
/content/journals/ctc/10.2174/0129504023342762250325065553
Loading
/content/journals/ctc/10.2174/0129504023342762250325065553
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): anti-TB drugs; ATP; bedaquiline; MDR-TB; Mycobacterium tuberculosis; tuberculosis
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test