Skip to content
2000
Volume 4, Issue 1
  • ISSN: 2950-4023
  • E-ISSN: 2950-4031

Abstract

is an important medicinal plant found in India and East Asia, primarily in China, Japan, Korea and Russia. Trifolirhizin is an active phytochemical of and other Chinese medications such as Zeng-Sheng-Ping, Xian-Lian-Ke-Li, ASHMI, Ling Zhi, Ku Shen, and Gan Cao, Ku Shen injection and Zeng Sheng Ping tablets. have numerous therapeutic benefits against hematochezia, jaundice, liver disorders, dysentery, oliguria, asthma, eczema, vulvar swelling, and inflammatory complications. The purpose of the present review is to summarize the scientific information on trifolirhizin for their biological potential, pharmacological activities, and analytical aspects. Scientific information on trifolirhizin has been collected from various scientific databases such as Scopus, Science Direct, PubMed, and Google Scholar. Further, the present review summarized the pharmacological activities of trifolirhizin and their different molecular mechanisms and analytical aspects. The scientific data on trifolirhizin signified the biological potential and therapeutic effectiveness of trifolirhizin in medicine. Present review signified the presence of trifolirhizin in the . has been shown to be effective against ulcers, chronic bronchitis, acne, atopic dermatitis, chronic hepatitis, enteritis, pyogenic infection and other inflammatory diseases. Furthermore, the present review also summarized the biological potential of trifolirhizin in gastric cancer, hepatocellular carcinoma, colorectal cancer, apoptosis, ulcerative colitis, and asthma. However, hepatoprotective effects, anti-inflammatory effects, wound healing potential, and efficiency of melanin synthesis were also revealed. In addition, this review also summarizes the molecular mechanisms of trifolirhizin and their pharmacokinetic and metabolic parameters. This review also describes the analytical aspects of trifolirhizin in medicine. This review will be useful to the entire research community exploring the biological potential of trifolirhizin in medicine. However, scientific studies require comprehensive and detailed data on trifolirhizin evaluation, quality control, toxicity, and clinical efficacy.

Loading

Article metrics loading...

/content/journals/ctc/10.2174/0126660016285747240830061418
2024-09-19
2025-09-17
Loading full text...

Full text loading...

References

  1. PatelD.K. PatelK. Potential therapeutic applications of eudesmin in medicine: An overview on medicinal importance, pharmacological activities and analytical prospects.Pharmacol. Res. - Modern Chinese Med.2022510017510.1016/j.prmcm.2022.100175
    [Google Scholar]
  2. PatelD.K. Biological importance of a biflavonoid ‘bilobetin’ in the medicine: Medicinal importance, pharmacological activities and analytical aspects.Infect. Disord. Drug Targets2022225e21032220249010.2174/187152652266622032115203635319397
    [Google Scholar]
  3. PatelD.K. PatelK. Health Benefits of Avicularin in the Medicine Against Cancerous Disorders and other Complications: Biological Importance, Therapeutic Benefit and Analytical Aspects.Curr. Cancer Ther. Rev.2022181415010.2174/1573394717666210831163322
    [Google Scholar]
  4. PatelD.K. Medicinal importance, pharmacological activities, and analytical aspects of engeletin in medicine: Therapeutic benefit through scientific data analysis.Endocr. Metab. Immune Disord. Drug Targets202323327328210.2174/187153032266622052016225135619306
    [Google Scholar]
  5. PatelD.K. Health benefits, therapeutic applications, and recent advances of cirsilineol in the medicine: Potential bioactive natural flavonoids of genus Artemisia.Endocr. Metab. Immune Disord. Drug Targets202323789490710.2174/187153032366622112212345636415094
    [Google Scholar]
  6. PatelK. PatelD.K. Medicinal importance and therapeutic benefit of bioactive flavonoid eriocitrin: An update on pharmacological activity and analytical aspects.Nat. Prod. J.2024142e10072321858310.2174/2210315514666230710112336
    [Google Scholar]
  7. PatelD.K. PatelK. Biological importance and therapeutic potential of calycopterin from Dracocephalum kotschyi: An overview of current scientific research work.Recent Advances Anti-Infect. Drug Disc.2024191122010.2174/2772434418666230406092739
    [Google Scholar]
  8. PatelK. PatelD.K. Biological importance, pharmacological activities, and nutraceutical potential of capsanthin: A review of capsicum plant capsaicinoids.Curr. Drug Res. Rev.2024161183110.2174/258997751566623033109371236999721
    [Google Scholar]
  9. PatelK. PatelD.K. Health benefits of ipecac and cephaeline: Their potential in health promotion and disease prevention.Curr. Bioact. Compd.202117320621310.2174/1573407216999200609130841
    [Google Scholar]
  10. PatelD.K. Health beneficial aspect and therapeutic potential of cirsimaritin in the medicine for the treatment of human health complications.Curr. Bioact. Compd.2022187e27012220056610.2174/1573407218666220127092925
    [Google Scholar]
  11. PatelD.K. PatelK. Biological potential and pharmacological activity of columbianetin in chronic diseases.Drug Metabol. Bioanalys. Lett.2023161505810.2174/187231281566623012415463036734886
    [Google Scholar]
  12. PatelD.K. Biological importance, therapeutic benefits, and analytical aspects of active flavonoidal compounds ‘Corylin’ from psoralea corylifolia in the field of medicine.Infect. Disord. Drug Targets2023231e25082220800510.2174/187152652266622082516090636028973
    [Google Scholar]
  13. SunD. TaoW. ZhangF. ShenW. TanJ. LiL. MengQ. ChenY. YangY. ChengH. Trifolirhizin induces autophagy-dependent apoptosis in colon cancer via AMPK/mTOR signaling.Signal Transduct. Target. Ther.20205117410.1038/s41392‑020‑00281‑w32855395
    [Google Scholar]
  14. McMurchyR.A. HigginsV.J. Trifolirhizin and maackiain in red clover: Changes in Fusarium roseum “Avenaceum”-infected roots and in vitro effects on the pathogen.Physiol. Plant Pathol.198425222923810.1016/0048‑4059(84)90061‑4
    [Google Scholar]
  15. ZhouH. LutterodtH. ChengZ. YuL.L. Anti-Inflammatory and antiproliferative activities of trifolirhizin, a flavonoid from Sophora flavescens roots.J. Agric. Food Chem.200957114580458510.1021/jf900340b19402641
    [Google Scholar]
  16. YangN. LiangB. SrivastavaK. ZengJ. ZhanJ. BrownL. SampsonH. GoldfarbJ. EmalaC. LiX.M. The Sophora flavescens flavonoid compound trifolirhizin inhibits acetylcholine induced airway smooth muscle contraction.Phytochemistry20139525926710.1016/j.phytochem.2013.07.02323993294
    [Google Scholar]
  17. HeX. FangJ. HuangL. WangJ. HuangX. Sophora flavescens Ait.: Traditional usage, phytochemistry and pharmacology of an important traditional Chinese medicine.J. Ethnopharmacol.2015172102910.1016/j.jep.2015.06.01026087234
    [Google Scholar]
  18. OhJ. KimS.A. KwonK.W. ChoiS.R. LeeC.H. HossainM.A. KimE.S. KimC. LeeB.H. LeeS. KimJ.H. ChoJ.Y. Sophora flavescens Aiton methanol extract exerts anti-inflammatory effects via reduction of Src kinase phosphorylation.J. Ethnopharmacol.202330511601510.1016/j.jep.2022.11601536563890
    [Google Scholar]
  19. WengZ. ZengF. ZhuZ. QianD. GuoS. WangH. DuanJ. Comparative analysis of sixteen flavonoids from different parts of Sophora flavescens Ait. by ultra high-performance liquid chromatography–tandem mass spectrometry.J. Pharm. Biomed. Anal.201815621422010.1016/j.jpba.2018.04.04629727783
    [Google Scholar]
  20. KangX. DengL. QuanT. GaoM. ZhangK. XiaZ. GaoD. Selective extraction of quinolizidine alkaloids from Sophora flavescens Aiton root using tailor-made deep eutectic solvents and magnetic molecularly imprinted polymers.Separ. Purif. Tech.202126111828210.1016/j.seppur.2020.118282
    [Google Scholar]
  21. DuX.Y. LiG.X. ChenX.Q. LiR.T. ZhangZ.J. Pterocarpans and 2-arylbenzofurans from Sophora flavescens aiton and their chemotaxonomic significance.Biochem. Syst. Ecol.202210010435710.1016/j.bse.2021.104357
    [Google Scholar]
  22. LiuL-Y. PanH-Y. LiS-Y. LiH-S. HeH-Z. [Effect of transplantation on growth and oxymatrine content of Sophora flavescens].Zhong Yao Cai201336101569157224761663
    [Google Scholar]
  23. WenM. Ku-Shen (Sophora flavescens Ait), a single Chinese herb, abrogates airway hyperreactivity in a murine model of asthma*1.J. Allergy Clin. Immunol.20041132S21810.1016/j.jaci.2004.01.237
    [Google Scholar]
  24. HanC. WeiH. GuoJ. Anti-inflammatory effects of fermented and non-fermented Sophora flavescens: A comparative study.BMC Complement. Altern. Med.201111110010.1186/1472‑6882‑11‑10022026927
    [Google Scholar]
  25. JinJ.H. KimJ.S. KangS.S. SonK.H. ChangH.W. KimH.P. Anti-inflammatory and anti-arthritic activity of total flavonoids of the roots of Sophora flavescens.J. Ethnopharmacol.2010127358959510.1016/j.jep.2009.12.02020034551
    [Google Scholar]
  26. YangJ.M. IpS.P. XianY. ZhaoM. LinZ.X. YeungJ.H.K. ChanR.C.Y. LeeS.S. CheC.T. Impact of the herbal medicine Sophora flavescens on the oral pharmacokinetics of indinavir in rats: The involvement of CYP3A and P-glycoprotein.PLoS One201272e3131210.1371/journal.pone.003131222359586
    [Google Scholar]
  27. LiJ. ZhangX. ShenX. LongQ. XuC. TanC. LinY. Phytochemistry and biological properties of isoprenoid flavonoids from Sophora flavescens Ait.Fitoterapia202014310455610.1016/j.fitote.2020.10455632194169
    [Google Scholar]
  28. HanY. ZhangX. KangY. GaoY. LiX. QiR. CaiR. QiY. Sophoraflavanone M, a prenylated flavonoid from Sophora flavescens Ait., suppresses pro-inflammatory mediators through both NF-κB and JNK/AP-1 signaling pathways in LPS-primed macrophages.Eur. J. Pharmacol.202190717424610.1016/j.ejphar.2021.17424634118222
    [Google Scholar]
  29. YangY.F. LiuT.T. LiG.X. ChenX.Q. LiR.T. ZhangZ.J. Flavonoids from the Roots of Sophora flavescens and their potential anti-inflammatory and antiproliferative activities.Molecules2023285204810.3390/molecules2805204836903293
    [Google Scholar]
  30. SchultzC.J. GoonetillekeS.N. LiangJ. LahnsteinJ. LevinK.A. Bianco-MiottoT. BurtonR.A. MatherD.E. ChalmersK.J. Analysis of genetic diversity in the traditional chinese medicine plant ‘Kushen’ (Sophora flavescens Ait.).Front. Plant Sci.20211270420110.3389/fpls.2021.70420134413868
    [Google Scholar]
  31. ChenM. DingY. TongZ. Efficacy and safety of Sophora flavescens (Kushen) based traditional chinese medicine in the treatment of ulcerative colitis: Clinical evidence and potential mechanisms.Front. Pharmacol.20201160347610.3389/fphar.2020.60347633362558
    [Google Scholar]
  32. LiuG. DongJ. WangH. HashiY. ChenS. Characterization of alkaloids in Sophora flavescens Ait. by high-performance liquid chromatography–electrospray ionization tandem mass spectrometry.J. Pharm. Biomed. Anal.20115451065107210.1016/j.jpba.2010.12.02421227622
    [Google Scholar]
  33. YangH. ZhouZ. HeL. MaH. QuW. YinJ. JiaM. ZhaoX. ShanJ. GaoY. Hepatoprotective and inhibiting HBV effects of polysaccharides from roots of Sophora flavescens.Int. J. Biol. Macromol.201810874475210.1016/j.ijbiomac.2017.10.17129111266
    [Google Scholar]
  34. MaH. HuangQ. QuW. LiL. WangM. LiS. ChuF. In vivo and in vitro anti-inflammatory effects of Sophora flavescens residues.J. Ethnopharmacol.201822449750310.1016/j.jep.2018.06.01929913301
    [Google Scholar]
  35. YangY. ZhuH. YuanX. ZhangX. FengZ. JiangJ. ZhangP. Seven new prenylated flavanones from the roots of Sophora flavescens and their anti-proliferative activities.Bioorg. Chem.202110910471610.1016/j.bioorg.2021.10471633607362
    [Google Scholar]
  36. LuoY. ZhaoK. LiZ. GaoY. LinM. LiY. WangS. LiuY. ChenL. Effect of the ethyl acetate extract of Sophora flavescens Aiton on diabetic retinopathy based on untargeted retinal metabolomics.J. Chromatogr. B Analyt. Technol. Biomed. Life Sci.2022119812323310.1016/j.jchromb.2022.12323335395445
    [Google Scholar]
  37. WangM. LiuG. LiH. Extraction of matrine from Sophora flavescens Ait. and evaluation of its inhibitory effects on human nasopharyngeal carcinoma CNE-2 cells.Food Sci. Technol. (Campinas)201838Suppl. 133333710.1590/fst.24117
    [Google Scholar]
  38. ZhengK. LiC. ShanX. LiuH. FanW. WangZ. Study on isolation of chemical constituents from <i>Sophora Flavescens</i> ait. And their anti-glioma effects.Afr. J. Tradit. Complement. Altern. Med.201311115616010.4314/ajtcam.v11i1.2424653570
    [Google Scholar]
  39. HanC.C. WangY. Anti-inflammation effects of Sophora flavescens nanoparticles.Inflammation20123541262126810.1007/s10753‑012‑9437‑622327863
    [Google Scholar]
  40. ZhangX-L. CaoM-A. PuL-P. HuangS-S. GaoQ-X. YuanC-S. WangC.M. A novel flavonoid isolated from Sophora flavescens exhibited anti-angiogenesis activity, decreased VEGF expression and caused G0/G1 cell cycle arrest in vitro.Pharmazie201368536937523802436
    [Google Scholar]
  41. LiD.R. LinH.S. [Safety and effectiveness of large dose compound Sophora flavescens Ait injection in the treatment of advanced malignant tumors].Zhonghua Zhong Liu Za Zhi201133429129421575502
    [Google Scholar]
  42. ZhaoH.D. FengX-L. ZhaoY. LiN. [Randomized controlled study: Sophora flavescens gel in treatment of cervical HPV infection].Zhongguo Zhongyao Zazhi201641214072407528929698
    [Google Scholar]
  43. WuY. GongQ. FangH. LiangW. ChenM. HeR. Effect of Sophora flavescens on non-specific immune response of tilapia (GIFT Oreochromis niloticus) and disease resistance against Streptococcus agalactiae.Fish Shellfish Immunol.201334122022710.1016/j.fsi.2012.10.02023092731
    [Google Scholar]
  44. ChenM.H. GuY.Y. ZhangA.L. SzeD.M. MoS.L. MayB.H. Biological effects and mechanisms of matrine and other constituents of Sophora flavescens in colorectal cancer.Pharmacol. Res.202117110577810.1016/j.phrs.2021.10577834298110
    [Google Scholar]
  45. LinY. ChenX.J. LiJ.J. HeL. YangY.R. ZhongF. HeM.H. ShenY.T. TuB. ZhangX. ZengZ. A novel type lavandulyl flavonoid from Sophora flavescens as potential anti-hepatic injury agent that inhibit TLR2/NF-κB signaling pathway.J. Ethnopharmacol.202330711616310.1016/j.jep.2023.11616336738945
    [Google Scholar]
  46. SongJ. HanY. BaiB. JinS. HeQ. RenJ. Diversity of arbuscular mycorrhizal fungi in rhizosphere soils of the Chinese medicinal herb Sophora flavescens Ait.Soil Tillage Res.201919510442310.1016/j.still.2019.104423
    [Google Scholar]
  47. WangM. KangX. DengL. WangM. XiaZ. GaoD. Deep eutectic solvent assisted synthesis of carbon dots using Sophora flavescens Aiton modified with polyethyleneimine: Application in myricetin sensing and cell imaging.Food Chem.202134512881710.1016/j.foodchem.2020.12881733307432
    [Google Scholar]
  48. NiK. WenZ. HuangX. WangC. YeT. HuG. ZhouM. Determination of trifolirhizin in rat plasma by UPLC: Application to a pharmacokinetic study.J. Chromatogr. B Analyt. Technol. Biomed. Life Sci.201599018118410.1016/j.jchromb.2015.03.03125880690
    [Google Scholar]
  49. GhribiL. Waffo-TéguoP. CluzetS. MarchalA. MarquesJ. MérillonJ.M. Ben JannetH. Isolation and structure elucidation of bioactive compounds from the roots of the Tunisian Ononis angustissima L.Bioorg. Med. Chem. Lett.201525183825383010.1016/j.bmcl.2015.07.07626248805
    [Google Scholar]
  50. Ergene ÖzB. Saltan İşcanG. Küpeli AkkolE. Süntarİ. Bahadır AcıkaraÖ. Isoflavonoids as wound healing agents from Ononidis Radix.J. Ethnopharmacol.201821138439310.1016/j.jep.2017.09.02928989011
    [Google Scholar]
  51. LuX. MaJ. QiuH. YangL. CaoL. ShenJ. Anti-proliferation effects of trifolirhizin on MKN45 cells and possible mechanism.Oncol. Rep.20163652785279210.3892/or.2016.512527666116
    [Google Scholar]
  52. SongY. WangZ.Z. WangL. FaybusovichP. SrivastavaK. LiuC. TverskyJ. DunkinD. BusseP. RenX. MillerR. MiaoM. LiX.M. Sophora flavescens Alkaloids and Corticosteroid Synergistically Augment IL-10/IL-5 Ratio with Foxp3-Gene-Epigenetic Modification in Asthma PBMCs.J. Asthma Allergy2021141559157110.2147/JAA.S32161634992384
    [Google Scholar]
  53. JiangX. YinH. SuW. QuanH. YuanX. FengX. LiP. HeY. XiaoJ. LiR. Trifolirhizin inhibits proliferation, migration and invasion in nasopharyngeal carcinoma cells via PI3K/Akt signaling pathway suppression.Biochem. Biophys. Res. Commun.202366711111910.1016/j.bbrc.2023.05.03037216826
    [Google Scholar]
  54. ZhuX-F. SunZ-L. MaJ. HuB. YuM-C. LiuX-J. Synergistic anticancer effect of flavonoids from Sophora alopecuroides with Sorafenib against hepatocellular carcinoma.Phytother. Res.202237259261036180975
    [Google Scholar]
  55. SunJ. LiM. LinT. WangD. ChenJ. ZhangY. MuQ. SuH. WuN. LiuA. YuY. LiuY. WangS. YuX. GuoJ. YuW. Cell cycle arrest is an important mechanism of action of compound Kushen injection in the prevention of colorectal cancer.Sci. Rep.2022121438410.1038/s41598‑022‑08336‑435288618
    [Google Scholar]
  56. AratanechemugeY. HibasamiH. KatsuzakiH. ImaiK. KomiyaT. Induction of apoptosis by maackiain and trifolirhizin (maackiain glycoside) isolated from sanzukon (Sophora Subprostrate Chen et T. Chen) in human promyelotic leukemia HL-60 cells.Oncol. Rep.20041261183118810.3892/or.12.6.118315547735
    [Google Scholar]
  57. ZhangQ. WangS. JiS. Trifolirhizin regulates the balance of Th17/Treg cells and inflammation in the ulcerative colitis mice through inhibiting the TXNIP ‐mediated activation of NLRP3 inflammasome.Clin. Exp. Pharmacol. Physiol.202249878779610.1111/1440‑1681.1365435575951
    [Google Scholar]
  58. Abdel-KaderM.S. Preliminary pharmacological study of the pterocarpans macckian and trifolirhizin isolated from the roots of Ononis vaginalis.Pak. J. Pharm. Sci.201023218218720363697
    [Google Scholar]
  59. ChenJ. LiuY. GaiX. YeQ. ZhouS. TianC. ZhangT. Studies on quality markers of kaihoujian spray for anti-inflammation based on gray correlation analysis strategy.Evid. Based Complement. Alternat. Med.2022202212610.1155/2022/127306635497922
    [Google Scholar]
  60. HyunS.K. LeeW.H. JeongD.M. KimY. ChoiJ.S. Inhibitory effects of kurarinol, kuraridinol, and trifolirhizin from Sophora flavescens on tyrosinase and melanin synthesis.Biol. Pharm. Bull.200831115415810.1248/bpb.31.15418175961
    [Google Scholar]
  61. YooH. RyuK.H. BaeS.K. KimJ. Simultaneous determination of trifolirhizin, (-)-maackiain, (-)-sophoranone, and 2-(2,4-dihydroxyphenyl)-5,6-methylenedioxybenzofuran from Sophora tonkinensis in rat plasma by liquid chromatography with tandem mass spectrometry and its application to a ph.J. Sep. Sci.201437223235324410.1002/jssc.20140069125156071
    [Google Scholar]
  62. JangS.M. BaeS.H. ChoiW.K. ParkJ.B. KimD. MinJ.S. YooH. KangM. RyuK.H. BaeS.K. Pharmacokinetic properties of trifolirhizin, (–)-maackiain, (–)-sophoranone and 2-(2,4-dihydroxyphenyl)-5,6-methylenedioxybenzofuran after intravenous and oral administration of Sophora tonkinensis extract in rats.Xenobiotica201545121092110410.3109/00498254.2015.104118126068519
    [Google Scholar]
  63. YuanW-L. HuangZ-R. XiaoS-J. YeJ. ZhangW-D. ShenY-H. [Metabolites and metabolic pathways of maackiain in rats based on UPLC-Q-TOF-MS].Zhongguo Zhongyao Zazhi202146236278628834951255
    [Google Scholar]
  64. ChenL. HuangX. WangH. ShaoJ. LuoY. ZhaoK. LiuY. WangS. Integrated metabolomics and network pharmacology strategy for ascertaining the quality marker of flavonoids for Sophora flavescens.J. Pharm. Biomed. Anal.202018611329710.1016/j.jpba.2020.11329732325403
    [Google Scholar]
  65. YangH. DuanY. WeiZ. WuY. ZhangC. WuW. LyuL. LiW. Integrated physiological and metabolomic analyses reveal the differences in the fruit quality of the blueberry cultivated in three soilless substrates.Foods20221124396510.3390/foods1124396536553707
    [Google Scholar]
  66. WeiG. ChenY. GuoX. WeiJ. DongL. ChenS. Biosyntheses characterization of alkaloids and flavonoids in Sophora flavescens by combining metabolome and transcriptome.Sci. Rep.2021111738810.1038/s41598‑021‑86970‑033795823
    [Google Scholar]
  67. KimS. JeongY.J. ParkS.H. ParkS.C. LeeS.B. LeeJ. KimS.W. HaB.K. KimH.S. KimH. RyuY.B. JeongJ.C. KimC.Y. The synergistic effect of co-treatment of methyl jasmonate and cyclodextrins on pterocarpan production in sophora flavescens cell cultures.Int. J. Mol. Sci.20202111394410.3390/ijms2111394432486319
    [Google Scholar]
  68. Manal AhmadA. Yasser IbrahimK. Manal MohammadA. Efficacy of extract from Ononis spinosa L. on ethanol-induced gastric ulcer in rats.J. Tradit. Chin. Med.202141227027533825407
    [Google Scholar]
  69. HwangJ.S. LeeS.A. HongS.S. LeeK.S. LeeM.K. HwangB.Y. RoJ.S. Monoamine oxidase inhibitory components from the roots ofSophora flavescens.Arch. Pharm. Res.200528219019410.1007/BF0297771415789750
    [Google Scholar]
  70. LoW.L. ChangF.R. LiawC.C. WuY.C. Cytotoxic coumaronochromones from the roots of Euchresta formosana.Planta Med.200268214615110.1055/s‑2002‑2024811859466
    [Google Scholar]
  71. JungH.J. KangS.S. HyunS.K. ChoiJ.S. In vitro free radical and ONOO- scavengers from Sophora flavescens.Arch. Pharm. Res.200528553454010.1007/BF0297775415974438
    [Google Scholar]
  72. LiP. ChaiW.C. WangZ.Y. TangK.J. ChenJ.Y. VenterH. SempleS.J. XiangL. Bioactivity-guided isolation of compounds from Sophora flavescens with antibacterial activity against Acinetobacter baumannii.Nat. Prod. Res.202236174334434210.1080/14786419.2021.198357034592853
    [Google Scholar]
  73. FujiseY. TodaT. ItôS. Isolation of trifolirhizin from Ononis spinosa L.Chem. Pharm. Bull. (Tokyo)1965131939510.1248/cpb.13.935864291
    [Google Scholar]
  74. ZhangC. MaY. GaoH.M. LiuX.Q. ChenL.M. ZhangQ.W. WangZ.M. LiA.P. [Non-alkaloid components from Sophora flavescens].Zhongguo Zhongyao Zazhi201338203520352424490565
    [Google Scholar]
  75. LiJ.Q. XiaoC.J. LiY.M. TianX.Y. DongX. JiangB. Astrernestin, a novel aurone-phenylpropanoid adduct from the roots of Astragalus ernestii.Nat. Prod. Res.202034202894289910.1080/14786419.2019.159610130990071
    [Google Scholar]
  76. HeC.M. ChengZ.H. ChenD.F. Qualitative and quantitative analysis of flavonoids in Sophora tonkinensis by LC/MS and HPLC.Chin. J. Nat. Med.201311669069810.1016/S1875‑5364(13)60081‑324345512
    [Google Scholar]
  77. Abdel-KaderM.S. Phenolic constituents of Ononis vaginalis roots.Planta Med.200167438839010.1055/s‑2001‑1432511458469
    [Google Scholar]
  78. LiuQ. XuR. YanZ. JinH. CuiH. LuL. ZhangD. QinB. Phytotoxic allelochemicals from roots and root exudates of Trifolium pratense.J. Agric. Food Chem.201361266321632710.1021/jf401241e23738849
    [Google Scholar]
  79. WangW. TaoY. JiaoL. FanM. ShaoY. WangQ. MeiL. DangJ. Efficient separation of high‐purity compounds from Oxytropis falcata using two‐dimensional preparative chromatography.J. Sep. Sci.201740183593360110.1002/jssc.20170044928719037
    [Google Scholar]
  80. ZhangL. XuL. XiaoS.S. LiaoQ.F. LiQ. LiangJ. ChenX.H. BiK.S. Characterization of flavonoids in the extract of Sophora flavescens Ait. by high-performance liquid chromatography coupled with diode-array detector and electrospray ionization mass spectrometry.J. Pharm. Biomed. Anal.20074451019102810.1016/j.jpba.2007.04.01917658714
    [Google Scholar]
  81. JinX. LuY. ChenS. ChenD. UPLC-MS identification and anticomplement activity of the metabolites of Sophora tonkinensis flavonoids treated with human intestinal bacteria.J. Pharm. Biomed. Anal.202018411317610.1016/j.jpba.2020.11317632092632
    [Google Scholar]
  82. WooE.R. KwakJ.H. KimH.J. ParkH. A new prenylated flavonol from the roots of Sophora flavescens.J. Nat. Prod.199861121552155410.1021/np980103j9868163
    [Google Scholar]
  83. HanF.M. WangL.X. ChenY. ChenL.M. FengW.H. WangJ.Y. LiuD.W. YouY. TongY. [Simultaneous determination of seven alkaloids and three flavonoids in Sophorae Tonkinensis Radix et Rhizoma by HPLC].Zhongguo Zhongyao Zazhi201641244628463428936848
    [Google Scholar]
  84. ZhouJ. ZhangL. LiQ. JinW. ChenW. HanJ. ZhangY. Simultaneous Optimization for ultrasound-assisted extraction and antioxidant activity of flavonoids from sophora flavescens using response surface methodology.Molecules201824111210.3390/molecules2401011230597974
    [Google Scholar]
  85. ParkJ.A. KimH.J. JinC. LeeK.T. LeeY.S. A new pterocarpan, (-)-maackiain sulfate, from the roots ofSophora subprostrata.Arch. Pharm. Res.200326121009101310.1007/BF0299475014723332
    [Google Scholar]
  86. YinT. YangG. MaY. XuB. HuM. YouM. GaoS. Developing an activity and absorption-based quality control platform for Chinese traditional medicine: Application to Zeng-Sheng-Ping(Antitumor B).J. Ethnopharmacol.201517219520110.1016/j.jep.2015.06.01926099633
    [Google Scholar]
  87. ZhangH.Q. ZhuZ.H. QianD.W. WengZ.B. GuoS. DuanJ.A. LeiZ.H. LiA.P. [Analysis and evaluation of alkaloids and flavonoids in flower of Sophora flavescens from Shanxi province].Zhongguo Zhongyao Zazhi201641244621462728936847
    [Google Scholar]
  88. MaH.Y. ZhouW.S. ChuF.J. WangD. LiangS.W. LiS. [HPLC fingerprint of flavonoids in Sophora flavescens and determination of five components].Zhongguo Zhongyao Zazhi201338162690269524228588
    [Google Scholar]
  89. PatelD.K. Biological potential and therapeutic benefit of Chrysosplenetin: An Applications of polymethoxylated flavonoid in medicine from natural sources.Pharmacolog. Res. - Modern Chinese Med.2022410015510.1016/j.prmcm.2022.100155
    [Google Scholar]
  90. PatelD.K. Biological importance of bioactive phytochemical ‘Cimifugin’ as potential active pharmaceutical ingredients against human disorders: A natural phytochemical for new therapeutic alternatives.Pharmacol. Res. - Modern Chinese Med.2023710023210.1016/j.prmcm.2023.100232
    [Google Scholar]
  91. PatelD.K. Biological importance, therapeutic benefit, and medicinal importance of flavonoid, cirsiliol for the development of remedies against human disorders.Curr. Bioact. Compd.2022183e24082119580410.2174/1573407217666210824125427
    [Google Scholar]
  92. PateD.K. Therapeutic role of columbianadin in human disorders: Medicinal importance, biological properties and analytical aspects.Pharmacol Res - Mod Chinese Med20236100212
    [Google Scholar]
  93. PatelK. PatelD.K. Medicinal importance, pharmacological activities, and analytical aspects of hispidulin: A concise report.J. Tradit. Complement. Med.20177336036610.1016/j.jtcme.2016.11.00328725632
    [Google Scholar]
  94. PatelK. KumarV. RahmanM. VermaA. PatelD.K. New insights into the medicinal importance, physiological functions and bioanalytical aspects of an important bioactive compound of foods ‘Hyperin’: Health benefits of the past, the present, the future.Beni. Suef Univ. J. Basic Appl. Sci.201871314210.1016/j.bjbas.2017.05.009
    [Google Scholar]
  95. PatelD.K. Biological Potential and Therapeutic Effectiveness of Lusianthridin in Medicine: An Update on Dihydrophenanthrene from Dendrobium venustum.Endocr. Metab. Immune Disord. Drug Targets202424121351135410.2174/011871530327096724012311302638299391
    [Google Scholar]
  96. PatelK. SinghG.K. PatelD.K. A review on pharmacological and analytical aspects of naringenin.Chin. J. Integr. Med.201824755156010.1007/s11655‑014‑1960‑x25501296
    [Google Scholar]
  97. PatelD.K. SinghG.K. HusainG.M. PrasadS.K. Ethnomedicinal importance of patuletin in medicine: Pharmacological activities and analytical aspects.Endocr. Metab. Immune Disord. Drug Targets202424551953010.2174/187153032366623081614174037584350
    [Google Scholar]
  98. FukudaE UesawaY BabaM SuzukiR FukudaT ShiratakiY Identification of the Country of Growth of Sophora flavescens using Direct Analysis in Real Time Mass Spectrometry (DART-MS).Nat. Prod. Commun.201491934578X1400901
    [Google Scholar]
/content/journals/ctc/10.2174/0126660016285747240830061418
Loading
/content/journals/ctc/10.2174/0126660016285747240830061418
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test