Skip to content
2000
Volume 4, Issue 1
  • ISSN: 1574-3624
  • E-ISSN: 2212-389X

Abstract

Methionine oxidation by reactive oxygen species and reduction mediated by the methionine sulfoxide reductase (Msr) system may attenuate protein function in signal transduction pathways. This review will focus on two potential protein targets for methionine oxidation involved in signal transduction of the immune response: Ca2+/calmodulin-regulated phosphatase calcineurin (Cn) and inhibitor of kappa B-alpha (IkBα). The major known function of Cn is to regulate nuclear localization of the nuclear factor of activated T cells (NFAT), a family of transcription factors during immune stimulus. Like wise, IκBα inhibits the activity of nuclear factor kappa B (NFkB), which is known to regulate the transcription of various genes participating in immunological and oxidative stress response. Modification of Met 45 in IκBα enhances its resistance to protein-degredation; thereby, preventing NFkB from activating transcription in cells of the immune system. Similarly, the human Cn molecule contains several methionine residues that are either located next to a cysteine residue or a methionine residue. Accordingly, it is suggested that oxidation of a specific Cn-methionine may interfere with the proper NFAT nuclear-localization and transcriptional activation in T-cell. Thus, the roles of oxidized-methionine residues and their reduction, by the Msr system, are discussed as potential regulators of cellular immune response.

Loading

Article metrics loading...

/content/journals/cst/10.2174/157436209787048748
2009-01-01
2025-09-02
Loading full text...

Full text loading...

/content/journals/cst/10.2174/157436209787048748
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test