Skip to content
2000
Volume 21, Issue 1
  • ISSN: 1574-3624
  • E-ISSN: 2212-389X

Abstract

Introduction

Breast cancer is one of the most prevalent cancers among women worldwide. In recent years, a significant proportion of breast cancer research in Pakistan, accounting for nearly two-thirds, has focused on this disease. Nanotechnology has emerged as a promising tool in the detection, diagnosis, and treatment of breast cancer. This study presents an analysis of traditional breast cancer therapies and compares them with recent developments in nanomedicine.

Methods

The data were collected from online databases, including Google Scholar, PubMed, and Web of Science, to support the current study.

Results

Various treatments face challenges, including complications and drug resistance. A new approach has been developed to overcome chemoresistance in breast cancer patients. Nanotechnology utilizes both organic and inorganic methods to address breast cancer, aiming to reduce tumor size and impede its development. The nanomedicine treatment involves active, passive, and stimuli-responsive targeting of nanocarriers to tumor cells. Although nanomedicine shows high effectiveness, careful consideration must be given to the potential toxicity of nanomaterials, particularly their impact on the immune system.

Discussion

Nanomedicine offers a promising solution to overcome chemoresistance in breast cancer by targeted drug delivery through nanocarriers. While effective in reducing tumors, concerns about nanomaterial toxicity, especially its impact on the immune system, must be addressed.

Conclusion

In summary, nanomedicine proves to be an efficient method for treating breast cancer tumor growth. Further work is necessary to design safer and more effective medicines through nanomedicine.

Loading

Article metrics loading...

/content/journals/cst/10.2174/0115743624378472250801115840
2025-08-18
2026-02-21
Loading full text...

Full text loading...

References

  1. AhmadS. Ur RehmanS. IqbalA. FarooqR.K. ShahidA. UllahM.I. Breast cancer research in Pakistan: A bibliometric analysis.SAGE Open20211132158244021104693410.1177/21582440211046934
    [Google Scholar]
  2. SungH. FerlayJ. SiegelR.L. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J. Clin.202171320924910.3322/caac.21660 33538338
    [Google Scholar]
  3. FanL. GossP.E. Strasser-WeipplK. Current status and future projections of breast cancer in Asia.Breast Care201510637237810.1159/000441818 26989355
    [Google Scholar]
  4. HormonesE. GroupB.C.C. Sex hormones and breast cancer risk in premenopausal women: Collaborative reanalysis of seven prospective studies.Lancet Oncol.20131410100910.1016/S1470‑2045(13)70301‑2 23890780
    [Google Scholar]
  5. ŁukasiewiczS. CzeczelewskiM. FormaA. BajJ. SitarzR. StanisławekA. Breast cancer-epidemiology, risk factors, classification, prognostic markers, and current treatment strategies—an updated review.Cancers20211317428710.3390/cancers13174287 34503097
    [Google Scholar]
  6. ShirodeA.B. BharaliD.J. NallanthighalS. CoonJ.K. MousaS.A. RelieneR. Nanoencapsulation of pomegranate bioactive compounds for breast cancer chemoprevention.Int. J. Nanomedicine20151047548410.2147/IJN.S65145 25624761
    [Google Scholar]
  7. ShiJ. KantoffP.W. WoosterR. FarokhzadO.C. Cancer nanomedicine: Progress, challenges and opportunities.Nat. Rev. Cancer2017171203710.1038/nrc.2016.108 27834398
    [Google Scholar]
  8. FuS. LiG. ZangW. ZhouX. ShiK. ZhaiY. Pure drug nano-assemblies: A facile carrier-free nanoplatform for efficient cancer therapy.Acta Pharm. Sin. B20221219210610.1016/j.apsb.2021.08.012 35127374
    [Google Scholar]
  9. JiangY. JiangZ. WangM. MaL. Current understandings and clinical translation of nanomedicines for breast cancer therapy.Adv. Drug Deliv. Rev.202218011403410.1016/j.addr.2021.114034 34736986
    [Google Scholar]
  10. WuD. SiM. XueH.Y. WongH.L. Nanomedicine applications in the treatment of breast cancer: Current state of the art.Int. J. Nanomedicine2017125879589210.2147/IJN.S123437 28860754
    [Google Scholar]
  11. TelesR.H.G. MorallesH.F. CominettiM.R. Global trends in nanomedicine research on triple negative breast cancer: A bibliometric analysis.Int. J. Nanomedicine2018132321233610.2147/IJN.S164355 29713164
    [Google Scholar]
  12. WangZ. Emergence in protein derived nanomedicine as anticancer therapeutics: More than a tour de force.Seminars in cancer biology.Elsevier202110.1016/j.semcancer.2019.11.012
    [Google Scholar]
  13. WuJ. The enhanced permeability and retention (EPR) effect: The significance of the concept and methods to enhance its application.J. Pers. Med.202111877110.3390/jpm11080771 34442415
    [Google Scholar]
  14. DasR.P. GandhiV.V. SinghB.G. KunwarA. Passive and active drug targeting: Role of nanocarriers in rational design of anticancer formulations.Curr. Pharm. Des.201925283034305610.2174/1381612825666190830155319 31470779
    [Google Scholar]
  15. AlqaraghuliH.G.J. KashanianS. RafipourR. A review on targeting nanoparticles for breast cancer.Curr. Pharm. Biotechnol.201920131087110710.2174/1389201020666190731130001 31364513
    [Google Scholar]
  16. MalikZ. ParveenR. AbassS. Irfan DarM. HusainS.A. AhmadS. Receptor-mediated targeting in breast cancer through solid lipid nanoparticles and its mechanism.Curr. Drug Metab.2022231080081710.2174/1389200223666220416213639 35430962
    [Google Scholar]
  17. RoskoskiR. Small molecule inhibitors targeting the EGFR/ErbB family of protein-tyrosine kinases in human cancers.Pharmacol. Res.201913939541110.1016/j.phrs.2018.11.014 30500458
    [Google Scholar]
  18. PernasS. TolaneyS.M. Targeting HER2 heterogeneity in early-stage breast cancer.Curr. Opin. Oncol.202032654555410.1097/CCO.0000000000000685 32925204
    [Google Scholar]
  19. WangJ. WuS-G. Breast cancer: An overview of current therapeutic strategies, challenge, and perspectives.Breast Cancer20231572173010.2147/BCTT.S432526 37881514
    [Google Scholar]
  20. MirM.A. MirA.Y. Current treatment approaches to breast cancer.Therapeutic Potential of cell cycle kinases in breast cancer.Springer2023235110.1007/978‑981‑19‑8911‑7_2
    [Google Scholar]
  21. AlsheikhlyA.S. AlsheikhlyM.A.S. A Comprehensive review of breast cancer and the latest advancement in diagnosis and treatment.Latest Research on Breast Cancer - Molecular Insights.Diagnostic Advances and Therapeutic Innovations. IntechOpen202510.5772/intechopen.1008946
    [Google Scholar]
  22. MeattiniI. LiviL. LoritoN. Integrating radiation therapy with targeted treatments for breast cancer: From bench to bedside.Cancer Treat. Rev.202210810241710.1016/j.ctrv.2022.102417 35623219
    [Google Scholar]
  23. ShienT. IwataH. Adjuvant and neoadjuvant therapy for breast cancer.Jpn. J. Clin. Oncol.202050322522910.1093/jjco/hyz213 32147701
    [Google Scholar]
  24. HarbeckN. Penault-LlorcaF. CortesJ. Breast cancer.Nat. Rev. Dis. Primers2019516610.1038/s41572‑019‑0111‑2 31548545
    [Google Scholar]
  25. MigliettaF. BottossoM. GriguoloG. DieciM.V. GuarneriV. Major advancements in metastatic breast cancer treatment: When expanding options means prolonging survival.ESMO Open20227210040910.1016/j.esmoop.2022.100409 35227965
    [Google Scholar]
  26. TauberN. AmannN. DannehlD. Therapy of early breast cancer: Current status and perspectives.Arch. Gynecol. Obstet.202511810.1007/s00404‑025‑08028‑0 40261372
    [Google Scholar]
  27. GuarneriV. ConteP.F. The curability of breast cancer and the treatment of advanced disease.Eur. J. Nucl. Med. Mol. Imaging200431Suppl. 1S149S16110.1007/s00259‑004‑1538‑5 15107948
    [Google Scholar]
  28. CuiY. ShuX.O. GaoY. Use of complementary and alternative medicine by Chinese women with breast cancer.Breast Cancer Res. Treat.200485326327010.1023/B:BREA.0000025422.26148.8d 15111765
    [Google Scholar]
  29. ChenZ. GuK. ZhengY. ZhengW. LuW. ShuX.O. The use of complementary and alternative medicine among Chinese women with breast cancer.J. Altern. Complement. Med.20081481049105510.1089/acm.2008.0039 18928393
    [Google Scholar]
  30. ChenG. QiaoT. DingH. Use of Chinese herbal medicine therapies in comprehensive hospitals in central China: A parallel survey in cancer patients and clinicians.J. Huazhong Univ. Sci. Technolog. Med. Sci.201535680881410.1007/s11596‑015‑1511‑5 26670429
    [Google Scholar]
  31. ChenS. FlowerA. RitchieA. Oral Chinese herbal medicine (CHM) as an adjuvant treatment during chemotherapy for non-small cell lung cancer: A systematic review.Lung Cancer201068213714510.1016/j.lungcan.2009.11.008 20015572
    [Google Scholar]
  32. LiuR. HeS. ZhaoY. Chinese herbal decoction based on syndrome differentiation as maintenance therapy in patients with extensive-stage small-cell lung cancer: An exploratory and small prospective cohort study.Evid. Based Complement. Alternat. Med.20152015111210.1155/2015/601067 25815038
    [Google Scholar]
  33. LiS.G. ChenH.Y. Ou-YangC.S. The efficacy of Chinese herbal medicine as an adjunctive therapy for advanced non-small cell lung cancer: A systematic review and meta-analysis.PLoS One2013825760410.1371/journal.pone.0057604 23469033
    [Google Scholar]
  34. OwenH.C. AppiahS. HasanN. GhaliL. ElayatG. BellC. Phytochemical modulation of apoptosis and autophagy: Strategies to overcome chemoresistance in leukemic stem cells in the bone marrow microenvironment.Int. Rev. Neurobiol.201713524927810.1016/bs.irn.2017.02.012 28807161
    [Google Scholar]
  35. HuY. WangS. WuX. Chinese herbal medicine-derived compounds for cancer therapy: A focus on hepatocellular carcinoma.J. Ethnopharmacol.2013149360161210.1016/j.jep.2013.07.030 23916858
    [Google Scholar]
  36. XuX.H. LiT. FongC. Saponins from Chinese medicines as anticancer agents.Molecules20162110132610.3390/molecules21101326 27782048
    [Google Scholar]
  37. YangF. HeQ. DaiX. ZhangX. SongD. The potential role of nanomedicine in the treatment of breast cancer to overcome the obstacles of current therapies.Front. Pharmacol.202314114310210.3389/fphar.2023.1143102 36909177
    [Google Scholar]
  38. BanthiaP GambhirL SharmaA Nano to rescue: Repository of nanocarriers for targeted drug delivery to curb breast cancer.3 Biotech20221237010.1007/s13205‑022‑03121‑6
    [Google Scholar]
  39. GaruttiM. PelizzariG. BartolettiM. Platinum salts in patients with breast cancer: A focus on predictive factors.Int. J. Mol. Sci.20192014339010.3390/ijms20143390 31295913
    [Google Scholar]
  40. JunnuthulaV. KolimiP. NyavanandiD. SampathiS. VoraL.K. DyawanapellyS. Polymeric micelles for breast cancer therapy: Recent updates, clinical translation and regulatory considerations.Pharmaceutics2022149186010.3390/pharmaceutics14091860 36145608
    [Google Scholar]
  41. OmidiY. MobasherM. CastejonA.M. MahmoudiM. Recent advances in nanoscale targeted therapy of HER2-positive breast cancer.J. Drug Target.202230768770810.1080/1061186X.2022.2055045 35321601
    [Google Scholar]
  42. SalehY. AbdelkarimO. HerzallahK. AbelaG.S. Anthracycline-induced cardiotoxicity: Mechanisms of action, incidence, risk factors, prevention, and treatment.Heart Fail. Rev.20212651159117310.1007/s10741‑020‑09968‑2 32410142
    [Google Scholar]
  43. YeJ.C. FormentiS.C. Integration of radiation and immunotherapy in breast cancer - Treatment implications.Breast201838667410.1016/j.breast.2017.12.005 29253718
    [Google Scholar]
  44. LiuY. QiaoL. ZhangS. Dual pH-responsive multifunctional nanoparticles for targeted treatment of breast cancer by combining immunotherapy and chemotherapy.Acta Biomater.20186631032410.1016/j.actbio.2017.11.010 29129789
    [Google Scholar]
  45. SunY. LianT. HuangQ. Nanomedicine-mediated regulated cell death in cancer immunotherapy.J. Control. Release202336417419410.1016/j.jconrel.2023.10.032 37871752
    [Google Scholar]
  46. HsiaoW. LiuL. The role of traditional Chinese herbal medicines in cancer therapy-From TCM theory to mechanistic insights.Planta Med.201076111118113110.1055/s‑0030‑1250186 20635308
    [Google Scholar]
  47. YenY. SoS. RoseM. Phase I/II study of PHY906/capecitabine in advanced hepatocellular carcinoma.Anticancer Res.2009291040834092 19846955
    [Google Scholar]
  48. Pulido-MoranM. Moreno-FernandezJ. Ramirez-TortosaC. Ramirez-TortosaM.C. Curcumin and health.Molecules201621326410.3390/molecules21030264 26927041
    [Google Scholar]
  49. KanaiM. YoshimuraK. AsadaM. A phase I/II study of gemcitabine-based chemotherapy plus curcumin for patients with gemcitabine-resistant pancreatic cancer.Cancer Chemother. Pharmacol.201168115716410.1007/s00280‑010‑1470‑2 20859741
    [Google Scholar]
  50. TanY. WeiX. ZhangW. Resveratrol enhances the radiosensitivity of nasopharyngeal carcinoma cells by downregulating E2F1.Oncol. Rep.20173731833184110.3892/or.2017.5413 28184930
    [Google Scholar]
  51. WangJ. KangM. WenQ. Berberine sensitizes nasopharyngeal carcinoma cells to radiation through inhibition of Sp1 and EMT.Oncol. Rep.20173742425243210.3892/or.2017.5499 28350122
    [Google Scholar]
  52. LereboursF. CabelL. PiergaJ.Y. Neoadjuvant endocrine therapy in breast cancer management: State of the art.Cancers202113490210.3390/cancers13040902 33670042
    [Google Scholar]
  53. AlFakeehA. Brezden-MasleyC. Overcoming endocrine resistance in hormone receptor-positive breast cancer.Curr. Oncol.20182511182710.3747/co.25.3752 29910644
    [Google Scholar]
  54. Boix-MontesinosP. Soriano-TeruelP.M. ArmiñánA. OrzáezM. VicentM.J. The past, present, and future of breast cancer models for nanomedicine development.Adv. Drug Deliv. Rev.202117330633010.1016/j.addr.2021.03.018 33798642
    [Google Scholar]
  55. AhmadM.Z. AlasiriA.S. AlasmaryM.Y. Emerging advances in nanomedicine for breast cancer immunotherapy: Opportunities and challenges.Immunotherapy2022141295798310.2217/imt‑2021‑0348 35852105
    [Google Scholar]
  56. Navarro-OcónA. Blaya-CánovasJ.L. López-TejadaA. Nanomedicine as a promising tool to overcome immune escape in breast cancer.Pharmaceutics202214350510.3390/pharmaceutics14030505 35335881
    [Google Scholar]
  57. KwapiszD. Pembrolizumab and atezolizumab in triple-negative breast cancer.Cancer Immunol. Immunother.202170360761710.1007/s00262‑020‑02736‑z 33015734
    [Google Scholar]
  58. García-ArandaM. RedondoM. Immunotherapy: A challenge of breast cancer treatment.Cancers20191112182210.3390/cancers11121822 31756919
    [Google Scholar]
  59. SenguptaS. EavaroneD. CapilaI. Temporal targeting of tumour cells and neovasculature with a nanoscale delivery system.Nature2005436705056857210.1038/nature03794 16049491
    [Google Scholar]
  60. PandeyP. DurejaH. Recent patents on polymeric nanoparticles for cancer therapy.Recent Pat. Nanotechnol.201812215516910.2174/1872210512666180327120648 29589551
    [Google Scholar]
  61. MisraR. SahooS.K. Intracellular trafficking of nuclear localization signal conjugated nanoparticles for cancer therapy.Eur. J. Pharm. Sci.2010391-315216310.1016/j.ejps.2009.11.010 19961929
    [Google Scholar]
  62. RaoK.S. GhorpadeA. LabhasetwarV. Targeting anti-HIV drugs to the CNS.Expert Opin. Drug Deliv.20096877178410.1517/17425240903081705 19566446
    [Google Scholar]
  63. SaravanakumarK. AnbazhaganS. Pujani UsliyanageJ. A comprehensive review on immuno-nanomedicine for breast cancer therapy: Technical challenges and troubleshooting measures.Int. Immunopharmacol.202210310843310.1016/j.intimp.2021.108433 34922248
    [Google Scholar]
  64. TangJ. ZhangL. GaoH. Co-delivery of doxorubicin and P-gp inhibitor by a reduction-sensitive liposome to overcome multidrug resistance, enhance anti-tumor efficiency and reduce toxicity.Drug Deliv.20162341130114310.3109/10717544.2014.990651 25491241
    [Google Scholar]
  65. ZielińskaA. CarreiróF. OliveiraA.M. Polymeric nanoparticles: Production, characterization, toxicology and ecotoxicology.Molecules20202516373110.3390/molecules25163731 32824172
    [Google Scholar]
  66. HanafyN. El-KemaryM. LeporattiS. Micelles structure development as a strategy to improve smart cancer therapy.Cancers201810723810.3390/cancers10070238 30037052
    [Google Scholar]
  67. KesharwaniP. ChadarR. ShuklaR. Recent advances in multifunctional dendrimer-based nanoprobes for breast cancer theranostics.J. Biomater. Sci. Polym. Ed.202233182433247110.1080/09205063.2022.2103627 35848467
    [Google Scholar]
  68. AfzalM. Nanomedicine in treatment of breast cancer–A challenge to conventional therapy.Seminars in cancer biology.Elsevier202110.1016/j.semcancer.2019.12.016
    [Google Scholar]
  69. HaiderM. AbdinS.M. KamalL. OriveG. Nanostructured lipid carriers for delivery of chemotherapeutics: A review.Pharmaceutics202012328810.3390/pharmaceutics12030288 32210127
    [Google Scholar]
  70. HashemiM. YadegariA. YazdanpanahG. Normalization of doxorubicin release from graphene oxide: New approach for optimization of effective parameters on drug loading.Biotechnol. Appl. Biochem.201764343344210.1002/bab.1487 26878983
    [Google Scholar]
  71. GibsonJ.D. KhanalB.P. ZubarevE.R. Paclitaxel-functionalized gold nanoparticles.J. Am. Chem. Soc.200712937116531166110.1021/ja075181k 17718495
    [Google Scholar]
  72. LiZ. HuangH. TangS. Small gold nanorods laden macrophages for enhanced tumor coverage in photothermal therapy.Biomaterials20167414415410.1016/j.biomaterials.2015.09.038 26454052
    [Google Scholar]
  73. JeyarajM. SathishkumarG. SivanandhanG. Biogenic silver nanoparticles for cancer treatment: An experimental report.Colloids Surf. B Biointerfaces2013106869210.1016/j.colsurfb.2013.01.027 23434696
    [Google Scholar]
  74. PooniaN. LatherV. PanditaD. Mesoporous silica nanoparticles: A smart nanosystem for management of breast cancer.Drug Discov. Today201823231533210.1016/j.drudis.2017.10.022 29128658
    [Google Scholar]
  75. DongL. LiW. YuL. SunL. ChenY. HongG. Ultrasmall Ag2Te quantum dots with rapid clearance for amplified computed tomography imaging and augmented photonic tumor hyperthermia.ACS Appl. Mater. Interfaces20201238425584256610.1021/acsami.0c12948 32830482
    [Google Scholar]
  76. ZhangM. ZhaoL. DuF. Facile synthesis of cerium-doped carbon quantum dots as a highly efficient antioxidant for free radical scavenging.Nanotechnology2019303232510110.1088/1361‑6528/ab12ef 30909174
    [Google Scholar]
  77. AtabaevT.S. Doped carbon dots for sensing and bioimaging applications: A minireview.Nanomaterials20188534210.3390/nano8050342 29783639
    [Google Scholar]
  78. KandasamyG. Recent advancements in doped/co-doped carbon quantum dots for multi-potential applications.C2019522410.3390/c5020024
    [Google Scholar]
  79. GaurM. MisraC. YadavA.B. Biomedical applications of carbon nanomaterials: Fullerenes, quantum dots, nanotubes, nanofibers, and graphene.Materials20211420597810.3390/ma14205978 34683568
    [Google Scholar]
  80. Flores-PachecoA. Álvarez-RamosM.E. AyónA. Down-shifting by quantum dots for silicon solar cell applications.Solar Cells and Light Management.Elsevier202044347710.1016/B978‑0‑08‑102762‑2.00013‑6
    [Google Scholar]
  81. AlaghmandfardA. SedighiO. Tabatabaei RezaeiN. Recent advances in the modification of carbon-based quantum dots for biomedical applications.Mater. Sci. Eng. C202112011175610.1016/j.msec.2020.111756 33545897
    [Google Scholar]
  82. SuW. WuH. XuH. Carbon dots: A booming material for biomedical applications.Mater. Chem. Front.20204382183610.1039/C9QM00658C
    [Google Scholar]
  83. MolaeiM.J. Carbon quantum dots and their biomedical and therapeutic applications: A review.RSC Advances20199126460648110.1039/C8RA08088G 35518468
    [Google Scholar]
  84. SyrgiannisZ. MelchionnaM. PratoM. Covalent carbon nanotube functionalization.Encyclopedia of Polymeric Nanomaterials.Berlin, HeidelbergSpringer201548048710.1007/978‑3‑642‑29648‑2_363
    [Google Scholar]
  85. NikolaevP. Gas-phase production of single-walled carbon nanotubes from carbon monoxide: A review of the hipco process.J. Nanosci. Nanotechnol.20044430731610.1166/jnn.2004.066 15296221
    [Google Scholar]
  86. SchulzMJ ShanovVN Nanomedicine design of particles, sensors, motors, implants, robots, and devices.artech house2009
    [Google Scholar]
  87. ZareH. AhmadiS. GhasemiA. Carbon nanotubes: Smart drug/gene delivery carriers.Int. J. Nanomedicine2021161681170610.2147/IJN.S299448 33688185
    [Google Scholar]
  88. MartinelliC. PucciC. CiofaniG. Nanostructured carriers as innovative tools for cancer diagnosis and therapy.APL Bioeng.20193101150210.1063/1.5079943 31069332
    [Google Scholar]
  89. LiuR. HuC. YangY. ZhangJ. GaoH. Theranostic nanoparticles with tumor-specific enzyme-triggered size reduction and drug release to perform photothermal therapy for breast cancer treatment.Acta Pharm. Sin. B20199241042010.1016/j.apsb.2018.09.001 30976492
    [Google Scholar]
  90. Li VolsiA. FioricaC. D’AmicoM. Hybrid Gold/Silica/Quantum-Dots supramolecular-nanostructures encapsulated in polymeric micelles as potential theranostic tool for targeted cancer therapy.Eur. Polym. J.2018105384710.1016/j.eurpolymj.2018.05.013
    [Google Scholar]
  91. YangW. GuoW. GongX. Facile synthesis of Gd–Cu–In–S/ZnS bimodal quantum dots with optimized properties for tumor targeted fluorescence/MR in vivo imaging.ACS Appl. Mater. Interfaces2015733187591876810.1021/acsami.5b05372 26257133
    [Google Scholar]
  92. GhoshS. GhosalK. MohammadS.A. SarkarK. Dendrimer functionalized carbon quantum dot for selective detection of breast cancer and gene therapy.Chem. Eng. J.201937346848410.1016/j.cej.2019.05.023
    [Google Scholar]
  93. LiuZ. LinH. ZhaoM. 2D superparamagnetic tantalum carbide composite MXenes for efficient breast-cancer theranostics.Theranostics2018861648166410.7150/thno.23369 29556347
    [Google Scholar]
  94. PrabhakarU. Challenges and key considerations of the enhanced permeability and retention effect for nanomedicine drug delivery in oncology.AACR201310.1158/0008‑5472.CAN‑12‑4561
    [Google Scholar]
  95. ErnstingM.J. MurakamiM. RoyA. LiS.D. Factors controlling the pharmacokinetics, biodistribution and intratumoral penetration of nanoparticles.J. Control. Release2013172378279410.1016/j.jconrel.2013.09.013 24075927
    [Google Scholar]
  96. ByrneJ.D. BetancourtT. Brannon-PeppasL. Active targeting schemes for nanoparticle systems in cancer therapeutics.Adv. Drug Deliv. Rev.200860151615162610.1016/j.addr.2008.08.005 18840489
    [Google Scholar]
  97. Fraguas-SánchezA.I. LozzaI. Torres-SuárezA.I. Actively targeted nanomedicines in breast cancer: From pre-clinal investigation to clinic.Cancers2022145119810.3390/cancers14051198 35267507
    [Google Scholar]
  98. LiJ. WangY. XuC. Rapid pH-responsive self-disintegrating nanoassemblies balance tumor accumulation and penetration for enhanced anti-breast cancer therapy.Acta Biomater.202113454655810.1016/j.actbio.2021.04.022 33882357
    [Google Scholar]
  99. LiJ.J. HartonoD. OngC.N. BayB.H. YungL.Y.L. Autophagy and oxidative stress associated with gold nanoparticles.Biomaterials201031235996600310.1016/j.biomaterials.2010.04.014 20466420
    [Google Scholar]
  100. ZhangQ. YangW. ManN. Autophagy-mediated chemosensitization in cancer cells by fullerene C60 nanocrystal.Autophagy2009581107111710.4161/auto.5.8.9842 19786831
    [Google Scholar]
  101. HongH. ShiJ. YangY. Cancer-targeted optical imaging with fluorescent zinc oxide nanowires.Nano Lett.20111193744375010.1021/nl201782m 21823599
    [Google Scholar]
  102. WeiP. ZhangL. LuY. ManN. WenL. C60(Nd) nanoparticles enhance chemotherapeutic susceptibility of cancer cells by modulation of autophagy.Nanotechnology2010214949510110.1088/0957‑4484/21/49/495101 21071824
    [Google Scholar]
  103. YamawakiH. IwaiN. Cytotoxicity of water-soluble fullerene in vascular endothelial cells.Am. J. Physiol. Cell Physiol.20062906C1495C150210.1152/ajpcell.00481.2005 16407415
    [Google Scholar]
  104. SeleverstovO. ZabirnykO. ZscharnackM. Quantum dots for human mesenchymal stem cells labeling. A size-dependent autophagy activation.Nano Lett.20066122826283210.1021/nl0619711 17163713
    [Google Scholar]
  105. SternS.T. ZolnikB.S. McLelandC.B. ClogstonJ. ZhengJ. McNeilS.E. Induction of autophagy in porcine kidney cells by quantum dots: A common cellular response to nanomaterials?Toxicol. Sci.2008106114015210.1093/toxsci/kfn137 18632727
    [Google Scholar]
  106. AnkamwarB. LaiT.C. HuangJ.H. Biocompatibility of Fe3O4 nanoparticles evaluated by in vitro cytotoxicity assays using normal, glia and breast cancer cells.Nanotechnology201021707510210.1088/0957‑4484/21/7/075102 20090199
    [Google Scholar]
  107. AliosmanogluA. BasaranI. Nanotechnology in cancer treatment.J. Nanomedine Biotherapeutic Discov.2012241310.4172/2155‑983X.1000107
    [Google Scholar]
  108. BhanotA. SharmaR. NoolviM.N. Natural sources as potential anti-cancer agents: A review.Int. J. Phytomed.201131926
    [Google Scholar]
  109. GhoshP. HanG. DeM. KimC. RotelloV. Gold nanoparticles in delivery applications.Adv. Drug Deliv. Rev.200860111307131510.1016/j.addr.2008.03.016 18555555
    [Google Scholar]
  110. KhanS.A. ShahidS. LeeC.S. Green synthesis of gold and silver nanoparticles using leaf extract of Clerodendrum inerme; characterization, antimicrobial, and antioxidant activities.Biomolecules202010683510.3390/biom10060835 32486004
    [Google Scholar]
  111. ZaeemA. DrouetS. AnjumS. Effects of biogenic zinc oxide nanoparticles on growth and oxidative stress response in flax seedlings vs. in vitro cultures: A comparative analysis.Biomolecules202010691810.3390/biom10060918 32560534
    [Google Scholar]
  112. CherianT. AliK. SaquibQ. FaisalM. WahabR. MusarratJ. Cymbopogon citratus functionalized green synthesis of CuO-nanoparticles: Novel prospects as antibacterial and antibiofilm agents.Biomolecules202010216910.3390/biom10020169 31979040
    [Google Scholar]
  113. SrihasamS. ThyagarajanK. KoriviM. LebakaV.R. MallemS.P.R. Phytogenic generation of NiO nanoparticles using Stevia leaf extract and evaluation of their in-vitro antioxidant and antimicrobial properties.Biomolecules20201018910.3390/biom10010089 31935798
    [Google Scholar]
  114. KhanS.A. ShahidS. ShahidB. FatimaU. AbbasiS.A. Green synthesis of MnO nanoparticles using abutilon indicum leaf extract for biological, photocatalytic, and adsorption activities.Biomolecules202010578510.3390/biom10050785 32438654
    [Google Scholar]
  115. NadeemM. KhanR. AfridiK. Green synthesis of cerium oxide nanoparticles (CeO2 NPs) and their antimicrobial applications: A review.Int. J. Nanomedicine2020155951596110.2147/IJN.S255784 32848398
    [Google Scholar]
  116. XingJ. Gold-based nanoparticles for breast cancer diagnosis and treatment.2007 IEEE International Symposium on Circuits and Systems (ISCAS)New Orleans, LA, USA27-30 May 20072882288510.1109/ISCAS.2007.378774
    [Google Scholar]
  117. Habeeb RahumanH.B. DhandapaniR. NarayananS. Medicinal plants mediated the green synthesis of silver nanoparticles and their biomedical applications.IET Nanobiotechnol.202216411514410.1049/nbt2.12078 35426251
    [Google Scholar]
  118. ChaudharyR. NawazK. KhanA.K. HanoC. AbbasiB.H. AnjumS. An overview of the algae-mediated biosynthesis of nanoparticles and their biomedical applications.Biomolecules20201011149810.3390/biom10111498 33143289
    [Google Scholar]
  119. LetchumananD. SokS.P.M. IbrahimS. NagoorN.H. ArshadN.M. Plant-based biosynthesis of copper/copper oxide nanoparticles: An update on their applications in biomedicine, mechanisms, and toxicity.Biomolecules202111456410.3390/biom11040564 33921379
    [Google Scholar]
  120. KarmousI. PandeyA. HajK.B. ChaouiA. Efficiency of the green synthesized nanoparticles as new tools in cancer therapy: Insights on plant-based bioengineered nanoparticles, biophysical properties, and anticancer roles.Biol. Trace Elem. Res.2020196133034210.1007/s12011‑019‑01895‑0 31512171
    [Google Scholar]
  121. PrasadK.S. PrasadS.K. AnsariM.A. Tumoricidal and bactericidal properties of ZnONPs synthesized using Cassia auriculata leaf extract.Biomolecules202010798210.3390/biom10070982 32630019
    [Google Scholar]
  122. IoannidisJ.P.A. KimB.Y.S. TrounsonA. How to design preclinical studies in nanomedicine and cell therapy to maximize the prospects of clinical translation.Nat. Biomed. Eng.201821179780910.1038/s41551‑018‑0314‑y 30931172
    [Google Scholar]
  123. Nino-ParienteA. NebotV.J. VicentM.J. Relevant physicochemical descriptors of “soft nanomedicines” to bypass biological barriers.Curr. Pharm. Des.20162291274129110.2174/1381612822666151216152143 26675217
    [Google Scholar]
/content/journals/cst/10.2174/0115743624378472250801115840
Loading
/content/journals/cst/10.2174/0115743624378472250801115840
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): Breast cancer; nanocarriers; nanomaterials; nanomedicine; nanoparticles; nanotechnology
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test