Skip to content
2000
Volume 20, Issue 3
  • ISSN: 1574-3624
  • E-ISSN: 2212-389X

Abstract

About 70% of dementia cases are caused by Alzheimer's disease (AD), making it the most common cause. Nearly 7 million people in the US currently have AD, and by 2050, that number is expected to nearly double, creating serious socioeconomic problems. A cure for AD is still elusive despite a great deal of research. Numerous signaling pathways linked to AD neuropathology have been the subject of recent studies, with glycogen synthase kinase-3β (GSK3-β) emerging as a potential therapeutic target. GSK3-β is a constitutively active serine/threonine kinase that is essential for many biological functions, such as gene transcription and glycogen metabolism. It has a complex role in the pathophysiology of AD, impacting important indicators like tau phosphorylation, amyloid-β production, neuroinflammation, memory loss, and synaptic dysfunction. The goal of this review article is to give a thorough overview of GSK3-β neurobiology with a focus on how it affects signaling pathways linked to the pathophysiology of AD. It also evaluates the feasibility of targeting GSK3-β as a therapeutic approach for AD by examining the state of GSK3-β inhibitor development in preclinical and clinical trials. Preclinical research has shown encouraging results, but there are still obstacles in converting these discoveries into successful clinical therapies, including problems with drug specificity, safety, and brain penetration. However, there is still hope for creating new therapeutic strategies to fight this debilitating neurodegenerative disease, thanks to continued research into GSK3-β inhibitors.

Loading

Article metrics loading...

/content/journals/cst/10.2174/0115743624366360250630070154
2025-07-11
2025-10-11
Loading full text...

Full text loading...

References

  1. GauglerJ. JamesB. JohnsonT. MarinA. WeuveJ. 2019 Alzheimer’s disease facts and figures.Alzheimers Dement.201915332138710.1016/j.jalz.2019.01.010
    [Google Scholar]
  2. VespaJ. ArmstrongD.M. MedinaL. Demographic turning points for the United States: Population projections for 2020 to 2060.USUS Department of Commerce, Economics and Statistics Administration2018
    [Google Scholar]
  3. dos Santos PicancoL.C. OzelaP.F. de Fatima de Brito BritoM. Alzheimer’s disease: A review from the pathophysiology to diagnosis, new perspectives for pharmacological treatment.Curr. Med. Chem.201825263141315910.2174/0929867323666161213101126 30191777
    [Google Scholar]
  4. BagyinszkyE. YounY.C. AnS. KimS. The genetics of Alzheimer’s disease.Clin. Interv. Aging2014953555110.2147/CIA.S51571 24729694
    [Google Scholar]
  5. WoodgettJ.R. Molecular cloning and expression of glycogen synthase kinase-3/factor A.EMBO J.1990982431243810.1002/j.1460‑2075.1990.tb07419.x 2164470
    [Google Scholar]
  6. LeeS.J. ChungY.H. JooK.M. Age-related changes in glycogen synthase kinase 3β (GSK3β) immunoreactivity in the central nervous system of rats.Neurosci. Lett.2006409213413910.1016/j.neulet.2006.09.026 17046157
    [Google Scholar]
  7. LeroyK. YilmazZ. BrionJ.P. Increased level of active GSK‐3β in Alzheimer’s disease and accumulation in argyrophilic grains and in neurones at different stages of neurofibrillary degeneration.Neuropathol. Appl. Neurobiol.2007331435510.1111/j.1365‑2990.2006.00795.x 17239007
    [Google Scholar]
  8. Llorens-MartínM. JuradoJ. HernándezF. AvilaJ. GSK-3β, a pivotal kinase in Alzheimer disease.Front. Mol. Neurosci.201474610.3389/fnmol.2014.00046
    [Google Scholar]
  9. ShawP.C. DaviesA.F. LauK.F. Isolation and chromosomal mapping of human glycogen synthase kinase-3 alpha and -3 beta encoding genes.Genome1998415720727 9809441
    [Google Scholar]
  10. MukaiF. IshiguroK. SanoY. FujitaS.C. Alternative splicing isoform of tau protein kinase I/glycogen synthase kinase 3β.J. Neurochem.20028151073108310.1046/j.1471‑4159.2002.00918.x 12065620
    [Google Scholar]
  11. EmbiN. RylattD.B. CohenP. Glycogen synthase kinase-3 from rabbit skeletal muscle. Separation from cyclic-AMP-dependent protein kinase and phosphorylase kinase.Eur. J. Biochem.1980107251952710.1111/j.1432‑1033.1980.tb06059.x 6249596
    [Google Scholar]
  12. RylattD.B. AitkenA. BilhamT. CondonG.D. EmbiN. CohenP. Glycogen synthase from rabbit skeletal muscle. Amino acid sequence at the sites phosphorylated by glycogen synthase kinase-3, and extension of the N-terminal sequence containing the site phosphorylated by phosphorylase kinase.Eur. J. Biochem.1980107252953710.1111/j.1432‑1033.1980.tb06060.x 6772446
    [Google Scholar]
  13. WelshG.I. ProudC.G. Glycogen synthase kinase-3 is rapidly inactivated in response to insulin and phosphorylates eukaryotic initiation factor eIF-2B.Biochem. J.199329462562910.1042/bj2940625
    [Google Scholar]
  14. HooperC. KillickR. LovestoneS. The GSK3 hypothesis of Alzheimer’s disease.J. Neurochem.200810461433143910.1111/j.1471‑4159.2007.05194.x 18088381
    [Google Scholar]
  15. RayasamG.V. TulasiV.K. SodhiR. DavisJ.A. RayA. Glycogen synthase kinase 3: More than a namesake.Br. J. Pharmacol.2009156688589810.1111/j.1476‑5381.2008.00085.x 19366350
    [Google Scholar]
  16. BeurelE. MichalekS.M. JopeR.S. Innate and adaptive immune responses regulated by glycogen synthase kinase-3 (GSK3).Trends Immunol.2010311243110.1016/j.it.2009.09.007 19836308
    [Google Scholar]
  17. StambolicV. WoodgettJ.R. Mitogen inactivation of glycogen synthase kinase-3 beta in intact cells via serine 9 phosphorylation.Biochem. J.1994303701
    [Google Scholar]
  18. WangQ.M. FiolC.J. DePaoli-RoachA.A. RoachP.J. Glycogen synthase kinase-3 beta is a dual specificity kinase differentially regulated by tyrosine and serine/threonine phosphorylation.J. Biol. Chem.199426920145661457410.1016/S0021‑9258(17)36661‑9 7514173
    [Google Scholar]
  19. BhatR.V. ShanleyJ. CorrellM.P. Regulation and localization of tyrosine216 phosphorylation of glycogen synthase kinase-3β in cellular and animal models of neuronal degeneration.Proc. Natl. Acad. Sci. USA20009720110741107910.1073/pnas.190297597 10995469
    [Google Scholar]
  20. AliA. HoeflichK.P. WoodgettJ.R. Glycogen synthase kinase-3: properties, functions, and regulation.Chem. Rev.200110182527254010.1021/cr000110o 11749387
    [Google Scholar]
  21. ColeA. FrameS. CohenP. Further evidence that the tyrosine phosphorylation of glycogen synthase kinase-3 (GSK3) in mammalian cells is an autophosphorylation event.Biochem. J.2004377124925510.1042/bj20031259 14570592
    [Google Scholar]
  22. ThorntonT.M. Pedraza-AlvaG. DengB. Phosphorylation by p38 MAPK as an alternative pathway for GSK3beta inactivation.Science2008320587666767010.1126/science.1156037 18451303
    [Google Scholar]
  23. SutherlandC. CampbellD.G. CohenP. Identification of insulin-stimulated protein kinase-1 as the rabbit equivalent of rskmo-2. Identification of two threonines phosphorylated during activation by mitogen-activated protein kinase.Eur. J. Biochem.1993212258158810.1111/j.1432‑1033.1993.tb17696.x 8444194
    [Google Scholar]
  24. FangX. YuS.X. LuY. BastR.C. WoodgettJ.R. MillsG.B. Phosphorylation and inactivation of glycogen synthase kinase 3 by protein kinase A.Proc. Natl. Acad. Sci. USA20009722119601196510.1073/pnas.220413597 11035810
    [Google Scholar]
  25. CrossD.A.E. AlessiD.R. CohenP. AndjelkovichM. HemmingsB.A. Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B.Nature1995378655978578910.1038/378785a0 8524413
    [Google Scholar]
  26. GoodeN. HughesK. WoodgettJ.R. ParkerP.J. Differential regulation of glycogen synthase kinase-3 beta by protein kinase C isotypes.J. Biol. Chem.199226724168781688210.1016/S0021‑9258(18)41866‑2 1324914
    [Google Scholar]
  27. DajaniR. FraserE. RoeS.M. Crystal structure of glycogen synthase kinase 3 beta: structural basis for phosphate-primed substrate specificity and autoinhibition.Cell2001105672173210.1016/S0092‑8674(01)00374‑9 11440715
    [Google Scholar]
  28. DunningC.J. McGauranG. WillénK. GourasG.K. O’ConnellD.J. LinseS. Direct high affinity interaction between Aβ42 and GSK3α stimulates hyperphosphorylation of Tau. A new molecular link in Alzheimer’s disease?ACS Chem. Neurosci.20167216117010.1021/acschemneuro.5b00262 26618561
    [Google Scholar]
  29. KoikeH. TomiokaS. SorimachiH. Membrane-anchored metalloprotease MDC9 has an α-secretase activity responsible for processing the amyloid precursor protein.Biochem. J.1999343237137510.1042/bj3430371 10510302
    [Google Scholar]
  30. CaiZ. ZhaoY. ZhaoB. Roles of glycogen synthase kinase 3 in Alzheimer’s disease.Curr. Alzheimer Res.20129786487910.2174/156720512802455386 22272620
    [Google Scholar]
  31. UemuraK. KuzuyaA. ShimozonoY. GSK3β activity modifies the localization and function of presenilin 1.J. Biol. Chem.200728221158231583210.1074/jbc.M610708200 17389597
    [Google Scholar]
  32. LyP.T.T. WuY. ZouH. Inhibition of GSK3β-mediated BACE1 expression reduces Alzheimer-associated phenotypes.J. Clin. Invest.2013123122423510.1172/JCI64516 23202730
    [Google Scholar]
  33. ChenC.H. ZhouW. LiuS. Increased NF-κB signalling up-regulates BACE1 expression and its therapeutic potential in Alzheimer’s disease.Int. J. Neuropsychopharmacol.2012151779010.1017/S1461145711000149 21329555
    [Google Scholar]
  34. SunX. SatoS. MurayamaO. Lithium inhibits amyloid secretion in COS7 cells transfected with amyloid precursor protein C100.Neurosci. Lett.20023211-2616410.1016/S0304‑3940(01)02583‑6 11872257
    [Google Scholar]
  35. LuoY. BolonB. KahnS. Mice deficient in BACE1, the Alzheimer’s β-secretase, have normal phenotype and abolished β-amyloid generation.Nat. Neurosci.20014323123210.1038/85059 11224535
    [Google Scholar]
  36. JolivaltC.G. LeeC.A. BeiswengerK.K. Defective insulin signaling pathway and increased glycogen synthase kinase‐3 activity in the brain of diabetic mice: Parallels with Alzheimer’s disease and correction by insulin.J. Neurosci. Res.200886153265327410.1002/jnr.21787 18627032
    [Google Scholar]
  37. KurochkinI.V. GotoS. Alzheimer’s β‐amyloid peptide specifically interacts with and is degraded by insulin degrading enzyme.FEBS Lett.19943451333710.1016/0014‑5793(94)00387‑4 8194595
    [Google Scholar]
  38. QiuW.Q. WalshD.M. YeZ. Insulin-degrading enzyme regulates extracellular levels of amyloid β-protein by degradation.J. Biol. Chem.199827349327303273810.1074/jbc.273.49.32730 9830016
    [Google Scholar]
  39. FarrisW. MansourianS. ChangY. Insulin-degrading enzyme regulates the levels of insulin, amyloid β-protein, and the β-amyloid precursor protein intracellular domain in vivo.Proc. Natl. Acad. Sci. USA200310074162416710.1073/pnas.0230450100 12634421
    [Google Scholar]
  40. HernándezF. Gómez de BarredaE. Fuster-MatanzoA. LucasJ.J. AvilaJ. GSK3: A possible link between beta amyloid peptide and tau protein.Exp. Neurol.2010223232232510.1016/j.expneurol.2009.09.011 19782073
    [Google Scholar]
  41. MagdesianM.H. CarvalhoM.M.V.F. MendesF.A. Amyloid-β binds to the extracellular cysteine-rich domain of Frizzled and inhibits Wnt/β-catenin signaling.J. Biol. Chem.2008283149359936810.1074/jbc.M707108200 18234671
    [Google Scholar]
  42. SergeantN. BrettevilleA. HamdaneM. Biochemistry of Tau in Alzheimer’s disease and related neurological disorders.Expert Rev. Proteomics20085220722410.1586/14789450.5.2.207 18466052
    [Google Scholar]
  43. HangerD.P. AndertonB.H. NobleW. Tau phosphorylation: the therapeutic challenge for neurodegenerative disease.Trends Mol. Med.200915311211910.1016/j.molmed.2009.01.003 19246243
    [Google Scholar]
  44. LucasJ.J. HernándezF. Gómez-RamosP. MoránM.A. HenR. AvilaJ. Decreased nuclear beta-catenin, tau hyperphosphorylation and neurodegeneration in GSK-3beta conditional transgenic mice.EMBO J.2001201273910.1093/emboj/20.1.27 11226152
    [Google Scholar]
  45. EngelT. Goñi-OliverP. LucasJ.J. AvilaJ. HernándezF. Chronic lithium administration to FTDP‐17 tau and GSK‐3β overexpressing mice prevents tau hyperphosphorylation and neurofibrillary tangle formation, but pre‐formed neurofibrillary tangles do not revert.J. Neurochem.20069961445145510.1111/j.1471‑4159.2006.04139.x 17059563
    [Google Scholar]
  46. BhatR.V. LeonovS. LuthmanJ. ScottC.W. LeeC.M. Interactions between GSK3β and caspase signalling pathways during NGF deprivation induced cell death.J. Alzheimers Dis.20024429130110.3233/JAD‑2002‑4404 12446931
    [Google Scholar]
  47. TakashimaA. NoguchiK. MichelG. Exposure of rat hippocampal neurons to amyloid β peptide (25–35) induces the inactivation of phosphatidyl inositol-3 kinase and the activation of tau protein kinase I/glycogen synthase kinase-3β.Neurosci. Lett.19962031333610.1016/0304‑3940(95)12257‑5 8742040
    [Google Scholar]
  48. HoshiM. TakashimaA. NoguchiK. Regulation of mitochondrial pyruvate dehydrogenase activity by tau protein kinase I/glycogen synthase kinase 3beta in brain.Proc. Natl. Acad. Sci. USA19969372719272310.1073/pnas.93.7.2719 8610107
    [Google Scholar]
  49. Gómez-SintesR. HernándezF. LucasJ.J. AvilaJ. GSK-3 mouse models to study neuronal apoptosis and neurodegeneration.Front. Mol. Neurosci.201144510.3389/fnmol.2011.00045 22110426
    [Google Scholar]
  50. YamaguchiH. IshiguroK. UchidaT. TakashimaA. LemereC.A. ImahoriK. Preferential labeling of Alzheimer neurofibrillary tangles with antisera for tau protein kinase (TPK) I/glycogen synthase kinase-3β and cyclin-dependent kinase 5, a component of TPK II.Acta Neuropathol.199692323224110.1007/s004010050513 8870824
    [Google Scholar]
  51. PeiJ.J. TanakaT. TungY.C. BraakE. IqbalK. Grundke-IqbalI. Distribution, levels, and activity of glycogen synthase kinase-3 in the Alzheimer disease brain.J. Neuropathol. Exp. Neurol.1997561707810.1097/00005072‑199701000‑00007 8990130
    [Google Scholar]
  52. CohenP. GoedertM. GSK3 inhibitors: Development and therapeutic potential.Nat. Rev. Drug Discov.20043647948710.1038/nrd1415 15173837
    [Google Scholar]
  53. HardyJ.A. HigginsG.A. Alzheimer’s disease: The amyloid cascade hypothesis.Science1992256505418418510.1126/science.1566067 1566067
    [Google Scholar]
  54. CrouchP.J. HardingS.M.E. WhiteA.R. CamakarisJ. BushA.I. MastersC.L. Mechanisms of Aβ mediated neurodegeneration in Alzheimer’s disease.Int. J. Biochem. Cell Biol.200840218119810.1016/j.biocel.2007.07.013 17804276
    [Google Scholar]
  55. MichelucciA. HeurtauxT. GrandbarbeL. MorgaE. HeuschlingP. Characterization of the microglial phenotype under specific pro-inflammatory and anti-inflammatory conditions: Effects of oligomeric and fibrillar amyloid-β.J. Neuroimmunol.20092101-231210.1016/j.jneuroim.2009.02.003 19269040
    [Google Scholar]
  56. HenekaM.T. O’BanionM.K. TerwelD. KummerM.P. Neuroinflammatory processes in Alzheimer’s disease.J. Neural Transm. (Vienna)2010117891994710.1007/s00702‑010‑0438‑z 20632195
    [Google Scholar]
  57. EikelenboomP. van GoolW.A. Neuroinflammatory perspectives on the two faces of Alzheimer’s disease.J. Neural Transm. (Vienna)2004111328129410.1007/s00702‑003‑0055‑1 14991455
    [Google Scholar]
  58. KoistinahoJ MalmT GoldsteinsG. Glycogen synthase kinase-3β: A mediator of inflammation in Alzheimer's disease?Int J Alzheimers Dis20112011112975310.4061/2011/129753
    [Google Scholar]
  59. BeurelE. JopeR.S. Differential regulation of STAT family members by glycogen synthase kinase-3.J. Biol. Chem.200828332219342194410.1074/jbc.M802481200 18550525
    [Google Scholar]
  60. YuskaitisC.J. JopeR.S. Glycogen synthase kinase-3 regulates microglial migration, inflammation, and inflammation-induced neurotoxicity.Cell. Signal.200921226427310.1016/j.cellsig.2008.10.014 19007880
    [Google Scholar]
  61. De StrooperB. VassarR. GoldeT. The secretases: Enzymes with therapeutic potential in Alzheimer disease.Nat. Rev. Neurol.2010629910710.1038/nrneurol.2009.218 20139999
    [Google Scholar]
  62. SuY. RyderJ. LiB. Lithium, a common drug for bipolar disorder treatment, regulates amyloid-beta precursor protein processing.Biochemistry200443226899690810.1021/bi035627j 15170327
    [Google Scholar]
  63. JaworskiT. DewachterI. LechatB. GSK-3α/β kinases and amyloid production in vivo.Nature20114807376E4E510.1038/nature10615 22158250
    [Google Scholar]
  64. TescoG. TanziR.E. GSK3 beta forms a tetrameric complex with endogenous PS1-CTF/NTF and beta-catenin. Effects of the D257/D385A and FAD-linked mutations.Ann. N. Y. Acad. Sci.2000920122723210.1111/j.1749‑6632.2000.tb06927.x 11193155
    [Google Scholar]
  65. PalacinoJ.J. MurphyM.P. MurayamaO. Presenilin 1 regulates beta-catenin-mediated transcription in a glycogen synthase kinase-3-independent fashion.J. Biol. Chem.200127642385633856910.1074/jbc.M105376200 11504726
    [Google Scholar]
  66. TwomeyC. McCarthyJ.V. Presenilin‐1 is an unprimed glycogen synthase kinase‐3β substrate.FEBS Lett.2006580174015402010.1016/j.febslet.2006.06.035 16814287
    [Google Scholar]
  67. BakiL. ShioiJ. WenP. PS1 activates PI3K thus inhibiting GSK-3 activity and tau overphosphorylation: Effects of FAD mutations.EMBO J.200423132586259610.1038/sj.emboj.7600251 15192701
    [Google Scholar]
  68. RockensteinE. TorranceM. AdameA. Neuroprotective effects of regulators of the glycogen synthase kinase-3beta signaling pathway in a transgenic model of Alzheimer’s disease are associated with reduced amyloid precursor protein phosphorylation.J. Neurosci.20072781981199110.1523/JNEUROSCI.4321‑06.2007 17314294
    [Google Scholar]
  69. LeeJ.H. LauK.F. PerkintonM.S. The neuronal adaptor protein X11alpha reduces Abeta levels in the brains of Alzheimer’s APPswe Tg2576 transgenic mice.J. Biol. Chem.200327847470254702910.1074/jbc.M300503200 12970358
    [Google Scholar]
  70. HenriquesA.G. VieiraS.I. da Cruz e Silva EF, da Cruz e Silva OAB. Alphabeta hinders nuclear targeting of AICD and Fe65 in primary neuronal cultures.J. Mol. Neurosci.2009391-224825510.1007/s12031‑009‑9192‑9 19340611
    [Google Scholar]
  71. XiaW. ZhangJ. PerezR. KooE.H. SelkoeD.J. Interaction between amyloid precursor protein and presenilins in mammalian cells: Implications for the pathogenesis of Alzheimer disease.Proc. Natl. Acad. Sci. USA199794158208821310.1073/pnas.94.15.8208 9223340
    [Google Scholar]
  72. HandlerM. YangX. ShentJ. Presenilin-1 regulates neuronal differentiation during neurogenesis.Development2000127122593260610.1242/dev.127.12.2593 10821758
    [Google Scholar]
  73. LemereC.A. LoperaF. KosikK.S. The E280A presenilin 1 Alzheimer mutation produces increased Aβ42 deposition and severe cerebellar pathology.Nat. Med.19962101146115010.1038/nm1096‑1146 8837617
    [Google Scholar]
  74. BorcheltD.R. RatovitskiT. van LareJ. Accelerated amyloid deposition in the brains of transgenic mice coexpressing mutant presenilin 1 and amyloid precursor proteins.Neuron199719493994510.1016/S0896‑6273(00)80974‑5 9354339
    [Google Scholar]
  75. De StrooperB. SaftigP. CraessaertsK. Deficiency of presenilin-1 inhibits the normal cleavage of amyloid precursor protein.Nature1998391666538739010.1038/34910 9450754
    [Google Scholar]
  76. HerremanA. SerneelsL. AnnaertW. CollenD. SchoonjansL. De StrooperB. Total inactivation of γ–secretase activity in presenilin-deficient embryonic stem cells.Nat. Cell Biol.20002746146210.1038/35017105 10878813
    [Google Scholar]
  77. SteinerH. Uncovering γ-secretase.Curr. Alzheimer Res.20041317518110.2174/1567205043332081 15975065
    [Google Scholar]
  78. ZhangZ. NadeauP. SongW. Presenilins are required for γ-secretase cleavage of β-APP and transmembrane cleavage of Notch-1.Nat. Cell Biol.20002746346510.1038/35017108 10878814
    [Google Scholar]
  79. EdbauerD. WinklerE. RegulaJ.T. PesoldB. SteinerH. HaassC. Reconstitution of γ-secretase activity.Nat. Cell Biol.20035548648810.1038/ncb960 12679784
    [Google Scholar]
  80. HuY. YeY. FortiniM.E. Nicastrin is required for gamma-secretase cleavage of the Drosophila Notch receptor.Dev. Cell200221697810.1016/S1534‑5807(01)00105‑8 11782315
    [Google Scholar]
  81. WeihlC.C. GhadgeG.D. KennedyS.G. HayN. MillerR.J. RoosR.P. Mutant presenilin-1 induces apoptosis and downregulates Akt/PKB.J. Neurosci.199919135360536910.1523/JNEUROSCI.19‑13‑05360.1999 10377346
    [Google Scholar]
  82. TakashimaA. MurayamaM. MurayamaO. Presenilin 1 associates with glycogen synthase kinase-3β and its substrate tau.Proc. Natl. Acad. Sci. USA199895169637964110.1073/pnas.95.16.9637 9689133
    [Google Scholar]
  83. PiginoG. MorfiniG. PelsmanA. MattsonM.P. BradyS.T. BusciglioJ. Alzheimer’s presenilin 1 mutations impair kinesin-based axonal transport.J. Neurosci.200323114499450810.1523/JNEUROSCI.23‑11‑04499.2003 12805290
    [Google Scholar]
  84. KirschenbaumF. HsuS.C. CordellB. McCarthyJ.V. Substitution of a glycogen synthase kinase-3beta phosphorylation site in presenilin 1 separates presenilin function from beta-catenin signaling.J. Biol. Chem.2001276107366737510.1074/jbc.M004697200 11104755
    [Google Scholar]
  85. KirschenbaumF. HsuS.C. CordellB. McCarthyJ.V. Glycogen synthase kinase-3beta regulates presenilin 1 C-terminal fragment levels.J. Biol. Chem.200127633307013070710.1074/jbc.M102849200 11402035
    [Google Scholar]
  86. GieseK.P. GSK‐3: A key player in neurodegeneration and memory.IUBMB Life200961551652110.1002/iub.187 19391164
    [Google Scholar]
  87. PeineauS. TaghibiglouC. BradleyC. LTP inhibits LTD in the hippocampus via regulation of GSK3β.Neuron200753570371710.1016/j.neuron.2007.01.029 17329210
    [Google Scholar]
  88. HooperC. MarkevichV. PlattnerF. Glycogen synthase kinase‐3 inhibition is integral to long‐term potentiation.Eur. J. Neurosci.2007251818610.1111/j.1460‑9568.2006.05245.x 17241269
    [Google Scholar]
  89. HuiJ. ZhangJ. PuM. Modulation of GSK-3β/β-catenin signaling contributes to learning and memory impairment in a rat model of depression.Int. J. Neuropsychopharmacol.201821985887010.1093/ijnp/pyy040 29688389
    [Google Scholar]
  90. GumbinerB.M. Cell adhesion: The molecular basis of tissue architecture and morphogenesis.Cell199684334535710.1016/S0092‑8674(00)81279‑9 8608588
    [Google Scholar]
  91. MuraseS. MosserE. SchumanE.M. Depolarization drives β-Catenin into neuronal spines promoting changes in synaptic structure and function.Neuron20023519110510.1016/S0896‑6273(02)00764‑X 12123611
    [Google Scholar]
  92. MaguschakK.A. ResslerK.J. β-catenin is required for memory consolidation.Nat. Neurosci.200811111319132610.1038/nn.2198 18820693
    [Google Scholar]
  93. NelsonW.J. Regulation of cell–cell adhesion by the cadherin–catenin complex.Biochem. Soc. Trans.200836214915510.1042/BST0360149 18363555
    [Google Scholar]
  94. ValléeA. LecarpentierY. Alzheimer disease: Crosstalk between the canonical Wnt/beta-catenin pathway and PPARs alpha and gamma.Front. Neurosci.20161045910.3389/fnins.2016.00459 27807401
    [Google Scholar]
  95. DingY. QiaoA. FanG.H. Indirubin-3′-monoxime rescues spatial memory deficits and attenuates β-amyloid-associated neuropathology in a mouse model of Alzheimer’s disease.Neurobiol. Dis.201039215616810.1016/j.nbd.2010.03.022 20381617
    [Google Scholar]
  96. OnishiT. IwashitaH. UnoY. A novel glycogen synthase kinase‐3 inhibitor 2‐methyl‐5‐(3‐{4‐[(S)‐methylsulfinyl] phenyl}‐1‐benzofuran‐5‐yl)‐1, 3, 4‐oxadiazole decreases tau phosphorylation and ameliorates cognitive deficits in a transgenic model of Alzheimer’s disease.J. Neurochem.201111961330134010.1111/j.1471‑4159.2011.07532.x 21992552
    [Google Scholar]
  97. KosugaS. TashiroE. KajiokaT. UekiM. ShimizuY. ImotoM. GSK-3β directly phosphorylates and activates MARK2/PAR-1.J. Biol. Chem.200528052427154272210.1074/jbc.M507941200 16257959
    [Google Scholar]
  98. GouldT.D. ManjiH.K. Glycogen synthase kinase-3: A putative molecular target for lithium mimetic drugs.Neuropsychopharmacology20053071223123710.1038/sj.npp.1300731 15827567
    [Google Scholar]
  99. LiC. ZhaoR. GaoK. Astrocytes: Implications for neuroinflammatory pathogenesis of Alzheimer’s disease.Curr. Alzheimer Res.201181678010.2174/156720511794604543 21143158
    [Google Scholar]
  100. MuyllaertD. TerwelD. KremerA. Neurodegeneration and neuroinflammation in cdk5/p25-inducible mice: A model for hippocampal sclerosis and neocortical degeneration.Am. J. Pathol.2008172247048510.2353/ajpath.2008.070693 18202185
    [Google Scholar]
  101. MartinezA. CastroA. DorronsoroI. AlonsoM. Glycogen synthase kinase 3 (GSK‐3) inhibitors as new promising drugs for diabetes, neurodegeneration, cancer, and inflammation.Med. Res. Rev.200222437338410.1002/med.10011 12111750
    [Google Scholar]
  102. WangY. HuangW.C. WangC.Y. Inhibiting glycogen synthase kinase‐3 reduces endotoxaemic acute renal failure by down‐regulating inflammation and renal cell apoptosis.Br. J. Pharmacol.200915761004101310.1111/j.1476‑5381.2009.00284.x 19508392
    [Google Scholar]
  103. CuzzocreaS. CrisafulliC. MazzonE. Inhibition of glycogen synthase kinase‐3β attenuates the development of carrageenan‐induced lung injury in mice.Br. J. Pharmacol.2006149668770210.1038/sj.bjp.0706902 17016509
    [Google Scholar]
  104. HuS. BegumA.N. JonesM.R. GSK3 inhibitors show benefits in an Alzheimer’s disease (AD) model of neurodegeneration but adverse effects in control animals.Neurobiol. Dis.200933219320610.1016/j.nbd.2008.10.007 19038340
    [Google Scholar]
  105. CacabelosR. Fernandez-NovoaL. LombardiV. KubotaY. TakedaM. Molecular genetics of Alzheimer’s disease and aging.Methods Find. Exp. Clin. Pharmacol.2005271573
    [Google Scholar]
  106. HernándezF. BarredaE.G. Fuster-MatanzoA. Goñi-OliverP. LucasJ.J. AvilaJ. The role of GSK3 in Alzheimer disease.Brain Res. Bull.2009804-524825010.1016/j.brainresbull.2009.05.017 19477245
    [Google Scholar]
  107. ForlenzaO.V. SpinkJ.M. DayanandanR. AndertonB.H. OlesenO.F. LovestoneS. Muscarinic agonists reduce tau phosphorylation in non-neuronal cells via GSK-3β inhibition and in neurons.J. Neural Transm. (Vienna)2000107101201121210.1007/s007020070034 11129110
    [Google Scholar]
  108. SmillieK.J. CousinM.A. The role of GSK3 in presynaptic function.Int. J. Alzheimers Dis.20112011126367310.4061/2011/263673 21547219
    [Google Scholar]
  109. PérezM. HernándezF. LimF. Díaz-NidoJ. AvilaJ. Chronic lithium treatment decreases mutant tau protein aggregation in a transgenic mouse model.J. Alzheimers Dis.20035430130810.3233/JAD‑2003‑5405 14624025
    [Google Scholar]
  110. PhielC.J. WilsonC.A. LeeV.M.Y. KleinP.S. GSK-3α regulates production of Alzheimer’s disease amyloid-β peptides.Nature2003423693843543910.1038/nature01640 12761548
    [Google Scholar]
  111. NobleW. PlanelE. ZehrC. Inhibition of glycogen synthase kinase-3 by lithium correlates with reduced tauopathy and degeneration in vivo.Proc. Natl. Acad. Sci. USA2005102196990699510.1073/pnas.0500466102 15867159
    [Google Scholar]
  112. NakashimaH. IshiharaT. SuguimotoP. Chronic lithium treatment decreases tau lesions by promoting ubiquitination in a mouse model of tauopathies.Acta Neuropathol.2005110654755610.1007/s00401‑005‑1087‑4 16228182
    [Google Scholar]
  113. CaccamoA. OddoS. TranL.X. LaFerlaF.M. Lithium reduces tau phosphorylation but not A β or working memory deficits in a transgenic model with both plaques and tangles.Am. J. Pathol.200717051669167510.2353/ajpath.2007.061178 17456772
    [Google Scholar]
  114. SerenóL. ComaM. RodríguezM. A novel GSK-3β inhibitor reduces Alzheimer’s pathology and rescues neuronal loss in vivo.Neurobiol. Dis.200935335936710.1016/j.nbd.2009.05.025 19523516
    [Google Scholar]
  115. WangH. HuangS. YanK. Tideglusib, a chemical inhibitor of GSK3β, attenuates hypoxic-ischemic brain injury in neonatal mice.Biochim. Biophys. Acta, Gen. Subj.20161860102076208510.1016/j.bbagen.2016.06.027 27378458
    [Google Scholar]
  116. MedinaM. GarridoJ.J. WandosellF.G. Modulation of GSK-3 as a therapeutic strategy on tau pathologies.Front. Mol. Neurosci.201142410.3389/fnmol.2011.00024 22007157
    [Google Scholar]
  117. CongdonE.E. SigurdssonE.M. Tau-targeting therapies for Alzheimer disease.Nat. Rev. Neurol.201814739941510.1038/s41582‑018‑0013‑z 29895964
    [Google Scholar]
  118. BhatR.V. AnderssonU. AnderssonS. KnerrL. BauerU. Sundgren-AnderssonA.K. The conundrum of GSK3 inhibitors: Is it the dawn of a new beginning?J. Alzheimers Dis.201864s1S547S55410.3233/JAD‑179934 29758944
    [Google Scholar]
  119. del SerT. SteinwachsK.C. GertzH.J. Treatment of Alzheimer’s disease with the GSK-3 inhibitor tideglusib: A pilot study.J. Alzheimers Dis.201233120521510.3233/JAD‑2012‑120805 22936007
    [Google Scholar]
  120. LovestoneS. BoadaM. DuboisB. A phase II trial of tideglusib in Alzheimer’s disease.J. Alzheimers Dis.2015451758810.3233/JAD‑141959 25537011
    [Google Scholar]
  121. HöglingerG.U. HuppertzH.J. WagenpfeilS. Tideglusib reduces progression of brain atrophy in progressive supranuclear palsy in a randomized trial.Mov. Disord.201429447948710.1002/mds.25815 24488721
    [Google Scholar]
  122. Machado-VieiraR. ManjiH.K. ZarateC.A. The role of lithium in the treatment of bipolar disorder: Convergent evidence for neurotrophic effects as a unifying hypothesis.Bipolar Disord.20091129210.1111/j.1399‑5618.2009.00714.x
    [Google Scholar]
  123. ShaikJ.B. PinjariM.K.M. GangaiahD.A. NallagonduC.G.R. Synthetic strategies of functionalized pyridines and their therapeutic potential as multifunctional anti-Alzheimer’s agents.Recent developments in the synthesis and applications of pyridines.Elsevier20236912610.1016/B978‑0‑323‑91221‑1.00014‑2
    [Google Scholar]
  124. DeyN. MandalA. JanaR. Recent developments in the solvent-free synthesis of heterocycles.New J. Chem.20234728130351307910.1039/D3NJ01991H
    [Google Scholar]
  125. CaldwellG.W. YanZ. LangW. MasucciJ.A. The IC(50) concept revisited.Curr. Top. Med. Chem.201212111282129010.2174/156802612800672844 22571790
    [Google Scholar]
  126. PlanelE. SunX. TakashimaA. Role of GSK‐3β in Alzheimer’s disease pathology.Drug Dev. Res.200256349151010.1002/ddr.10100
    [Google Scholar]
  127. KashyapA. SarmaA. DasB.K. GoswamiA.K. Rational design of natural products for drug discovery.Computational Methods for Rational Drug Design.Wiley202528530910.1002/9781394249190.ch13
    [Google Scholar]
  128. ShiX.L. WuJ.D. LiuP. LiuZ.P. Synthesis and evaluation of novel GSK-3β inhibitors as multifunctional agents against Alzheimer’s disease.Eur. J. Med. Chem.201916721122510.1016/j.ejmech.2019.02.001 30772605
    [Google Scholar]
  129. DwivediA.R. RaghuveerP. Future barriers and possible solutions with recent advances in Alzheimer’s disease.Multi-Factorial Approach as a Therapeutic Strategy for the Management of Alzheimer’s Disease.Springer2025413430
    [Google Scholar]
  130. MisraA. GaneshS. ShahiwalaA. ShahS.P. Drug delivery to the central nervous system: A review.J. Pharm. Pharm. Sci.200362252273 12935438
    [Google Scholar]
  131. MonteiroA.R. BarbosaD.J. RemiãoF. SilvaR. Alzheimer’s disease: Insights and new prospects in disease pathophysiology, biomarkers and disease-modifying drugs.Biochem. Pharmacol.202321111552210.1016/j.bcp.2023.115522 36996971
    [Google Scholar]
  132. WagmanA. JohnsonK. BussiereD. Discovery and development of GSK3 inhibitors for the treatment of type 2 diabetes.Curr. Pharm. Des.200410101105113710.2174/1381612043452668 15078145
    [Google Scholar]
  133. ZareeiS. PourmandS. RahimiN. MassahiS. Targeting GSK-beta with peptide inhibitors: A Rational computational strategy for Alzheimer’s disease intervention.bioRxiv20242024.12
    [Google Scholar]
  134. AkhtarN SinghV YusufM KhanRA Non-invasive drug delivery technology: Development and current status of transdermal drug delivery devices, techniques and biomedical applications.Biomed Eng/Biomedizinische Technik2020653243
    [Google Scholar]
  135. HoffmeisterL. DiekmannM. BrandK. HuberR. GSK3: A kinase balancing promotion and resolution of inflammation.Cells20209482010.3390/cells9040820 32231133
    [Google Scholar]
  136. PatelS. WerstuckG.H. Macrophage function and the role of GSK3.Int. J. Mol. Sci.2021224220610.3390/ijms22042206 33672232
    [Google Scholar]
  137. MaqboolM. HodaN. GSK3 inhibitors in the therapeutic development of diabetes, cancer and neurodegeneration: Past, present and future.Curr. Pharm. Des.2017232943324350 28714403
    [Google Scholar]
/content/journals/cst/10.2174/0115743624366360250630070154
Loading
/content/journals/cst/10.2174/0115743624366360250630070154
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test