Skip to content
2000
Volume 20, Issue 2
  • ISSN: 1574-3624
  • E-ISSN: 2212-389X

Abstract

Introduction

Noncommunicable chronic diseases account for the highest number of mortalities across the globe and are responsible as the greatest contributor to medical healthcare expenses. To create new medicines to fight these diseases, we need to fully understand the pathological mechanisms behind them in addition to the usual therapeutic targets. TGF-β has become a promising target for therapy to help a number of fatal diseases, and it may be possible to challenge it therapeutically by either increasing its activity or decreasing it.

Objective

The present review aims to highlight the therapeutic importance of TGF-β as a potent target to cure multiple chronic diseases, such as cardiovascular disorders and malignant tumors. It also mentions pharmacologically approved drugs as well as drugs that are currently under investigation.

Methods

Our approach entailed a comprehensive literature review employing keywords such as “TGF-β signaling pathway”, “myocardial fibrosis” and “neurological disorders”. We sourced pertinent information from reputable databases, including PubMed, Scopus, and Elsevier.

Results

The TGF-β signaling pathway is what makes cancer grow and spread, as well as fibrotic proliferation in many organs, including the lungs, heart, kidneys, and liver. In such diseases, enhanced signaling is implicated in the progression. However, in the case of nervous disorders such as Parkinson’s disease and Alzheimer’s disease, TGF-β signaling is found to be hampered. Both augmentation and inhibition of TGF-β are proven to be useful as therapeutic targets to counter these diseases.

Conclusion

This review aims to provide an in-depth analysis of the historical development of research on TGF-β and the molecular mechanisms that underlie its biosynthesis, activation, and signaling transmission. Our objective is to offer a comprehensive and systematic understanding of TGF-β signaling, building on previous knowledge and recent updates, and to encourage further research in this area.

Loading

Article metrics loading...

/content/journals/cst/10.2174/0115743624339476250212114656
2025-03-26
2025-09-26
Loading full text...

Full text loading...

References

  1. AlenziE.O. FatimaW. AmaraA. ImranM. ShahS.S.H. ElbilgahyA.A. FawzyM.S. Abu-NegmL.M. MujtabaM.A. Jacinto-CaspilloI. Al-HazimiA.M. A systematic review of chronic diseases and their prevalence among the population of northern borders province (NBP) in Saudi Arabia.J. Multidiscip. Healthc.2023161047105610.2147/JMDH.S40100137089278
    [Google Scholar]
  2. ThomasS.A. BrowningC.J. CharcharF.J. KleinB. OryM.G. Bowden-JonesH. ChamberlainS.R. Transforming global approaches to chronic disease prevention and management across the lifespan: Integrating genomics, behavior change, and digital health solutions.Front. Publ. Heal.202311124825410.3389/fpubh.2023.124825437905238
    [Google Scholar]
  3. Global cancer burden growing, amidst mounting need for services.2024Available from: https://www.who.int/news/item/01-02-2024-global-cancer-burden-growing--amidst-mounting-need-for-services (Accessed on: 16 Mar 2024).
  4. KumarA.S. SinhaN. Cardiovascular disease in India: A 360 degree overview.Med. J. Arm. Forc. India.202076113
    [Google Scholar]
  5. MohsR.C. GreigN.H. Drug discovery and development: Role of basic biological research.Alzheimers Dement. (N. Y.)20173465165710.1016/j.trci.2017.10.00529255791
    [Google Scholar]
  6. ChanM.K.K. ChanE.L.Y. JiZ.Z. ChanA.S.W. LiC. LeungK.T. ToK.F. TangP.M.K. Transforming growth factor-β signaling: From tumor microenvironment to anticancer therapy.Explor. Targ. Anti-tum. Ther.20234231634310.37349/etat.2023.0013737205317
    [Google Scholar]
  7. MallatZ. GojovaA. Marchiol-FournigaultC. EspositoB. KamatéC. MervalR. FradeliziD. TedguiA. Inhibition of transforming growth factor-β signaling accelerates atherosclerosis and induces an unstable plaque phenotype in mice.Circ. Res.2001891093093410.1161/hh2201.09941511701621
    [Google Scholar]
  8. KayhanM. VouillamozJ. RodriguezD.G. BugarskiM. MitamuraY. GschwendJ. SchneiderC. HallA. LegouisD. AkdisC.A. PeterL. RehrauerH. GewinL. WengerR.H. KhodoS.N. Intrinsic TGF-β signaling attenuates proximal tubule mitochondrial injury and inflammation in chronic kidney disease.Nat. Commun.2023141323610.1038/s41467‑023‑39050‑y37270534
    [Google Scholar]
  9. TeixeiraA.F. ten DijkeP. ZhuH.J. On-target anti-TGF-β therapies are not succeeding in clinical cancer treatments: What are remaining challenges?Front. Cell Dev. Biol.2020860510.3389/fcell.2020.0060532733895
    [Google Scholar]
  10. BabaA.B. RahB. BhatG.R. MushtaqI. ParveenS. HassanR. Hameed ZargarM. AfrozeD. Transforming growth factor-beta (TGF-β) signalling in cancer-a betrayal within.Front. Pharmacol.20221379127210.3389/fphar.2022.79127235295334
    [Google Scholar]
  11. GiarratanaA.O. PrendergastC.M. SalvatoreM.M. CapaccioneK.M. TGF-β signaling: Critical nexus of fibrogenesis and cancer.J. Transl. Med.202422159410.1186/s12967‑024‑05411‑438926762
    [Google Scholar]
  12. EsebanmenG.E. LangridgeW.H.R. The role of TGF-beta signaling in dendritic cell tolerance.Immunol. Res.201765598799410.1007/s12026‑017‑8944‑928845509
    [Google Scholar]
  13. FabregatI. Moreno-CàceresJ. SánchezA. DooleyS. DewidarB. GiannelliG. ten DijkeP. IT-LIVER Consortium TGF‐β signalling and liver disease.FEBS J.2016283122219223210.1111/febs.1366526807763
    [Google Scholar]
  14. ParichatikanondW. LuangmonkongT. MangmoolS. KuroseH. Therapeutic targets for the treatment of cardiac fibrosis and cancer: Focusing on TGF-β signalling.Front. Cardiovasc. Med.202073410.3389/fcvm.2020.0003432211422
    [Google Scholar]
  15. TGF-beta family ligands.2024Available from: https://www.rndsystems.com/research-area/tgf--beta-family-ligands (Accessed on: 19 Mar 2024).
  16. DavidC.J. MassaguéJ. Contextual determinants of TGFβ action in development, immunity and cancer.Nat. Rev. Mol. Cell Biol.201819741943510.1038/s41580‑018‑0007‑029643418
    [Google Scholar]
  17. ChenW. ten DijkeP. Immunoregulation by members of the TGFβ superfamily.Nat. Rev. Immunol.2016161272374010.1038/nri.2016.11227885276
    [Google Scholar]
  18. BiernackaA. DobaczewskiM. FrangogiannisN.G. TGF-β signaling in fibrosis.Growth Factors201129519620210.3109/08977194.2011.59571421740331
    [Google Scholar]
  19. RobertsonI.B. RifkinD.B. Regulation of the bioavailability of TGF-β and TGF-β-related proteins.Cold Spring Harb. Perspect. Biol.201686a02190710.1101/cshperspect.a02190727252363
    [Google Scholar]
  20. HataA. ChenY.G. TGF-β signalling from receptors to Smads.Cold Spring Harb. Perspect. Biol.201689a02206110.1101/cshperspect.a02206127449815
    [Google Scholar]
  21. TzavlakiK. MoustakasA. TGF-β signaling.Biomolecules202010348710.3390/biom1003048732210029
    [Google Scholar]
  22. KubiczkovaL. SedlarikovaL. HajekR. SevcikovaS. TGF-β – an excellent servant but a bad master.J. Transl. Med.201210118310.1186/1479‑5876‑10‑18322943793
    [Google Scholar]
  23. MassaguéJ. SheppardD. TGF-β signaling in health and disease.Cell2023186194007403710.1016/j.cell.2023.07.03637714133
    [Google Scholar]
  24. KangJ.H. JungM.Y. YinX. AndrianifahananaM. HernandezD.M. LeofE.B. Cell-penetrating peptides selectively targeting SMAD3 inhibit profibrotic TGF-β signaling.J. Clin. Invest.201712772541255410.1172/JCI8869628530637
    [Google Scholar]
  25. KitL. LuiS. IyengarP.V. JaynesP. IsaZ.F. PangB. TanT.Z. EichhornP.J. USP 26 regulates TGF‐β signalling by deubiquitinating and stabilizing SMAD 7.EMBO Rep.201718579780810.15252/embr.20164327028381482
    [Google Scholar]
  26. ChenW. TGF-β regulation of T cells.Annu. Rev. Immunol.202341148351210.1146/annurev‑immunol‑101921‑04593936750317
    [Google Scholar]
  27. YanX. ChenY.G. Posttranslational modifications of TGF-β receptors. TGF-β signalling.Methods Protoc.201614961
    [Google Scholar]
  28. YinS. CuiH. QinS. YuS. Manipulating TGF-β signaling to optimize immunotherapy for cervical cancer.Biomed. Pharmacother.202316611535510.1016/j.biopha.2023.11535537647692
    [Google Scholar]
  29. ClaytonS.W. BanG.I. LiuC. SerraR. Canonical and noncanonical TGF-β signaling regulate fibrous tissue differentiation in the axial skeleton.Sci. Rep.20201012136410.1038/s41598‑020‑78206‑433288795
    [Google Scholar]
  30. ZhangM. ZhangY.Y. ChenY. WangJ. WangQ. LuH. TGF-β signalling and resistance to cancer therapy.Front. Cell Dev. Biol.2021978672810.3389/fcell.2021.78672834917620
    [Google Scholar]
  31. PapageorgisP. TGF β signaling in tumor initiation, epithelial-to-mesenchymal transition, and metastasis.J. Oncol.2015201511510.1155/2015/58719325883652
    [Google Scholar]
  32. NeuzilletC. Tijeras-RaballandA. CohenR. CrosJ. FaivreS. RaymondE. de GramontA. Targeting the TGFβ pathway for cancer therapy.Pharmacol. Ther.2015147223110.1016/j.pharmthera.2014.11.00125444759
    [Google Scholar]
  33. ChenQ. ZhengX. ChengW. LiJ. Landscape of targeted therapies for lung squamous cell carcinoma.Front. Oncol.202414146789810.3389/fonc.2024.146789839544292
    [Google Scholar]
  34. BabaA.B. RahB. BhatG.R. MushtaqI. ParveenS. HassanR. Hameed ZargarM. AfrozeD. Transforming growth factor-beta (TGF-β) signaling in cancer-A betrayal within.Front. Pharmacol.20221379127210.3389/fphar.2022.79127235295334
    [Google Scholar]
  35. TieY. TangF. PengD. ZhangY. ShiH. TGF-beta signal transduction: biology, function and therapy for diseases.Mol. Biomed.2022314510.1186/s43556‑022‑00109‑936534225
    [Google Scholar]
  36. LinR.L. ZhaoL.J. Mechanistic basis and clinical relevance of the role of transforming growth factor-β in cancer.Cancer Biol. Med.201512438539326779375
    [Google Scholar]
  37. SeoaneJ. GomisR.R. TGF-β family signalling in tumour suppression and cancer progression.Cold Spring Harb. Perspect. Biol.2017912a02227710.1101/cshperspect.a02227728246180
    [Google Scholar]
  38. ZhangY. AlexanderP.B. WangX.F. TGF-β family signalling in the control of cell proliferation and survival.Cold Spring Harb. Perspect. Biol.201794a02214510.1101/cshperspect.a02214527920038
    [Google Scholar]
  39. VillalbaM. EvansS.R. Vidal-VanaclochaF. CalvoA. Role of TGF-β in metastatic colon cancer: It is finally time for targeted therapy.Cell Tissue Res.20173701293910.1007/s00441‑017‑2633‑928560691
    [Google Scholar]
  40. MelzerC. HassR. von der OheJ. LehnertH. UngefrorenH. The role of TGF-β and its crosstalk with RAC1/RAC1b signaling in breast and pancreas carcinoma.Cell Commun. Signal.20171511910.1186/s12964‑017‑0175‑028499439
    [Google Scholar]
  41. DrabschY. ten DijkeP. TGF-β signalling and its role in cancer progression and metastasis.Cancer Metastasis Rev.2012313-455356810.1007/s10555‑012‑9375‑722714591
    [Google Scholar]
  42. NietoM.A. HuangR.Y.J. JacksonR.A. ThieryJ.P. EMT: 2016.Cell20161661214510.1016/j.cell.2016.06.02827368099
    [Google Scholar]
  43. WanR. FengJ. TangL. Consequences of mutations and abnormal expression of SMAD4 in tumors and T cells.OncoTargets Ther.2021142531254010.2147/OTT.S29785533888990
    [Google Scholar]
  44. FangL. LiY. WangS. LiY. ChangH.M. YiY. YanY. ThakurA. LeungP.C.K. ChengJ.C. SunY.P. TGF-β1 induces VEGF expression in human granulosa-lutein cells: A potential mechanism for the pathogenesis of ovarian hyperstimulation syndrome.Exp. Mol. Med.202052345046010.1038/s12276‑020‑0396‑y32152452
    [Google Scholar]
  45. PaduaD. ZhangX.H.F. WangQ. NadalC. GeraldW.L. GomisR.R. MassaguéJ. TGFbeta primes breast tumors for lung metastasis seeding through angiopoietin-like 4.Cell20081331667710.1016/j.cell.2008.01.04618394990
    [Google Scholar]
  46. AkhurstR.J. TGF-β antagonists: Why suppress a tumor suppressor?J. Clin. Invest.2002109121533153610.1172/JCI021597012070299
    [Google Scholar]
  47. WangQ. XiongF. WuG. WangD. LiuW. ChenJ. QiY. WangB. ChenY. SMAD proteins in TGF-β signalling pathway in cancer: Regulatory mechanisms and clinical applications.Diagnostics (Basel)20231317276910.3390/diagnostics1317276937685308
    [Google Scholar]
  48. PengD. FuM. WangM. WeiY. WeiX. Targeting TGF-β signal transduction for fibrosis and cancer therapy.Mol. Cancer202221110410.1186/s12943‑022‑01569‑x35461253
    [Google Scholar]
  49. ParkC.Y. MinK.N. SonJ.Y. ParkS.Y. NamJ.S. KimD.K. SheenY.Y. An novel inhibitor of TGF-β type I receptor, IN-1130, blocks breast cancer lung metastasis through inhibition of epithelial–mesenchymal transition.Cancer Lett.20143511728010.1016/j.canlet.2014.05.00624887560
    [Google Scholar]
  50. MatsuokaT. YashiroM. The role of the transforming growth factor-β signaling pathway in gastrointestinal cancers.Biomolecules20231310155110.3390/biom1310155137892233
    [Google Scholar]
  51. ShouM. ZhouH. MaL. New advances in cancer therapy targeting TGF-β signaling pathways.Mol. Ther. Oncolytics20233110075510.1016/j.omto.2023.10075538144669
    [Google Scholar]
  52. KimB.G. MalekE. ChoiS.H. Ignatz-HooverJ.J. DriscollJ.J. Novel therapies emerging in oncology to target the TGF-β pathway.J. Hematol. Oncol.20211415510.1186/s13045‑021‑01053‑x33823905
    [Google Scholar]
  53. GuoY. XuT. ChaiY. ChenF. TGF-β signaling in progression of oral cancer.Int. J. Mol. Sci.202324121026310.3390/ijms24121026337373414
    [Google Scholar]
  54. RamundoV. PalazzoM.L. AldieriE. TGF-β as predictive marker and pharmacological target in lung cancer approach.Cancers (Basel)2023158229510.3390/cancers1508229537190223
    [Google Scholar]
  55. WuS. LuworR.B. ZhuH.J. Dynamics of transforming growth factor β signaling and therapeutic efficacy.Growth Factors20234128210010.1080/08977194.2023.221533537229558
    [Google Scholar]
  56. MortezaeeK. MajidpoorJ. Transforming growth factor‐β signalling in tumour resistance to the anti‐PD‐(L)1 therapy: Updated.J. Cell. Mol. Med.202327331132110.1111/jcmm.1766636625080
    [Google Scholar]
  57. BatlleE. MassaguéJ. Transforming growth factor-β signalling in immunity and cancer.Immunity201950492494010.1016/j.immuni.2019.03.02430995507
    [Google Scholar]
  58. GeR. HuangG.M. Targeting transforming growth factor beta signaling in metastatic osteosarcoma.J. Bone Oncol.20234310051310.1016/j.jbo.2023.10051338021074
    [Google Scholar]
  59. ScagliottiG.V. IlariaR.Jr NovelloS. von PawelJ. FischerJ.R. ErmischS. de AlwisD.P. AndrewsJ. ReckM. CrinoL. EschbachC. ManegoldC. Tasisulam sodium (LY573636 sodium) as third-line treatment in patients with unresectable, metastatic non-small-cell lung cancer: A phase-II study.J. Thorac. Oncol.2012761053105710.1097/JTO.0b013e3182519d7922588156
    [Google Scholar]
  60. JunJ.I. LauL.F. Resolution of organ fibrosis.J. Clin. Invest.201812819710710.1172/JCI9356329293097
    [Google Scholar]
  61. HorowitzJ.C. ThannickalV.J. Mechanisms for the resolution of organ fibrosis.Physiology (Bethesda)2019341435510.1152/physiol.00033.201830540232
    [Google Scholar]
  62. BertaudA. JoshkonA. HeimX. BachelierR. BardinN. LeroyerA.S. Blot-ChabaudM. Signalling pathways and potential therapeutic strategies in cardiac fibrosis.Int. J. Mol. Sci.2023242175610.3390/ijms2402175636675283
    [Google Scholar]
  63. WoltersP.J. CollardH.R. JonesK.D. Pathogenesis of idiopathic pulmonary fibrosis.Annu. Rev. Pathol.20149115717910.1146/annurev‑pathol‑012513‑10470624050627
    [Google Scholar]
  64. HuangR. FuP. MaL. Kidney fibrosis: From mechanisms to therapeutic medicines.Signal Transduct. Target. Ther.20238112910.1038/s41392‑023‑01379‑736932062
    [Google Scholar]
  65. ZhangC.Y. LiuS. YangM. Treatment of liver fibrosis: Past, current, and future.World J. Hepatol.202315675577410.4254/wjh.v15.i6.75537397931
    [Google Scholar]
  66. LurjeI. GaisaN.T. WeiskirchenR. TackeF. Mechanisms of organ fibrosis: Emerging concepts and implications for novel treatment strategies.Mol. Aspects Med.20239210119110.1016/j.mam.2023.10119137236017
    [Google Scholar]
  67. RenL.L. LiX.J. DuanT.T. LiZ.H. YangJ.Z. ZhangY.M. ZouL. MiaoH. ZhaoY.Y. Transforming growth factor-β signaling: From tissue fibrosis to therapeutic opportunities.Chem. Biol. Interact.202336911028910.1016/j.cbi.2022.11028936455676
    [Google Scholar]
  68. FanZ. GuanJ. Antifibrotic therapies to control cardiac fibrosis.Biomater. Res.20162011310.1186/s40824‑016‑0060‑827226899
    [Google Scholar]
  69. KongP. ChristiaP. FrangogiannisN.G. The pathogenesis of cardiac fibrosis.Cell. Mol. Life Sci.201471454957410.1007/s00018‑013‑1349‑623649149
    [Google Scholar]
  70. YinX. YinX. PanX. ZhangJ. FanX. LiJ. ZhaiX. JiangL. HaoP. WangJ. ChenY. Post-myocardial infarction fibrosis: Pathophysiology, examination, and intervention.Front. Pharmacol.202314107097310.3389/fphar.2023.107097337056987
    [Google Scholar]
  71. LiuT. SongD. DongJ. ZhuP. LiuJ. LiuW. MaX. ZhaoL. LingS. Current understanding of the pathophysiology of myocardial fibrosis and its quantitative assessment in heart failure.Front. Physiol.2017823810.3389/fphys.2017.0023828484397
    [Google Scholar]
  72. LiJ. YueS. FangJ. ZengJ. ChenS. TianJ. NieS. LiuX. DingH. MicroRNA-10a/b inhibit TGF-β/Smad-induced renal fibrosis by targeting TGF-β receptor 1 in diabetic kidney disease.Mol. Ther. Nucleic Acids20222848849910.1016/j.omtn.2022.04.00235505968
    [Google Scholar]
  73. HuQ. ChenY. DengX. LiY. MaX. ZengJ. ZhaoY. Diabetic nephropathy: Focusing on pathological signals, clinical treatment, and dietary regulation.Biomed. Pharmacother.202315911425210.1016/j.biopha.2023.11425236641921
    [Google Scholar]
  74. ParkC.H. YooT.H. TGF-β inhibitors for therapeutic management of kidney fibrosis.Pharmaceuticals (Basel)20221512148510.3390/ph1512148536558936
    [Google Scholar]
  75. MengX. Nikolic-PatersonD.J. LanH.Y. TGF-β: The master regulator of fibrosis.Nat. Rev. Nephrol.201612632533810.1038/nrneph.2016.4827108839
    [Google Scholar]
  76. IsakaY. Targeting TGF-β signalling in kidney fibrosis.Int. J. Mol. Sci.2018199253210.3390/ijms1909253230150520
    [Google Scholar]
  77. GuoH. SunJ. ZhangS. NieY. ZhouS. ZengY. Progress in understanding and treating idiopathic pulmonary fibrosis: Recent insights and emerging therapies.Front. Pharmacol.202314120594810.3389/fphar.2023.120594837608885
    [Google Scholar]
  78. CaminatiA. MeloniF. FujitaM. Editorial: Idiopathic pulmonary fibrosis: Epidemiology, prognosis and treatment.Front. Med. (Lausanne)202310119526310.3389/fmed.2023.119526337324135
    [Google Scholar]
  79. KarampitsakosT. Juan-GuardelaB.M. TzouvelekisA. Herazo-MayaJ.D. Precision medicine advances in idiopathic pulmonary fibrosis.EBioMedicine20239510476610.1016/j.ebiom.2023.10476637625268
    [Google Scholar]
  80. SunX. HuangX. ZhuX. LiuL. MoS. WangH. WeiX. LuS. BaiF. WangD. LinX. LinJ. HBOA ameliorates CCl4-incuded liver fibrosis through inhibiting TGF-β1/Smads, NF-κB and ERK signaling pathways.Biomed. Pharmacother.201911510890110.1016/j.biopha.2019.10890131079002
    [Google Scholar]
  81. YuX. Promising therapeutic treatments for cardiac fibrosis: Herbal plants and their extracts.Cardiol. Ther.202312341544310.1007/s40119‑023‑00319‑437247171
    [Google Scholar]
  82. OngC.H. ThamC.L. HarithH.H. FirdausN. IsrafD.A. TGF-β-induced fibrosis: A review on the underlying mechanism and potential therapeutic strategies.Eur. J. Pharmacol.202191117451010.1016/j.ejphar.2021.17451034560077
    [Google Scholar]
  83. MartinC.J. DattaA. LittlefieldC. KalraA. ChapronC. WawersikS. DagbayK.B. BruecknerC.T. NikiforovA. DanehyF.T.Jr StreichF.C.Jr BostonC. SimpsonA. JacksonJ.W. LinS. DanekN. FaucetteR.R. RamanP. CapiliA.D. BucklerA. CarvenG.J. SchürpfT. Selective inhibition of TGFβ1 activation overcomes primary resistance to checkpoint blockade therapy by altering tumor immune landscape.Sci. Transl. Med.202012536eaay845610.1126/scitranslmed.aay845632213632
    [Google Scholar]
  84. ShiN. WangZ. ZhuH. LiuW. ZhaoM. JiangX. ZhaoJ. RenC. ZhangY. LuoL. Research progress on drugs targeting the TGF-β signaling pathway in fibrotic diseases.Immunol. Res.202270327628810.1007/s12026‑022‑09267‑y35147920
    [Google Scholar]
  85. FrangogiannisN.G. Transforming growth factor–β in tissue fibrosis.J. Exp. Med.20202173e2019010310.1084/jem.2019010332997468
    [Google Scholar]
  86. RaziyevaK. KimY. ZharkinbekovZ. TemirkhanovaK. SaparovA. Novel therapies for the treatment of cardiac fibrosis following myocardial infarction.Biomedicines2022109217810.3390/biomedicines1009217836140279
    [Google Scholar]
  87. FibroGen Receives fast track designation from the U.S. FDA for pamrevlumab for the treatment of idiopathic pulmonary fibrosis.2018Available from: https://investor.fibrogen.com/news-releases/news-release-details/fibrogen-receives-fast-track-designation-us-fda-pamrevlumab#:~:text=Pamrevlumab%20is%20advancing%20towards%20Phase,Duchenne%20muscular%20dystrophy%20(DMD)
  88. LosackerM. HundertmarkM. ZörntleinS. RöhrichJ. HessC. Chiral pharmacokinetics of tetramisole stereoisomers—Enantioselective quantification of levamisole and dexamisole in serum samples from users of adulterated cocaine.Drug Test. Anal.20221461053106410.1002/dta.322735060339
    [Google Scholar]
  89. GaoL. WangL. LiuZ. JiangD. WuS. GuoY. TaoH. SunM. YouL. QinS. ChengX. XieJ. ChangG. ZhangD. TNAP inhibition attenuates cardiac fibrosis induced by myocardial infarction through deactivating TGF-β1/Smads and activating P53 signaling pathways.Cell Death Dis.20201114410.1038/s41419‑020‑2243‑431969558
    [Google Scholar]
  90. AimoA. SpitaleriG. PanichellaG. LupónJ. EmdinM. Bayes-GenisA. Pirfenidone as a novel cardiac protective treatment.Heart Fail. Rev.202227252553210.1007/s10741‑021‑10175‑w34671871
    [Google Scholar]
  91. LiN. HangW. ShuH. ZhouN. Pirfenidone alleviates cardiac fibrosis induced by pressure overload via inhibiting TGF‐β1/Smad3 signalling pathway.J. Cell. Mol. Med.202226164548455510.1111/jcmm.1747835861038
    [Google Scholar]
  92. LuoY. XieX. LuoD. WangY. GaoY. The role of halofuginone in fibrosis: more to be explored?J. Leukoc. Biol.201710261333134510.1189/jlb.3RU0417‑148RR28986385
    [Google Scholar]
  93. PinesM. SpectorI. Halofuginone - the multifaceted molecule.Molecules201520157359410.3390/molecules2001057325569515
    [Google Scholar]
  94. LuangmonkongT. SurigugaS. BigaevaE. BoersemaM. OosterhuisD. de JongK.P. SchuppanD. MutsaersH.A.M. OlingaP. Evaluating the antifibrotic potency of galunisertib in a human ex vivo model of liver fibrosis.Br. J. Pharmacol.2017174183107311710.1111/bph.1394528691737
    [Google Scholar]
  95. MasudaA. NakamuraT. AbeM. IwamotoH. SakaueT. TanakaT. SuzukiH. KogaH. TorimuraT. Promotion of liver regeneration and anti‑fibrotic effects of the TGF‑β receptor kinase inhibitor galunisertib in CCl4‑treated mice.Int. J. Mol. Med.202046142743810.3892/ijmm.2020.459432377696
    [Google Scholar]
  96. ChenY. HuangM. YanY. HeD. Tranilast inhibits angiotensin II-induced myocardial fibrosis through S100A11/ transforming growth factor-β (TGF-β1)/Smad axis.Bioengineered20211218447845610.1080/21655979.2021.198232234663163
    [Google Scholar]
  97. SweeneyM. CordenB. CookS.A. Targeting cardiac fibrosis in heart failure with preserved ejection fraction: Mirage or miracle?EMBO Mol. Med.20201210e1086510.15252/emmm.20191086532955172
    [Google Scholar]
  98. GuY.Y. LiuX.S. HuangX.R. YuX.Q. LanH.Y. Diverse role of TGF-β in kidney disease.Front. Cell Dev. Biol.2020812310.3389/fcell.2020.0012332258028
    [Google Scholar]
  99. WenW.X. LeeS.Y. SiangR. KohR.Y. Repurposing pentoxifylline for the treatment of fibrosis: An overview.Adv. Ther.20173461245126910.1007/s12325‑017‑0547‑228484954
    [Google Scholar]
  100. SuC. MiaoJ. GuoJ. The relationship between TGF-β1 and cognitive function in the brain.Brain Res. Bull.202320511082010.1016/j.brainresbull.2023.11082037979810
    [Google Scholar]
  101. MeyersE.A. KesslerJ.A. TGF-β family signalling in neural and neuronal differentiation, development, and function.Cold Spring Harb. Perspect. Biol.201798a02224410.1101/cshperspect.a02224428130363
    [Google Scholar]
  102. LuoJ. Augmentation of transforming growth factor-β signaling for the treatment of neurological disorders.Neural Regen. Res.20231881711171236751787
    [Google Scholar]
  103. TesseurI. NguyenA. ChangB. LiL. WoodlingN.S. Wyss-CorayT. LuoJ. Deficiency in neuronal TGF-β signalling leads to nigrostriatal degeneration and activation of TGF-β signalling protects against MPTP neurotoxicity in mice.J. Neurosci.201737174584459210.1523/JNEUROSCI.2952‑16.201728363982
    [Google Scholar]
  104. O’BrienC.E. BonannoL. ZhangH. Wyss-CorayT. Beclin 1 regulates neuronal transforming growth factor-β signaling by mediating recycling of the type I receptor ALK5.Mol. Neurodegener.20151016910.1186/s13024‑015‑0065‑026692002
    [Google Scholar]
  105. SilvaM.V.F. LouresC.M.G. AlvesL.C.V. de SouzaL.C. BorgesK.B.G. CarvalhoM.G. Alzheimer’s disease: Risk factors and potentially protective measures.J. Biomed. Sci.20192613310.1186/s12929‑019‑0524‑y31072403
    [Google Scholar]
  106. BreijyehZ. KaramanR. Comprehensive review on Alzheimer’s disease: Causes and treatment.Molecules20202524578910.3390/molecules2524578933302541
    [Google Scholar]
  107. KapoorM. ChinnathambiS. TGF-β1 signalling in Alzheimer’s pathology and cytoskeletal reorganization: A specialized Tau perspective.J. Neuroinflammation20232017210.1186/s12974‑023‑02751‑836915196
    [Google Scholar]
  108. KashimaR. HataA. The role of TGF-β superfamily signaling in neurological disorders.Acta Biochim. Biophys. Sin. (Shanghai)201850110612010.1093/abbs/gmx12429190314
    [Google Scholar]
  109. von BernhardiR. CornejoF. ParadaG.E. EugenínJ. Role of TGFβ signaling in the pathogenesis of Alzheimer’s disease.Front. Cell. Neurosci.2015942610.3389/fncel.2015.0042626578886
    [Google Scholar]
  110. SongL. LiuF. LiuC. LiX. ZhengS. LiQ. LiuQ. Neuroprotective effects of SMADs in a rat model of cerebral ischemia/reperfusion.Neural Regen. Res.201510343844410.4103/1673‑5374.15369325878593
    [Google Scholar]
  111. CaraciF. BattagliaG. BrunoV. BoscoP. CarbonaroV. GiuffridaM.L. DragoF. SortinoM.A. NicolettiF. CopaniA. TGF-β1 pathway as a new target for neuroprotection in Alzheimer’s disease.CNS Neurosci. Ther.201117423724910.1111/j.1755‑5949.2009.00115.x19925479
    [Google Scholar]
  112. VollmarP. HaghikiaA. DermietzelR. FaustmannP.M. Venlafaxine exhibits an anti-inflammatory effect in an inflammatory co-culture model.Int. J. Neuropsychopharmacol.200811111111710.1017/S146114570700772917445357
    [Google Scholar]
  113. RosenbergPB DryeLT MartinBK. Venlafaxine for Depression in Alzheimer's Disease (DIADs-3) (DIADs-3).Patent NCT016093482018
  114. ArnonR. AharoniR. Mechanism of action of glatiramer acetate in multiple sclerosis and its potential for the development of new applications.Proc. Natl. Acad. Sci. USA2004101Suppl 2Suppl. 2145931459810.1073/pnas.040488710115371592
    [Google Scholar]
  115. ShapiraK.E. EhrlichM. HenisY.I. Cholesterol depletion enhances TGF-β Smad signaling by increasing c-Jun expression through a PKR-dependent mechanism.Mol. Biol. Cell201829202494250710.1091/mbc.E18‑03‑017530091670
    [Google Scholar]
  116. SparksDL SabbaghM Scott CD. Lipitor as a treatment for Alzheimer's disease.Patent NCT000245312006
  117. HaraldH MichaelE KatharinaB PeterA. Effect of lithium and divalproex in Alzheimer's disease.Patent NCT000883872008
  118. CaraciF. SpampinatoS. SortinoM.A. BoscoP. BattagliaG. BrunoV. DragoF. NicolettiF. CopaniA. Dysfunction of TGF-β1 signaling in Alzheimer’s disease: Perspectives for neuroprotection.Cell Tissue Res.2012347129130110.1007/s00441‑011‑1230‑621879289
    [Google Scholar]
  119. RizekP. KumarN. JogM.S. An update on the diagnosis and treatment of Parkinson disease.CMAJ2016188161157116510.1503/cmaj.15117927221269
    [Google Scholar]
  120. VáradiC. Clinical features of Parkinson’s disease: The evolution of critical symptoms.Biology (Basel)20209510310.3390/biology905010332438686
    [Google Scholar]
  121. Pardo-MorenoT. García-MoralesV. Suleiman-MartosS. Rivas-DomínguezA. Mohamed-MohamedH. Ramos-RodríguezJ.J. Melguizo-RodríguezL. González-AcedoA. Current treatments and new, tentative therapies for Parkinson’s disease.Pharmaceutics202315377010.3390/pharmaceutics1503077036986631
    [Google Scholar]
  122. ChenX. LiuZ. CaoB.B. QiuY.H. PengY.P. TGF-β1 neuroprotection via inhibition of microglial activation in a rat model of Parkinson’s disease.J. Neuroimmune Pharmacol.201712343344610.1007/s11481‑017‑9732‑y28429275
    [Google Scholar]
  123. KarampetsouM. VekrellisK. MelachroinouK. The promise of the TGF-β superfamily as a therapeutic target for Parkinson’s disease.Neurobiol. Dis.202217110580510.1016/j.nbd.2022.10580535764291
    [Google Scholar]
  124. CarrollCB WebbD StevensKN. Simvastatin as a neuroprotective treatment for moderate Parkinson's disease (PD STAT).Patent NCT027875902021
  125. ChinHL. Lovastatin as a neuroprotective treatment for early stage Parkinson's disease.Patent NCT03242499,2017
  126. CaraciF. TasceddaF. MerloS. BenattiC. SpampinatoS.F. MunafòA. LeggioG.M. NicolettiF. BrunelloN. DragoF. SortinoM.A. CopaniA. Fluoxetine prevents Aβ1-42-induced toxicity via a paracrine signalling mediated by transforming-growth-factor-β1.Front. Pharmacol.2016738910.3389/fphar.2016.0038927826242
    [Google Scholar]
  127. BarbaraKM ConstantineEF PaulB. Depression in Alzheimer's disease-2 (DIADS-2)Patent NCT00086138,2017
  128. ChandS.P. ArifH. Depression.In: StatPearlsStatPearls PublishingTreasure Island (FL)202328613597
    [Google Scholar]
  129. CaraciF. SpampinatoS.F. MorgeseM.G. TasceddaF. SalluzzoM.G. GiambirtoneM.C. CarusoG. MunafòA. TorrisiS.A. LeggioG.M. TrabaceL. NicolettiF. DragoF. SortinoM.A. CopaniA. Neurobiological links between depression and AD: The role of TGF-β1 signaling as a new pharmacological target.Pharmacol. Res.201813037438410.1016/j.phrs.2018.02.00729438781
    [Google Scholar]
  130. ZhangK. YangC. ChangL. SakamotoA. SuzukiT. FujitaY. QuY. WangS. PuY. TanY. WangX. IshimaT. ShirayamaY. HatanoM. TanakaK.F. HashimotoK. Essential role of microglial transforming growth factor-β1 in antidepressant actions of (R)-ketamine and the novel antidepressant TGF-β1.Transl. Psychiatry20201013210.1038/s41398‑020‑0733‑x32066676
    [Google Scholar]
  131. GhasemiN. RazaviS. NikzadE. Multiple sclerosis: Pathogenesis, symptoms, diagnoses and cell-based therapy.Cell J.201719111028367411
    [Google Scholar]
  132. LeeP.W. SeverinM.E. Lovett-RackeA.E. TGF‐β regulation of encephalitogenic and regulatory T cells in multiple sclerosis.Eur. J. Immunol.201747344645310.1002/eji.20164671628102541
    [Google Scholar]
  133. OrtizF.C. GuevaraC. Glial-derived transforming growth factor β1 (TGF-β1): A key factor in multiple sclerosis neuroinflammation.Neural Regen. Res.202116351051110.4103/1673‑5374.29314732985478
    [Google Scholar]
  134. TangP.C.T. ChanA.S.W. ZhangC.B. García CórdobaC.A. ZhangY.Y. ToK.F. LeungK.T. LanH.Y. TangP.M.K. TGF-β1 signaling: immune dynamics of chronic kidney diseases.Front. Med. (Lausanne)2021862851910.3389/fmed.2021.62851933718407
    [Google Scholar]
  135. ChenL. YangT. LuD.W. ZhaoH. FengY.L. ChenH. ChenD.Q. VaziriN.D. ZhaoY.Y. Central role of dysregulation of TGF-β/Smad in CKD progression and potential targets of its treatment.Biomed. Pharmacother.201810167068110.1016/j.biopha.2018.02.09029518614
    [Google Scholar]
  136. YuX.Y. SunQ. ZhangY.M. ZouL. ZhaoY.Y. TGF-β/Smadsignaling pathway in tubulointerstitial fibrosis.Front. Pharmacol.20221386058810.3389/fphar.2022.86058835401211
    [Google Scholar]
/content/journals/cst/10.2174/0115743624339476250212114656
Loading
/content/journals/cst/10.2174/0115743624339476250212114656
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test