Skip to content
2000
image of Concise Brønsted Acid-catalyzed Synthesis of Multi-substituted γ-Benzo-(Thio)Pyrones

Abstract

Introduction

In this study, we report the Brønsted acid-catalyzed synthesis of multi-substituted -benzo (thio)pyrones. Both multi-substituted -benzopyrones and 4-1-benzothiopyran-4-ones can be concisely synthesized by directly using -hydroxybenzoylacetones or substituted thiophenols as starting materials.

Methods

Compounds - were synthesized by 1,3-aryldi-ketones mixed with MeOH/HCl at 65°C for 4 h and - were synthesized by thiophenol and ethyl acetoacetate mixed with PPA at 160°C for 5 h. All these obtained compounds were characterized by NMR or HR-MS.

Results

A series of -benzo(thio)pyrone compounds can be synthesized a mild procedure under the catalyst of Brønsted acid (HCl or PPA).

Discussion

This synthesis method based on Brønsted acid catalysis has good substrate scope. The reaction mechanism has been verified by density functional theory calculations.

Conclusion

This method aligns with the principles of green chemistry, offers a valuable reference for the synthesis of multi-substituted -benzo(thio)pyrones, and broadens the applicability of Brønsted acid-catalyzed green synthesis.

Loading

Article metrics loading...

/content/journals/cset/10.2174/0122102981380493250729101240
2025-09-12
2025-11-01
Loading full text...

Full text loading...

References

  1. Gaspar A. Matos M.J. Garrido J. Uriarte E. Borges F. Chromone: A valid scaffold in medicinal chemistry. Chem. Rev. 2014 114 9 4960 4992 10.1021/cr400265z 24555663
    [Google Scholar]
  2. Hanaki M. Murakami K. Akagi K. Irie K. Structural insights into mechanisms for inhibiting amyloid β42 aggregation by non-catechol-type flavonoids. Bioorg. Med. Chem. 2016 24 2 304 313 10.1016/j.bmc.2015.12.021 26719209
    [Google Scholar]
  3. Reis J. Fernandes C. Salem H. Maia M. Tomé C. Benfeito S. Teixeira J. Oliveira P.J. Uriarte E. Ortuso F. Alcaro S. Bagetta D. Cagide F. Borges F. Design and synthesis of chromone-based monoamine oxidase B inhibitors with improved drug-like properties. Eur. J. Med. Chem. 2022 239 114507 10.1016/j.ejmech.2022.114507 35772321
    [Google Scholar]
  4. Luo R. Lv C. Wang T. Deng X. Sima M. Guo J. Qi J. Sun W. Shen B. Li Y. Yue D. Gao Y. A potential Chinese medicine monomer against influenza A virus and influenza B virus: Isoquercitrin. Chin. Med. 2023 18 1 144 10.1186/s13020‑023‑00843‑4 37919750
    [Google Scholar]
  5. Ji K. Parthiban J. Jockusch S. Sivaguru J. Porco J.A. Triple-dearomative photo- cycloaddition: A strategy to construct caged molecular frameworks. J. Am. Chem. Soc. 2024 146 19 13445 13454 10.1021/jacs.4c02674 38708818
    [Google Scholar]
  6. Benny A.T. Radhakrishnan E.K. Advances in the site-selective C-5, C-3 and C-2 functionalization of chromones via sp2 C–H activation. RSC Advances 2022 12 6 3343 3358 10.1039/D1RA08214K 35425362
    [Google Scholar]
  7. Zhou W. Lv J. Wang C. Diversity-oriented synthesis of Spiro[chromeno[2,3- b]pyridine-3,4′-pyrazole] derivatives via pseudo-three-component reactions. J. Org. Chem. 2024 89 14 10371 10378 10.1021/acs.joc.4c00959 38978479
    [Google Scholar]
  8. Zhang W.M. Zhao Q.S. Chen S.Y. Zhang C.H. Yan S.J. Cascade annulation for synthesizing chro-menopyrrolones from o-hydroxyphenyl enaminones and 2-halo-n-alkyloxyacetamides. J. Org. Chem. 2024 89 24 18322 18336 10.1021/acs.joc.4c02154 39600256
    [Google Scholar]
  9. Li Q. Dai Y. Xu X. Wu W. Chen W. Wang H. Tan C.H. Ye X. Enantioselective reduction and sulfenylation of isoflavanone derivatives via bisguani-dinium hypervalent silicate. Org. Lett. 2024 26 29 6241 6246 10.1021/acs.orglett.4c02202 38996353
    [Google Scholar]
  10. Fu Y.H. Zhang C. Xu W. Fu W. Zhang W. Zhou K. Zhai H. Wang T. Cheng B. Domino-annulation-based approach to synthesize bridged bis-thiopyrano[2, 3-b]indoles and unbridged thiopyrano[2,3-b]indoles. Org. Lett. 2025 27 15 3899 3904 10.1021/acs.orglett.5c00652 40202524
    [Google Scholar]
  11. Song S. Peng M. Zhang Z. Hu H. Wei Y. Yan S.J. Wang Y. Yu F. Divergent synthesis of 2-chromonyl-3-hydrazono-chromones and 2-alkoxy-3-hydrazonochromones through switchable annulation reactions of o-hydroxy-phenylenaminones with aryldiazonium salts. Org. Lett. 2024 26 23 4980 4985 10.1021/acs.orglett.4c01571 38832696
    [Google Scholar]
  12. Tan J. He Y. Lin Y. Zhong Y. He S. Zuo J. Yang C. Synthesis of 2-amino-9 H -chromeno[2,3- d]thiazol-9-ones with anti-inflammatory activity via cascade reactions of 2-amino-3 iodochromones with amines and carbon disulfide. RSC Adv. 2024 14 5 3158 3162 10.1039/D3RA07209F 38249667
    [Google Scholar]
  13. Li Z. Zeng Y. Zeng Y. Xu W. Cao X. Guo Y. Shen Q. Wang Z. Progresses in the preparation of chromone compounds and their applications in organic synthesis. Youji Huaxue 2024 44 11 3345 3356 10.6023/cjoc202403025
    [Google Scholar]
  14. Song S. Zhang Z. Peng M. Xia X. Dong S. Wang Y. Yu F. Selective synthesis of pyridazine-fused chromones and 3-pyridazinyl chromones through intermolecular chromone annulation of o -hydroxyphenylenaminones with aryldiazonium salts. Org. Chem. Front. 2024 11 14 3906 3912 10.1039/D4QO00677A
    [Google Scholar]
  15. Zhao J. Zhao Y. Fu H. Transition-metal-free intramolecular Ullmann-type O-arylation: Synthesis of chromone derivatives. Angew. Chem. Int. Ed. 2011 50 16 3769 3773 10.1002/anie.201007302 21416568
    [Google Scholar]
  16. Jung C. Li S. Lee K. Viji M. Lee H. Hyun S. Lee K. Kang Y.K. Chaudhary C.L. Jung J.K. Reagent-free intramolecular hydrofunctionalization: A regioselective 6- endo-dig cyclization of o -alkynoylphenols. Green Chem. 2022 24 6 2376 2384 10.1039/D1GC04848A
    [Google Scholar]
  17. Mkrtchyan S. Purohit V.B. Khutsishvili S. Nociarová J. Yar M. Mahmood T. Ayub K. Budzák Š. Skoršepa M. Iaroshenko V.O. Mechano-chemical defluorinative acylation of ortho-hydroxy-arylenaminones by CF3-compounds: Synthesis of 3-acylchromones. Adv. Synth. Catal. 2023 365 12 2026 2035 10.1002/adsc.202300260
    [Google Scholar]
  18. Barańska I. Ośmiałowski B. Rafińska K. Rafiński Z. Construction of highly functionalized 2-styrylfurans by N-heterocyclic carbene/Brønsted acid catalysis. Org. Lett. 2024 26 17 3514 3518 10.1021/acs.orglett.4c00836 38651753
    [Google Scholar]
  19. Cao J. Su Y.X. Zhang X.Y. Zhu S.F. Highly enantioselective Brønsted acid catalyzed Heyns rearrangement. Angew. Chem. Int. Ed. 2023 62 1 e202212976 10.1002/anie.202212976 36316277
    [Google Scholar]
  20. Khaitan B. Gandhi S. Pd/Brønsted acid-catalyzed atom-economical [3+3] annulation of 4-hydroxy-coumarins and skipped enynes. Org. Lett. 2024 26 33 6961 6965 10.1021/acs.orglett.4c02215 39121496
    [Google Scholar]
  21. Li H.H. Meng Y.N. Chen C.M. Wang Y.Q. Zhang Z.X. Xu Z. Zhou B. Ye L.W. Chiral Brønsted acid-catalyzed asymmetric intermolecular [4 + 2] annulation of ynamides with para-quinone methides. Sci. China Chem. 2023 66 5 1467 1473 10.1007/s11426‑022‑1536‑9
    [Google Scholar]
  22. Fan X.Y. Liu X. Kong Y.Z. Zhu B.H. Lin J. Qian P.C. Zhou B. Ye L.W. Controllable cyclization of alkynyl thioethers via Brønsted acid-catalyzed dearomatization. Org. Chem. Front. 2023 10 11 2766 2772 10.1039/D3QO00489A
    [Google Scholar]
  23. Tan L. Xu T. Zhang X. Luo J. Xiao X. Li L. Huang S. Tang Q. Brønsted-acid-catalyzed Friedel-Crafts reaction and electrocycli-zation cascade of indoles with α-functionalized carbonyls. Org. Lett. 2023 25 15 2600 2605 10.1021/acs.orglett.3c00554 37017649
    [Google Scholar]
  24. Duan J. Xiong Z. Zhou Y. Yao W. Li X. Zhang M. Wang Z. Access to chiral chromen-ones through organocatalyzed Mannich/annulation sequence. Org. Lett. 2021 23 20 8007 8012 10.1021/acs.orglett.1c03010 34606286
    [Google Scholar]
  25. Mozingo R. Adkins H. Gander R.J. 2-Ethyl-chromone. Org. Synth. 1941 21 42 45 10.15227/orgsyn.021.0042
    [Google Scholar]
  26. Ghosh C.K. Bhattacharyya S. Ghosh C. Patra A. Benzopyrans. Part 41. Reactions of 2-(2-dimethylaminovinyl)-1-benzopyran-4-ones with various dienophiles. J. Chem. Soc., Perkin Trans. 1 1999 20 20 3005 3013 10.1039/a903145f
    [Google Scholar]
  27. Li N.G. Shi Z.H. Tang Y.P. Ma H.Y. Yang J.P. Li B.Q. Wang Z.J. Song S.L. Duan J.A. Synthetic strategies in the construction of chromones. J. Heterocycl. Chem. 2010 47 4 785 799 10.1002/jhet.393
    [Google Scholar]
  28. Stubbing L.A. Li F.F. Furkert D.P. Caprio V.E. Brimble M.A. Access to 2-alkyl chromanones via a conjugate addition approach. Tetrahedron 2012 68 34 6948 6956 10.1016/j.tet.2012.05.115
    [Google Scholar]
  29. Zhang X. Zhang L. Liu Y. Bao B. Zang Y. Li J. Lu W. A near-infrared fluorescent probe for rapid detection of hydrogen peroxide in living cells. Tetrahedron 2015 71 29 4842 4845 10.1016/j.tet.2015.05.025
    [Google Scholar]
  30. Wu X. Wang R. Qi S. Kwon N. Han J. Kim H. Li H. Yu F. Yoon J. Rational design of a highly selective near-infrared two-photon fluorogenic probe for imaging orthotopic hepato-cellular carcinoma chemotherapy. Angew. Chem. Int. Ed. 2021 60 28 15418 15425 10.1002/anie.202101190 33942436
    [Google Scholar]
  31. Levchenko K.S. Chudov K.A. Demin D.Y. Adamov G.E. Zinoviev E.V. Lyssenko K.A. Shokurov A.V. Shmelin P.S. Grebennikov E.P. New chromophores based on 2-(4-vinylchromen-2-ylidene)malononitrile and 2-(2-vinylchromen-4-ylidene)malononitrile. Russ. Chem. Bull. 2019 68 10 1883 1888 10.1007/s11172‑019‑2641‑x
    [Google Scholar]
  32. Ali R. Guan Y. Leveille A.N. Vaughn E. Parelkar S. Thompson P.R. Mattson A.E. Synthesis and anticancer activity of structure simplified naturally inspired dimeric chromenone derivatives. Eur. J. Org. Chem. 2019 2019 41 6917 6929 10.1002/ejoc.201901026 33828411
    [Google Scholar]
  33. Yang K. Yang J.Q. Luo S.H. Mei W.J. Lin J.Y. Zhan J.Q. Wang Z.Y. Synthesis of N-2(5H)-furanonyl sulfonyl hydrazone derivatives and their biological evaluation in vitro and in vivo activity against MCF-7 breast cancer cells. Bioorg. Chem. 2021 107 104518 10.1016/j.bioorg.2020.104518 33303210
    [Google Scholar]
  34. Zhou Y.J. Fang Y.G. Yang K. Yu S.W. Chen Z.J. Wang B.C. Zhan H.Y. Wang Z.Y. Multicomponent selective thioetherification of KSAc: Easy access to symmetrical/unsymmetrical 4-alkyl-thio-3-halo-2(5H)-furanones. Asian J. Org. Chem. 2023 12 3 e202300038 10.1002/ajoc.202300038
    [Google Scholar]
  35. Meng Q. Xie B. Yu H. Shen K. Deng X. Zhou H.B. Dong C. Estrogen receptor β-targeted near-infrared inherently fluorescent probe: A potent tool for estrogen receptor β research. ACS Sens. 2022 7 1 109 115 10.1021/acssensors.1c01771 34914372
    [Google Scholar]
  36. Wang Y. Yu H. Chen Y. Cui M. Ji M. Synthesis and application of near-infrared dyes based on sulfur-substituted dicyanomethylene-4 H -chromene and diarylethene. New J. Chem. 2022 46 29 14214 14220 10.1039/D2NJ02171D
    [Google Scholar]
  37. Agisho H.A. Hairat S. Zaki M. An efficient TBHP/TBAI-mediated protocol for the synthesis of 4H-chromen-4-ones from chroman-4-ones via oxidative C–C bond formation. Monatsh. Chem. 2020 151 4 599 603 10.1007/s00706‑020‑02576‑8
    [Google Scholar]
  38. Kumar P. Bodas M.S. A novel synthesis of 4H-chromen-4-ones via intramolecular wittig reaction. Org. Lett. 2000 2 24 3821 3823 10.1021/ol006518p 11101428
    [Google Scholar]
  39. Pan G.F. Zhu X.Q. Guo R.L. Gao Y.R. Wang Y.Q. Synthesis of enones and enals via dehydro-genation of saturated ketones and aldehydes. Adv. Synth. Catal. 2018 360 24 4774 4783 10.1002/adsc.201801058
    [Google Scholar]
  40. Ma Y. Li J. Ye J. Liu D. Zhang W. Synthesis of chiral chromanols via a RuPHOX–Ru catalyzed asymmetric hydrogenation of chromones. Chem. Commun. 2018 54 96 13571 13574 10.1039/C8CC07787H 30444507
    [Google Scholar]
  41. Fan X. Wang Y. Qu Y. Xu H. He Y. Zhang X. Wang J. Tandem reactions leading to bicyclic pyrimidine nucleosides and benzopyran-4-ones. J. Org. Chem. 2011 76 3 982 985 10.1021/jo102131y 21214220
    [Google Scholar]
  42. Borthakur S. Kaishap P.P. Gogoi S. RuII-catalyzed regioselective debrominative annulation reaction of salicylaldehydes and propargyl bromide: Synthesis of 2-methylchromones. Asian J. Org. Chem. 2018 7 5 918 921 10.1002/ajoc.201800161
    [Google Scholar]
  43. Shaw A.Y. Chang C.Y. Liau H.H. Lu P.J. Chen H.L. Yang C.N. Li H.Y. Synthesis of 2-styrylchromones as a novel class of antiproliferative agents targeting carcinoma cells. Eur. J. Med. Chem. 2009 44 6 2552 2562 10.1016/j.ejmech.2009.01.034 19246129
    [Google Scholar]
  44. Takao K. Endo S. Nagai J. Kamauchi H. Takemura Y. Uesawa Y. Sugita Y. 2-Styrylchromone derivatives as potent and selective monoamine oxidase B inhibitors. Bioorg. Chem. 2019 92 103285 10.1016/j.bioorg.2019.103285 31561103
    [Google Scholar]
  45. Lee J. Aizawa N. Yasuda T. Isobenzofuranone- and chromone-based blue delayed fluorescence emitters with low efficiency Roll-Off in organic light-emitting diodes. Chem. Mater. 2017 29 18 8012 8020 10.1021/acs.chemmater.7b03371
    [Google Scholar]
  46. Meng M. Wang G. Yang L. Cheng K. Qi C. Silver-catalyzed double decarbox- ylative radical alkynylation/annulation of arylpropiolic acids with α-keto acids: Access to ynones and flavones under mild conditions. Adv. Synth. Catal. 2018 360 6 1218 1231 10.1002/adsc.201701469
    [Google Scholar]
  47. Soto M. Soengas R.G. Silva A.M.S. Gotor-Fernández V. Rodríguez-Solla H. Temperature-controlled stereodivergent synthesis of 2,2′-biflavan-ones promoted by samarium diiodide. Chemistry 2019 25 57 13104 13108 10.1002/chem.201902927 31361369
    [Google Scholar]
  48. Xiong D. Zhou W. Lu Z. Zeng S. Wang J.J. A highly enantioselective access to chiral chromanones and thiochromanones via copper-catalyzed asymmetric conjugated reduction of chromones and thiochromones. Chem. Commun. 2017 53 51 6844 6847 10.1039/C7CC03939E 28603797
    [Google Scholar]
  49. Palani T. Park K. Song K.H. Lee S. Palladium-catalyzed synthesis of (Z)-3-arylthioacrylic acids and thiochromenones. Adv. Synth. Catal. 2013 355 6 1160 1168 10.1002/adsc.201201106
    [Google Scholar]
  50. Nakazumi H. Asada A. Kitao T. Syntheses of 2H-1-benzothiopyran-2-ones (thiocoumarins) and related compounds from benzenethiols and diketene. Bull. Chem. Soc. Jpn. 1980 53 7 2046 2049 10.1246/bcsj.53.2046
    [Google Scholar]
  51. Yu S.W. Chen Z.J. Chen Z.H. Chen S.H. Yang K. Xu W.J. Wang Z.Y. Trace water in a BF3 ·OEt2 system: A facile access to sulfinyl alkenylsulfones from alkynes and sodium sulfinates. Org. Biomol. Chem. 2023 21 38 7776 7781 10.1039/D3OB01249B 37701943
    [Google Scholar]
  52. Chen Z. Yu S. Zhou Y. Li H. Qiu Q. Li M. Wang Z. Application of BF3·OEt2 in organic synthesis as a catalyst or synthon. Youji Huaxue 2023 43 9 3107 3118 10.6023/cjoc202303006
    [Google Scholar]
  53. Li S. Wu Q. You X. Ren X. Du P. Li F. Zheng N. Shen H. Anchoring frustrated lewis pair active sites on copper nanoclusters for regioselective hydro-genation. J. Am. Chem. Soc. 2024 146 40 27852 27860 10.1021/jacs.4c10251 39352212
    [Google Scholar]
  54. Guo Y. Xiang Y. Wei L. Wan J.P. Thermo-induced free-radical C-H acyloxylation of tertiary enaminones: Catalyst-free synthesis of acyloxyl chromones and enaminones. Org. Lett. 2018 20 13 3971 3974 10.1021/acs.orglett.8b01536 29939030
    [Google Scholar]
  55. Reddy B.P. Krupadanam G.L.D. The synthesis of 8‐allyl‐2‐styrylchromones by the modified baker‐venkataraman transformation. J. Heterocycl. Chem. 1996 33 6 1561 1565 10.1002/jhet.5570330602
    [Google Scholar]
  56. Santos C.M.M. Silva A.M.S. Cavaleiro J.A.S. Synthesis of new hydroxy-2-styryl- chromones. Eur. J. Org. Chem. 2003 2003 23 4575 4585 10.1002/ejoc.200300468
    [Google Scholar]
  57. Daru J. Stirling A. Mechanism of the Pechmann reaction: A theoretical study. J. Org. Chem. 2011 76 21 8749 8755 10.1021/jo201439u 21932799
    [Google Scholar]
  58. Jiang K. Wang H. Xie Y. Jiang H. Lei M. Yin B. Remote-group-assisted facile oxidative arylation of furans and pyrroles. ACS Catal. 2023 13 6 3520 3531 10.1021/acscatal.2c05936
    [Google Scholar]
  59. Frisch M.J. Gaussian 09, Revision D01. Wallingford, CT Gaussian, Inc. 2009
    [Google Scholar]
  60. Hohenberg P. Kohn W. Inhomogeneous electron gas. Phys. Rev. 1964 136 3B B864 B871 10.1103/PhysRev.136.B864
    [Google Scholar]
  61. Becke A.D. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 1993 98 7 5648 5652 10.1063/1.464913
    [Google Scholar]
  62. Grimme S. Ehrlich S. Goerigk L. Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 2011 32 7 1456 1465 10.1002/jcc.21759 21370243
    [Google Scholar]
  63. Marenich A.V. Cramer C.J. Truhlar D.G. Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. J. Phys. Chem. B 2009 113 18 6378 6396 10.1021/jp810292n 19366259
    [Google Scholar]
  64. Weigend F. Ahlrichs R. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. Phys. Chem. Chem. Phys. 2005 7 18 3297 3305 10.1039/b508541a 16240044
    [Google Scholar]
  65. Shen C. Spannenberg A. Wu X.F. Palladium-catalyzed carbonylative four-component synthesis of thiochromenones: The advantages of a reagent capsule. Angew. Chem. Int. Ed. 2016 55 16 5067 5070 10.1002/anie.201600953 26991830
    [Google Scholar]
  66. Sosnovskikh V.Y. Synthesis and properties of 2-mono- and 2,3-disubstituted thiochromones. Russ. Chem. Rev. 2018 87 1 49 88 10.1070/RCR4756
    [Google Scholar]
  67. Huang Y.F. Liu Y.J. Yang K.C. Li Z.Y. Liu C.H. Chen H.C. Determination of 16 ultraviolet–absorbing compounds in marine invertebrates by using LC-USI-MS/MS coupled with QuEChERS. Food Chem. 2024 459 140328 10.1016/j.foodchem.2024.140328 38981386
    [Google Scholar]
  68. Nakazumi H. Ueyama T. Kitao A.T. Synthesis and antibacterial activity of 2‐phenyl‐4 H ‐benzo[ b]thiopyran‐4‐ones (Thioflavones) and related compounds. J. Heterocycl. Chem. 1984 21 1 193 196 10.1002/jhet.5570210138
    [Google Scholar]
  69. Atia B.M. Khawassek Y.M. Hussein G.M. Gado M.A. El-Sheify M.A. Cheira M.F. One-pot synthesis of pyridine dicarboxamide derivative and its application for uranium separation from acidic medium. J. Environ. Chem. Eng. 2021 9 4 105726 10.1016/j.jece.2021.105726
    [Google Scholar]
  70. Chen S.H. Jiang K. Liang Y.H. He J.P. Xu B.J. Chen Z.H. Wang Z.Y. Fine-tuning benzazole-based probe for the ultrasensitive detection of Hg2+ in water samples and seaweed samples. Food Chem. 2023 428 136800 10.1016/j.foodchem.2023.136800 37433252
    [Google Scholar]
/content/journals/cset/10.2174/0122102981380493250729101240
Loading
/content/journals/cset/10.2174/0122102981380493250729101240
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test