Skip to content
2000
  • E-ISSN:

Abstract

Exosomes, a subclass of Extracellular Vesicles (EVs), are pivotal mediators of intercellular communication. Exosomes derived from Mesenchymal Stem Cells (MSCs) exhibit anti-inflammatory and immunomodulatory activities similar to that of their parental cells, which makes them a cell-free treatment strategy against Ulcerative Colitis (UC). Engineered MSC Exosomes (MSC-Exos) hold the potential to impart multifunctionality to MSCs and optimize their therapeutic effectiveness. This study provides a comprehensive overview of the research progress, mechanisms of action, and potential applications of MSC-Exos and engineered MSC-Exos in the treatment of UC.

Loading

Article metrics loading...

/content/journals/cscrt/10.2174/011574888X340609241220053638
2025-10-01
2025-12-16
Loading full text...

Full text loading...

References

  1. NgS.C. ShiH.Y. HamidiN. UnderwoodF.E. TangW. BenchimolE.I. PanaccioneR. GhoshS. WuJ.C.Y. ChanF.K.L. SungJ.J.Y. KaplanG.G. Worldwide incidence and prevalence of inflammatory bowel disease in the 21st century: A systematic review of population-based studies.Lancet2017390101142769277810.1016/S0140‑6736(17)32448‑029050646
    [Google Scholar]
  2. FeuersteinJ.D. CheifetzA.S. Ulcerative colitis.Mayo Clin. Proc.201489111553156310.1016/j.mayocp.2014.07.00225199861
    [Google Scholar]
  3. SinghN. BernsteinC.N. Environmental risk factors for inflammatory bowel disease.United Eur. Gastroenterol. J.202210101047105310.1002/ueg2.1231936262056
    [Google Scholar]
  4. DuL. HaC. Epidemiology and pathogenesis of ulcerative colitis.Gastroenterol. Clin. North Am.202049464365410.1016/j.gtc.2020.07.00533121686
    [Google Scholar]
  5. EtcheversM.J. AceitunoM. BoschG.O. OrdásI. SansM. RicartE. PanésJ. Risk factors and characteristics of extent progression in ulcerative colitis.Inflamm. Bowel Dis.20091591320132510.1002/ibd.2089719235909
    [Google Scholar]
  6. UngaroR. MehandruS. AllenP.B. BirouletP.L. ColombelJ.F. Ulcerative colitis.Lancet2017389100801756177010.1016/S0140‑6736(16)32126‑227914657
    [Google Scholar]
  7. KaenkumchornT. WahbehG. Ulcerative colitis.Gastroenterol. Clin. North Am.202049465566910.1016/j.gtc.2020.07.00133121687
    [Google Scholar]
  8. PiovaniD. DaneseS. BirouletP.L. NikolopoulosG.K. LytrasT. BonovasS. Environmental risk factors for inflammatory bowel diseases: An umbrella review of meta-analyses.Gastroenterology20191573647659.e410.1053/j.gastro.2019.04.01631014995
    [Google Scholar]
  9. LoC.H. LochheadP. KhaliliH. SongM. TabungF.K. BurkeK.E. RichterJ.M. GiovannucciE.L. ChanA.T. AnanthakrishnanA.N. Dietary inflammatory potential and risk of crohn’s disease and ulcerative colitis.Gastroenterology20201593873883.e110.1053/j.gastro.2020.05.01132389666
    [Google Scholar]
  10. AgrawalM. JessT. Implications of the changing epidemiology of inflammatory bowel disease in a changing world.United Eur. Gastroenterol. J.202210101113112010.1002/ueg2.1231736251359
    [Google Scholar]
  11. ZuoT. LuX.J. ZhangY. CheungC.P. LamS. ZhangF. TangW. ChingJ.Y.L. ZhaoR. ChanP.K.S. SungJ.J.Y. YuJ. ChanF.K.L. CaoQ. ShengJ.Q. NgS.C. Gut mucosal virome alterations in ulcerative colitis.Gut20196871169117910.1136/gutjnl‑2018‑31813130842211
    [Google Scholar]
  12. OrdásI. EckmannL. TalaminiM. BaumgartD.C. SandbornW.J. Ulcerative colitis.Lancet201238098531606161910.1016/S0140‑6736(12)60150‑022914296
    [Google Scholar]
  13. GeremiaA. BiancheriP. AllanP. CorazzaG.R. SabatinoD.A. Innate and adaptive immunity in inflammatory bowel disease.Autoimmun. Rev.201413131010.1016/j.autrev.2013.06.00423774107
    [Google Scholar]
  14. GuanQ. A comprehensive review and update on the pathogenesis of inflammatory bowel disease.J. Immunol. Res.2019201911610.1155/2019/724723831886308
    [Google Scholar]
  15. DuchmannR. KaiserI. HermannE. MayetW. EweK. BÜSchenfeldeK-H.M.Z. Tolerance exists towards resident intestinal flora but is broken in active inflammatory bowel disease (IBD).Clin. Exp. Immunol.2008102344845510.1111/j.1365‑2249.1995.tb03836.x8536356
    [Google Scholar]
  16. PalmelaC. ChevarinC. XuZ. TorresJ. SevrinG. HirtenR. BarnichN. NgS.C. ColombelJ.F. Adherent-invasive Escherichia coli in inflammatory bowel disease.Gut201867357458710.1136/gutjnl‑2017‑31490329141957
    [Google Scholar]
  17. ZhouJ. LaiW. YangW. PanJ. ShenH. CaiY. YangC. MaN. ZhangY. ZhangR. XieX. DongZ. GaoY. DuC. BLT1 in dendritic cells promotes Th1/Th17 differentiation and its deficiency ameliorates TNBS-induced colitis.Cell. Mol. Immunol.201815121047105610.1038/s41423‑018‑0030‑229670278
    [Google Scholar]
  18. MacphersonA.J. UhrT. Induction of protective IgA by intestinal dendritic cells carrying commensal bacteria.Science200430356641662166510.1126/science.109133415016999
    [Google Scholar]
  19. KamadaN. HisamatsuT. OkamotoS. ChinenH. KobayashiT. SatoT. SakurabaA. KitazumeM.T. SugitaA. KoganeiK. AkagawaK.S. HibiT. Unique CD14 intestinal macrophages contribute to the pathogenesis of Crohn disease via IL-23/IFN-gamma axis.J. Clin. Invest.200811862269228018497880
    [Google Scholar]
  20. SteinerA. ReygaertsT. PontilloA. CeccheriniI. MoeckingJ. MoghaddasF. DavidsonS. CaroliF. GrossiA. CastroF.F.M. KalilJ. GohrF.N. SchmidtF.I. BartokE. ZillingerT. HartmannG. GeyerM. GattornoM. MendonçaL.O. MastersS.L. Recessive NLRC4-autoinflammatory disease reveals an ulcerative colitis locus.J. Clin. Immunol.202242232533510.1007/s10875‑021‑01175‑434783940
    [Google Scholar]
  21. AnY. ZhaiZ. WangX. DingY. HeL. LiL. MoQ. MuC. XieR. LiuT. ZhongW. WangB. CaoH. Targeting Desulfovibrio vulgaris flagellin-induced NAIP/NLRC4 inflammasome activation in macrophages attenuates ulcerative colitis.J. Adv. Res.20235221923210.1016/j.jare.2023.08.00837586642
    [Google Scholar]
  22. LiJ. MaC-M. DiD-L. A narrative review of pyrolysis and its role in ulcerative colitis.Eur. Rev. Med. Pharmacol. Sci.20222641156116335253171
    [Google Scholar]
  23. RaineT. BonovasS. BurischJ. KucharzikT. AdaminaM. AnneseV. BachmannO. BettenworthD. ChaparroM. DochanC.W. EderP. EllulP. FidalgoC. FiorinoG. GionchettiP. GisbertJ.P. GordonH. HedinC. HolubarS. IacucciM. KarmirisK. KatsanosK. KopylovU. LakatosP.L. LytrasT. LyutakovI. NoorN. PellinoG. PiovaniD. SavarinoE. SelvaggiF. VerstocktB. SpinelliA. PanisY. DohertyG. ECCO Guidelines on therapeutics in ulcerative colitis: Medical treatment.J. Crohn’s Colitis202216121710.1093/ecco‑jcc/jjab17834635919
    [Google Scholar]
  24. MurrayA. NguyenT.M. ParkerC.E. FeaganB.G. MacDonaldJ.K. Oral 5-aminosalicylic acid for induction of remission in ulcerative colitis.Cochrane Database Syst. Rev.202088CD00054332786164
    [Google Scholar]
  25. KoC.W. SinghS. FeuersteinJ.D. YtterF.C. YtterF.Y. CrossR.K. CrockettS. YtterF.Y. FeuersteinJ. FlammS. InadomiJ. KoC. MunirajT. O’SheaR. PandolfinoJ. PatelA. SharafR. SiddiqueS. SuG. WangK. WeizmanA. AGA Clinical practice guidelines on the management of mild-to-moderate ulcerative colitis.Gastroenterology2019156374876410.1053/j.gastro.2018.12.00930576644
    [Google Scholar]
  26. BerreL.C. HonapS. BirouletP.L. Ulcerative colitis.Lancet20234021040157158410.1016/S0140‑6736(23)00966‑237573077
    [Google Scholar]
  27. VangaR. LongM.D. Contemporary management of ulcerative colitis.Curr. Gastroenterol. Rep.20182031210.1007/s11894‑018‑0622‑029589185
    [Google Scholar]
  28. KucharzikT. KoletzkoS. KannengiesserK. DignassA. Ulcerative colitis-diagnostic and therapeutic algorithms.Dtsch. Arztebl. Int.202011733-3456457433148393
    [Google Scholar]
  29. RawlaP. SunkaraT. BarsoukA. Epidemiology of colorectal cancer: Incidence, mortality, survival, and risk factors.Prz. Gastroenterol.20191428910310.5114/pg.2018.8107231616522
    [Google Scholar]
  30. NielsenO.H. HammerhøjA. AinsworthM.A. GubatanJ. D’HaensG. Immunogenicity of therapeutic antibodies used for inflammatory bowel disease: Treatment and clinical considerations.Drugs2024202411910.1007/s40265‑024‑02115‑339532820
    [Google Scholar]
  31. KimK.H. MorenteB.G. CuendeN. SantiagoA.S. Mesenchymal stromal cells: Properties and role in management of cutaneous diseases.J. Eur. Acad. Dermatol. Venereol.201731341442310.1111/jdv.1393427549663
    [Google Scholar]
  32. RicartE. AmezagaJ.A. OrdásI. PinóS. RamírezA. PanésJ. Cell therapies for IBD: What works?Curr. Drug Targets201314121453145910.2174/1389450111314666023424160439
    [Google Scholar]
  33. KangJ. ZhangL. LuoX. MaX. WangG. YangY. YanY. QianH. ZhangX. XuW. MaoF. Systematic exposition of mesenchymal stem cell for inflammatory bowel disease and its associated colorectal cancer.BioMed Res. Int.2018201811610.1155/2018/965281730687760
    [Google Scholar]
  34. UrbanelliL. BurattaS. SaginiK. FerraraG. LanniM. EmilianiC. Exosome-based strategies for diagnosis and therapy.Recent Patents CNS Drug Discov.2015101102710.2174/157488981066615070212405926133463
    [Google Scholar]
  35. DeatherageB.L. CooksonB.T. Membrane vesicle release in bacteria, eukaryotes, and archaea: A conserved yet underappreciated aspect of microbial life.Infect. Immun.20128061948195710.1128/IAI.06014‑1122409932
    [Google Scholar]
  36. JafariD. MalihS. EslamiS.S. JafariR. DarziL. TarighiP. SamadikuchaksaraeiA. The relationship between molecular content of mesenchymal stem cells derived exosomes and their potentials: Opening the way for exosomes based therapeutics.Biochimie2019165768910.1016/j.biochi.2019.07.00931302163
    [Google Scholar]
  37. BarileL. VassalliG. Exosomes: Therapy delivery tools and biomarkers of diseases.Pharmacol. Ther.2017174637810.1016/j.pharmthera.2017.02.02028202367
    [Google Scholar]
  38. MushaharyD. SpittlerA. KasperC. WeberV. CharwatV. Isolation, cultivation, and characterization of human mesenchymal stem cells.Cytometry A2018931193110.1002/cyto.a.2324229072818
    [Google Scholar]
  39. ChiesaS. MorbelliS. MorandoS. MassolloM. MariniC. BertoniA. FrassoniF. BartoloméS.T. SambucetiG. TraggiaiE. UccelliA. Mesenchymal stem cells impair in vivo T-cell priming by dendritic cells.Proc. Natl. Acad. Sci.201110842173841738910.1073/pnas.110365010821960443
    [Google Scholar]
  40. GiulianiM. FleuryM. VernochetA. KetroussiF. ClayD. AzzaroneB. LatailladeJ.J. DurrbachA. Long-lasting inhibitory effects of fetal liver mesenchymal stem cells on T-lymphocyte proliferation.PLoS One201165e1998810.1371/journal.pone.001998821625521
    [Google Scholar]
  41. ShengH. WangY. JinY. ZhangQ. ZhangY. WangL. ShenB. YinS. LiuW. CuiL. LiN. A critical role of IFNγ in priming MSC-mediated suppression of T cell proliferation through up-regulation of B7-H1.Cell Res.200818884685710.1038/cr.2008.8018607390
    [Google Scholar]
  42. ChangC.J. YenM.L. ChenY.C. ChienC.C. HuangH.I. BaiC.H. YenB.L. Placenta-derived multipotent cells exhibit immunosuppressive properties that are enhanced in the presence of interferon-gamma.Stem Cells200624112466247710.1634/stemcells.2006‑007117071860
    [Google Scholar]
  43. ChenQ.Q. YanL. WangC-Z. WangW-H. ShiH. SuB-B. ZengQ-H. DuH-T. WanJ. Mesenchymal stem cells alleviate TNBS-induced colitis by modulating inflammatory and autoimmune responses.World J. Gastroenterol.201319294702471710.3748/wjg.v19.i29.470223922467
    [Google Scholar]
  44. GuoG. TanZ. LiuY. ShiF. SheJ. The therapeutic potential of stem cell-derived exosomes in the ulcerative colitis and colorectal cancer.Stem Cell Res. Ther.202213113810.1186/s13287‑022‑02811‑535365226
    [Google Scholar]
  45. PegtelD.M. GouldS.J. Exosomes.Annu. Rev. Biochem.201988148751410.1146/annurev‑biochem‑013118‑11190231220978
    [Google Scholar]
  46. RezaieJ. FeghhiM. EtemadiT. A review on exosomes application in clinical trials: Perspective, questions, and challenges.Cell Commun. Signal.202220114510.1186/s12964‑022‑00959‑436123730
    [Google Scholar]
  47. LaiR.C. YeoR.W.Y. LimS.K. Mesenchymal stem cell exosomes.Semin. Cell Dev. Biol.201540828810.1016/j.semcdb.2015.03.00125765629
    [Google Scholar]
  48. FrenchK.C. AntonyakM.A. CerioneR.A. Extracellular vesicle docking at the cellular port: Extracellular vesicle binding and uptake.Semin. Cell Dev. Biol.201767485510.1016/j.semcdb.2017.01.00228104520
    [Google Scholar]
  49. KshirsagarS.K. AlamS.M. JastiS. HodesH. NauserT. GilliamM. BillstrandC. HuntJ.S. PetroffM.G. Immunomodulatory molecules are released from the first trimester and term placenta via exosomes.Placenta2012331298299010.1016/j.placenta.2012.10.00523107341
    [Google Scholar]
  50. ShenZ. HuangW. LiuJ. TianJ. WangS. RuiK. Effects of mesenchymal stem cell-derived exosomes on autoimmune diseases.Front. Immunol.20211274919210.3389/fimmu.2021.74919234646275
    [Google Scholar]
  51. LiH. DaiH. LiJ. Immunomodulatory properties of mesenchymal stromal/stem cells: The link with metabolism.J. Adv. Res.202345152910.1016/j.jare.2022.05.01235659923
    [Google Scholar]
  52. CourtA.C. GattL.A. CrawfordL.P. ParraE. TobarA.V. BátizL.F. ContrerasR.A. OrtúzarM.I. KurteM. VegaE.R. CoutinhoM.V. LagosP.K. FigueroaF.E. KhouryM. Mitochondrial transfer from MSCs to T cells induces Treg differentiation and restricts inflammatory response.EMBO Rep.2020212e4805210.15252/embr.20194805231984629
    [Google Scholar]
  53. LopezC.R. VegaE.R. ParedesM.J. CamposL.N. TorresM.J. TejedorG. LetterV.A.M. ValdésF.A. PradenasC. OyarceK. JorgensenC. KhouryM. RoblesG.M.A. AltamiranoC. DjouadF. CrawfordL.P. HIF1α-dependent metabolic reprogramming governs mesenchymal stem/stromal cell immunoregulatory functions.FASEB J.20203468250826410.1096/fj.201902232R32333618
    [Google Scholar]
  54. GrégoireC. LechanteurC. BriquetA. BaudouxÉ. BaronF. LouisE. BeguinY. Review article: Mesenchymal stromal cell therapy for inflammatory bowel diseases.Aliment. Pharmacol. Ther.201745220522110.1111/apt.1386427878827
    [Google Scholar]
  55. DengC. ZhangH. LiY. ChengX. LiuY. HuangS. ChengJ. ChenH. ShaoP. JiangB. WangX. WangK. Exosomes derived from mesenchymal stem cells containing berberine for ulcerative colitis therapy.J. Colloid Interface Sci.202467135437310.1016/j.jcis.2024.05.16238815372
    [Google Scholar]
  56. LiN. ZhaoL. GengX. LiuJ. ZhangX. HuY. QiJ. ChenH. QiuJ. ZhangX. JinS. Stimulation by exosomes from hypoxia-preconditioned hair follicle mesenchymal stem cells facilitates mitophagy by inhibiting the PI3K/AKT/mTOR signaling pathway to alleviate ulcerative colitis.Theranostics202414114278429610.7150/thno.9603839113800
    [Google Scholar]
  57. GuL. RenF. FangX. YuanL. LiuG. WangS. Exosomal microRNA-181a derived from mesenchymal stem cells improves gut microbiota composition, barrier function, and inflammatory status in an experimental colitis model.Front. Med.2021866061410.3389/fmed.2021.66061434249964
    [Google Scholar]
  58. CaiX. ZhangZ. YuanJ. OcanseyD.K.W. TuQ. ZhangX. QianH. XuW. QiuW. MaoF. hucMSC-derived exosomes attenuate colitis by regulating macrophage pyroptosis via the miR-378a-5p/NLRP3 axis.Stem Cell Res. Ther.202112141610.1186/s13287‑021‑02492‑634294138
    [Google Scholar]
  59. YangJ. LiuX.X. FanH. TangQ. ShouZ.X. ZuoD.M. ZouZ. XuM. ChenQ.Y. PengY. DengS.J. LiuY.J. Extracellular vesicles derived from bone marrow mesenchymal stem cells protect against experimental colitis via attenuating colon inflammation, oxidative stress and apoptosis.PLoS One20151010e014055110.1371/journal.pone.014055126469068
    [Google Scholar]
  60. LiuH. LiangZ. WangF. ZhouC. ZhengX. HuT. HeX. WuX. LanP. Exosomes from mesenchymal stromal cells reduce murine colonic inflammation via a macrophage-dependent mechanism.JCI Insight2019424e131273
    [Google Scholar]
  61. MarikarF.M.M.T. JinG. ShengW. MaD. HuaZ. Metallothionein 2A an interactive protein linking phosphorylated FADD to NF-κB pathway leads to colorectal cancer formation.Chin. Clin. Oncol.2016567610.21037/cco.2016.11.0328061540
    [Google Scholar]
  62. NaY.R. StakenborgM. SeokS.H. MatteoliG. Macrophages in intestinal inflammation and resolution: A potential therapeutic target in IBD.Nat. Rev. Gastroenterol. Hepatol.201916953154310.1038/s41575‑019‑0172‑431312042
    [Google Scholar]
  63. GiriJ. DasR. NylenE. ChinnaduraiR. GalipeauJ. CCL2 and CXCL12 Derived from mesenchymal stromal cells cooperatively polarize IL-10+ tissue macrophages to mitigate gut injury.Cell Rep.202030619231934.e410.1016/j.celrep.2020.01.04732049021
    [Google Scholar]
  64. YangR. HuangH. CuiS. ZhouY. ZhangT. ZhouY. IFN-γ promoted exosomes from mesenchymal stem cells to attenuate colitis via miR-125a and miR-125b.Cell Death Dis.202011760310.1038/s41419‑020‑02788‑032733020
    [Google Scholar]
  65. QiuL. ChenW. WuC. YuanY. LiY. Exosomes of oral squamous cell carcinoma cells containing miR-181a-3p induce muscle cell atrophy and apoptosis by transmissible endoplasmic reticulum stress signaling.Biochem. Biophys. Res. Commun.2020533483183710.1016/j.bbrc.2020.09.06632998818
    [Google Scholar]
  66. WangD. XueH. TanJ. LiuP. QiaoC. PangC. ZhangL. Bone marrow mesenchymal stem cells-derived exosomes containing miR-539-5p inhibit pyroptosis through NLRP3/caspase-1 signalling to alleviate inflammatory bowel disease.Inflamm. Res.2022717-883384610.1007/s00011‑022‑01577‑z35637388
    [Google Scholar]
  67. RomanoB. ElangovanS. ErreniM. SalaE. PettiL. KunderfrancoP. MassiminoL. RestelliS. SinhaS. LucchettiD. AnselmoA. ColomboF.S. StravalaciM. ArenaV. D’AlessioS. UngaroF. InforzatoA. IzzoA.A. SgambatoA. DayA.J. VetranoS. TNF-Stimulated gene-6 is a key regulator in switching stemness and biological properties of mesenchymal stem cells.Stem Cells201937797398710.1002/stem.301030942926
    [Google Scholar]
  68. YangS. LiangX. SongJ. LiC. LiuA. LuoY. MaH. TanY. ZhangX. A novel therapeutic approach for inflammatory bowel disease by exosomes derived from human umbilical cord mesenchymal stem cells to repair intestinal barrier via TSG-6.Stem Cell Res. Ther.202112131510.1186/s13287‑021‑02404‑834051868
    [Google Scholar]
  69. WuY. QiuW. XuX. KangJ. WangJ. WenY. TangX. YanY. QianH. ZhangX. XuW. MaoF. Exosomes derived from human umbilical cord mesenchymal stem cells alleviate inflammatory bowel disease in mice through ubiquitination.Am. J. Transl. Res.20181072026203630093940
    [Google Scholar]
  70. CleynenI. VazeilleE. ArtiedaM. VerspagetH.W. SzczypiorskaM. BringerM.A. LakatosP.L. SeiboldF. ParnellK. WeersmaR.K. JohnM.J.M. WalshM.R. StaelensD. ArijsI. HertoghD.G. MüllerS. TordaiA. HommesD.W. AhmadT. WijmengaC. PenderS. RutgeertsP. SteenV.K. LottazD. VermeireS. MichaudD.A. Genetic and microbial factors modulating the ubiquitin proteasome system in inflammatory bowel disease.Gut20146381265127410.1136/gutjnl‑2012‑30320524092863
    [Google Scholar]
  71. EstellerM. Non-coding RNAs in human disease.Nat. Rev. Genet.2011121286187410.1038/nrg307422094949
    [Google Scholar]
  72. GaoX. ZhangH. ZhangC. LiM. YuX. SunY. ShiY. ZhangH. HeX. The emerging role of long non- coding RNAs in renal cell carcinoma progression and clinical therapy via targeting metabolic regulation.Front. Pharmacol.202314112206510.3389/fphar.2023.112206536969848
    [Google Scholar]
  73. XuY. ZhangL. OcanseyD.K.W. WangB. HouY. MeiR. YanY. ZhangX. ZhangZ. MaoF. HucMSC-Ex alleviates inflammatory bowel disease via the lnc78583-mediated miR3202/HOXB13 pathway.J. Zhejiang Univ. Sci. B202223542343110.1631/jzus.B210079335557042
    [Google Scholar]
  74. KangJ. ZhangZ. WangJ. WangG. YanY. QianH. ZhangX. XuW. MaoF. hucMSCs Attenuate IBD through releasing miR148b-5p to inhibit the expression of 15-lox-1 in macrophages.Mediators Inflamm.2019201911610.1155/2019/695396331275059
    [Google Scholar]
  75. WuX. MuY. YaoJ. LinF. WuD. MaZ. Adipose-derived stem cells from patients with ulcerative colitis exhibit impaired immunosuppressive function.Front. Cell Dev. Biol.20221082277210.3389/fcell.2022.82277235252190
    [Google Scholar]
  76. NishikawaT. MaedaK. NakamuraM. YamamuraT. SawadaT. MizutaniY. ItoT. IshikawaT. FurukawaK. OhnoE. MiyaharaR. KawashimaH. HondaT. IshigamiM. YamamotoT. MatsumotoS. HottaY. FujishiroM. Filtrated adipose tissue-derived mesenchymal stem cell lysate ameliorates experimental acute colitis in mice.Dig. Dis. Sci.20216641034104410.1007/s10620‑020‑06359‑332488819
    [Google Scholar]
  77. WangG. YuanJ. CaiX. XuZ. WangJ. OcanseyD.K.W. YanY. QianH. ZhangX. XuW. MaoF. HucMSC-exosomes carrying miR-326 inhibit neddylation to relieve inflammatory bowel disease in mice.Clin. Transl. Med.2020102e11310.1002/ctm2.11332564521
    [Google Scholar]
  78. YuH. YangX. XiaoX. XuM. YangY. XueC. LiX. WangS. ZhaoR.C. Human adipose mesenchymal stem cell-derived exosomes protect mice from DSS-induced inflammatory bowel disease by promoting intestinal-stem-cell and epithelial regeneration.Aging Dis.20211261423143710.14336/AD.2021.060134527419
    [Google Scholar]
  79. HeidariN. KenarsariA.H. NamakiS. BaghaeiK. ZaliM.R. KhalighG.S. HashemiS.M. Adipose-derived mesenchymal stem cell-secreted exosome alleviates dextran sulfate sodium-induced acute colitis by treg cell induction and inflammatory cytokine reduction.J. Cell. Physiol.202123685906592010.1002/jcp.3027533728664
    [Google Scholar]
  80. ChangC-L. ChenC-H. ChiangJ.Y. SunC-K. ChenY-L. ChenK-H. SungP-H. HuangT-H. LiY-C. ChenH-H. YipH.K. Synergistic effect of combined melatonin and adipose-derived mesenchymal stem cell (ADMSC)-derived exosomes on amelioration of dextran sulfate sodium (DSS)-induced acute colitis.Am. J. Transl. Res.20191152706272431217848
    [Google Scholar]
  81. SeishimaJ. IidaN. KitamuraK. YutaniM. WangZ. SekiA. YamashitaT. SakaiY. HondaM. YamashitaT. KagayaT. ShirotaY. FujinagaY. MizukoshiE. KanekoS. Gut-derived enterococcus faecium from ulcerative colitis patients promotes colitis in a genetically susceptible mouse host.Genome Biol.201920125210.1186/s13059‑019‑1879‑931767028
    [Google Scholar]
  82. YangL. WangT. ZhangX. ZhangH. YanN. ZhangG. YanR. LiY. YuJ. HeJ. JiaS. WangH. Exosomes derived from human placental mesenchymal stem cells ameliorate myocardial infarction via anti-inflammation and restoring gut dysbiosis.BMC Cardiovasc. Disord.20222216110.1186/s12872‑022‑02508‑w35172728
    [Google Scholar]
  83. DengC. HuY. ConceiçãoM. WoodM.J.A. ZhongH. WangY. ShaoP. ChenJ. QiuL. Oral delivery of layer-by-layer coated exosomes for colitis therapy.J. Control. Release202335463565010.1016/j.jconrel.2023.01.01736634710
    [Google Scholar]
  84. RuiK. ZhangZ. TianJ. LinX. WangX. MaJ. TangX. XuH. LuL. WangS. Olfactory ecto-mesenchymal stem cells possess immunoregulatory function and suppress autoimmune arthritis.Cell. Mol. Immunol.201613340140810.1038/cmi.2015.8226388237
    [Google Scholar]
  85. TianJ. ZhuQ. ZhangY. BianQ. HongY. ShenZ. XuH. RuiK. YinK. WangS. Olfactory ecto-mesenchymal stem cell-derived exosomes ameliorate experimental colitis via modulating Th1/Th17 and treg cell responses.Front. Immunol.20201159832210.3389/fimmu.2020.59832233362781
    [Google Scholar]
  86. ChangY. ZhangY. JiangY. ZhaoL. LvC. HuangQ. GuanJ. JinS. From hair to colon: Hair follicle-derived MSCs alleviate pyroptosis in DSS-induced ulcerative colitis by releasing exosomes in a paracrine manner.Oxid. Med. Cell. Longev.2022202212010.1155/2022/909753036160717
    [Google Scholar]
  87. BatrakovaE.V. KimM.S. Using exosomes, naturally-equipped nanocarriers, for drug delivery.J. Control. Release201521939640510.1016/j.jconrel.2015.07.03026241750
    [Google Scholar]
  88. PhanJ. KumarP. HaoD. GaoK. FarmerD. WangA. Engineering mesenchymal stem cells to improve their exosome efficacy and yield for cell-free therapy.J. Extracell. Vesicles201871152223610.1080/20013078.2018.152223630275938
    [Google Scholar]
  89. RicksD.M. KutnerR. ZhangX.Y. WelshD.A. ReiserJ. Optimized lentiviral transduction of mouse bone marrow-derived mesenchymal stem cells.Stem Cells Dev.200817344145010.1089/scd.2007.019418513160
    [Google Scholar]
  90. UlpianoC. SilvaD.C.L. MonteiroG.A. Bioengineered mesenchymal-stromal-cell-derived extracellular vesicles as an improved drug delivery system: Methods and applications.Biomedicines2023114123110.3390/biomedicines1104123137189850
    [Google Scholar]
  91. ArmstrongJ.P.K. HolmeM.N. StevensM.M. Re-engineering extracellular vesicles as smart nanoscale therapeutics.ACS Nano2017111698310.1021/acsnano.6b0760728068069
    [Google Scholar]
  92. ZhuX. MaD. YangB. AnQ. ZhaoJ. GaoX. ZhangL. Research progress of engineered mesenchymal stem cells and their derived exosomes and their application in autoimmune/inflammatory diseases.Stem Cell Res. Ther.20231417110.1186/s13287‑023‑03295‑737038221
    [Google Scholar]
  93. KoutroubakisI.E. BinionD.G. Lymphangiogenesis in inflammatory bowel disease; A new therapeutic target?Clin. Transl. Gastroenterol.201673e15410.1038/ctg.2015.6826986654
    [Google Scholar]
  94. WangX. WangH. CaoJ. YeC. Exosomes from adipose-derived stem cells promotes VEGF-C-Dependent lymphangiogenesis by regulating miRNA-132/TGF-β pathway.Cell. Physiol. Biochem.201849116017110.1159/00049285130134228
    [Google Scholar]
  95. XuF. FeiZ. DaiH. XuJ. FanQ. ShenS. ZhangY. MaQ. ChuJ. PengF. ZhouF. LiuZ. WangC. Mesenchymal stem cell-derived extracellular vesicles with high PD-L1 expression for autoimmune diseases treatment.Adv. Mater.2022341210626510.1002/adma.20210626534613627
    [Google Scholar]
  96. CaoY. WuB.J. ZhengW.P. YinM.L. LiuT. SongH.L. Effect of heme oxygenase-1 transduced bone marrow mesenchymal stem cells on damaged intestinal epithelial cells in vitro.Cell Biol. Int.201741772673810.1002/cbin.1074928206713
    [Google Scholar]
  97. SunD. CaoH. YangL. LinL. HouB. ZhengW. ShenZ. SongH. MiR-200b in heme oxygenase-1- modified bone marrow mesenchymal stem cell-derived exosomes alleviates inflammatory injury of intestinal epithelial cells by targeting high mobility group box 3.Cell Death Dis.202011648010.1038/s41419‑020‑2685‑832587254
    [Google Scholar]
  98. ChenX. KangR. KroemerG. TangD. Ferroptosis in infection, inflammation, and immunity.J. Exp. Med.20212186e2021051810.1084/jem.2021051833978684
    [Google Scholar]
  99. WeiZ. HangS. OcanseyW.D.K. ZhangZ. WangB. ZhangX. MaoF. Human umbilical cord mesenchymal stem cells derived exosome shuttling mir-129-5p attenuates inflammatory bowel disease by inhibiting ferroptosis.J. Nanobiotechnology202321118810.1186/s12951‑023‑01951‑x37303049
    [Google Scholar]
  100. GanJ. SunL. ChenG. MaW. ZhaoY. SunL. Mesenchymal stem cell exosomes encapsulated oral microcapsules for acute colitis treatment.Adv. Healthc. Mater.20221117220110510.1002/adhm.20220110535737997
    [Google Scholar]
  101. TaoS.C. GuoS.C. LiM. KeQ.F. GuoY.P. ZhangC.Q. Chitosan wound dressings incorporating exosomes derived from microRNA-126-overexpressing synovium mesenchymal stem cells provide sustained release of exosomes and heal full-thickness skin defects in a diabetic rat model.Stem Cells Transl. Med.20176373674710.5966/sctm.2016‑027528297576
    [Google Scholar]
  102. SuN. GaoP.L. WangK. WangJ.Y. ZhongY. LuoY. Fibrous scaffolds potentiate the paracrine function of mesenchymal stem cells: A new dimension in cell-material interaction.Biomaterials2017141748510.1016/j.biomaterials.2017.06.02828667901
    [Google Scholar]
/content/journals/cscrt/10.2174/011574888X340609241220053638
Loading
/content/journals/cscrt/10.2174/011574888X340609241220053638
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test