Current Stem Cell Research & Therapy - Volume 8, Issue 5, 2013
Volume 8, Issue 5, 2013
-
-
γ-Secretase-Regulated Signaling Typified by Notch Signaling in the Immune System
Authors: Hisashi Nagase and Kohzo NakayamaNotch signaling mediates the fates of numerous cells not only in the nervous system but also in the immune system. Notch signaling contributes to the generation and maintenance of hematopoietic stem cells, lymphocyte development, and several immune responses. The molecular mechanism of Notch signaling is unique: ligands bind to the extracellular domain of Notch and trigger sequential proteolytic cleavages. Finally, γ-secretase releases the intracellular domain (ICD) of Notch (NICD) from the cell membrane, and NICD translocates to the nucleus. In the nucleus, NICD binds to transcription factors and modifies the expression of certain genes. Thus,γ-secretase controls Notch signaling. Recently, many type 1 transmembrane proteins have been reported to be substrates for γ-secretase, and their ICDs are released from the cell membrane to the cytoplasm. It has also been reported that ICDs of several of these substrates also translocate to the nucleus. These phenomena closely resemble that of Notch signaling. Therefore, the common enzyme γ-secretase controls the proteolysis and turnover of possible signaling molecules, which has led to the hypothesis that mechanisms similar to Notch signaling contribute widely to γ-secretase-regulated signaling pathways. Indeed, we have shown that the ICD of amyloid precursor protein (APP) alters gene expression and induces neuron-specific apoptosis. These observations suggest the existence of APP signaling that is controlled by γ-secretase. It is also likely that γ-secretase-regulated signaling pathways, besides Notch signaling, play an essential role in the immune system. In fact, CD44, which is involved in hematopoiesis and lymphocyte homing, seems to have a γ-secretase-regulated signaling mechanism. In this review, we focus not only on Notch signaling but also on other γ-secretase-regulated signaling pathways in the immune system.
-
-
-
Chondrogenic Potential of Two hASCs Subpopulations Loaded onto Gellan Gum Hydrogel Evaluated in a Nude Mice Model
Cells constitute one of the fundamental components of any cartilage tissue engineering approach. Adipose tissue derived stem cells (ASCs) have a promising future considering the abundance of this tissue in the human body, ease of harness, and the high number of stem cells that can be isolated from small amounts of tissue. However the stromal vascular fraction of the adipose tissue that is isolated upon digestion by collagenase followed by a rough selection of the adherent cells, is composed of many different types of cells, some of which may compromise the proliferation and the differentiation of the ASCs. This manuscript reports a study on the in vivo chondrogenic potential of two ASCs specific subpopulations isolated using a method based on immunomagnetic beads coated with specific antibodies. These ASCs subpopulations, isolated using immunomagnetic beads coated with CD29 and CD105 antibodies, were subsequently transfected with green fluorescent protein (GFP), expanded, and pre-differentiated into the chondrogenic lineage, before being encapsulated in a novel hydrogel based on gellan gum, that has recently been showed to promote in vitro and in vivo cartilage tissue formation. The two ASCs subpopulations encapsulated in the gellan gum hydrogel and in vitro pre-differentiated, were then subcutaneously implanted in nude mice for 6 weeks. Explants were analyzed by various techniques, namely histology, immunohistology and real time RT-PCR that demonstrated the different behaviour of the two ASCs subpopulations under study, namely their potential to differentiate into the chondrogenic lineage and to form new cartilage tissue.
-
-
-
In Vitro Hematopoiesis Reveals a Novel denDritic-Like Cell Present in Murine Spleen
Authors: Pravin Periasamy and Helen C. O’NeillDendritic cells (DC) are important antigen presenting cells (APC) which induce and control the adaptive immune response. In spleen alone, multiple DC subsets can be distinguished by cell surface marker phenotype. Most of these have been shown to develop from progenitors in bone marrow and to seed lymphoid and tissue sites during development. This study advances in vitro methodology for hematopoiesis of dendritic-like cells from progenitors in spleen. Since spleen progenitors undergo differentiation in vitro to produce these cells, the possibility exists that spleen represents a specific niche for differentiation of this subset. The fact that an equivalent cell subset has been shown to exist in spleen also supports that hypothesis. Studies have been directed at investigating the specific functional role of this novel subset as an APC accessible to blood-borne antigen, as well as the conditions under which hematopoiesis is initiated in spleen, and the type of progenitor involved.
-
-
-
Utility of Cryopreserved Umbilical Cord Tissue for Regenerative Medicine
Authors: Mahmood S. Choudhery, Michael Badowski, Angela Muise and David T. HarrisMSCs can be isolated from adult sources such as bone marrow and adipose tissue. In contrast to these adult tissue sources, harvesting MSCs from cord tissue is a non-invasive procedure and poses no risk to the donor. Stem cell banks offer the opportunity to cryopreserve cord tissue as a source of MSCs for future autologous or allogeneic stem cell based regenerative medicine applications. There is little published data however, characterizing MSCs isolated from cryopreserved cord tissue. The goal of this study was to determine if MSCs isolated from cryopreserved cord tissue are functionally equivalent to MSCs isolated from fresh cord tissue. Umbilical cords were collected from 10 donors. Cords were segmented into 4-6 inch pieces and either cryopreserved or used immediately. Fresh and thawed cord segments were cultured in 7-14 days for outgrowth of MSCs. MSCs were analyzed by FACS for CD45, CD73, CD90 and CD105 expression. FACs analysis confirmed cells isolated from both fresh and frozen tissue expressed MSC markers. Adherent cells were obtained from both fresh and cryopreserved cord tissue segments at a similar plating efficiency. There was no difference in either the number or time of population doublings. MSCs isolated from fresh and frozen tissue were capable of differentiating along adipogenic, chondrogenic, osteogenic and neurogenic pathways, as confirmed by histology and RT-PCR analysis of tissue specific mRNAs. No significant functional differences were observed between MSCs from frozen cord tissue as compared to fresh cord tissue. Cryopreserving cord tissue allows for isolation of MSCs at the point of care when the specific clinical application is known. This may be advantageous as MSC isolation protocols continue to be optimized dependent on intended use.
-
-
-
Current and Future Applications for Stem Cell Therapies in Spine Surgery
Spinal surgery involves the bone-cartilage-neural interface. It is a field of surgery that is rapidly changing and evolving; not only through the development of novel techniques, approaches and devices but also through evidence from large clinical trials assessing indications, efficacy and outcomes. The use of biologics in spine surgery has now become widespread. Biologics in the form of autologous or allogeneic stem cells or progenitor cells are not yet in routine clinical use in spine surgery. However it is likely that they will have a significant role in the future, since increasing numbers of preclinical and clinical studies have demonstrated the safety and efficacy of progenitor cells to treat a variety of spinal conditions. Such studies have paved the way to larger clinical trials. Cell therapies encompass a wide range of stem cell and progenitor cell types. Stem cells subtypes differ in their lineage potential often being described as pluripotent or multipotent, some of which have potential application in therapies to treat diseases of the spine having the ability to differentiate into tissues including bone and cartilage and to secrete factors that promote matrix repair and regeneration. Furthermore, studies have shown that some cells, particularly mesenchymal stromal cells, modulate oxidative stress and secrete cytokines and growth factors that have immunomodulatory, antiinflammatory, angiogenic and antiapoptotic effects. It is these combined characteristics that make cell based therapies prime candidates for advancing current techniques in spine surgery and for providing new strategies directed at targeting the underlying causes of spinal diseases and disorders to promote repair and regeneration. This review will explore the characteristics of various stem cells and other progenitor cells derived from different sources. The authors are not suggesting that all these cells are necessarily suitable clinically. The review will thus focus on their application to both current and potentially future areas of spine surgery based on results of the available evidence and clinical trials. This review will not address spinal cord injury.
-
-
-
Umbilical Cord Tissue Mesenchymal Stem Cells: Characterization and Clinical Applications
More LessUmbilical cord tissue (CT) can provide a virtually unlimited source of multipotent mesenchymal stem cells (MSC) that can potentially be used in a variety of regenerative medicine and tissue engineering applications. Cord tissue segments can be frozen and preserved in liquid nitrogen dewars for prolonged periods of time, having been frozen in time at the peak of biological activity. CT stem cells are capable of giving rise to various mesenchymal and non-mesenchymal cell lineages including bone, cartilage, fat and neurons. Thus, CT stem cells are candidates to develop stem cell-based therapies for a wide variety of diseases including cardiovascular, ophthalmic, orthopedic and neurological applications. CT is currently being used in several regenerative medicine clinical studies, examples of which include treatment of graftversus- host disease and non-healing bone fractures. CT represents an additional source of stem cells that have both immediate and future applications for the individual donor.
-
-
-
Adipose-Derived Stem Cells and Platelet-Rich Plasma: The Keys to Functional Periodontal Tissue Engineering
Authors: Morikuni Tobita and Hiroshi MizunoNumerous different types of periodontal tissue regeneration therapies have been developed clinically with variable outcomes and serious limitations. A key goal of periodontal therapy is to regenerate the destroyed periodontal tissues including alveolar bone, cementum and periodontal ligament. The critical factors in attaining successful periodontal tissue regeneration are the correct recruitment of cells to the site and the production of a suitable extra cellular matrix consistent with the periodontal tissues. Adipose tissue, from which mesenchymal stem cells can be harvested easily and safely, is an especially attractive stem cell source, because adipose-derived stem cells have a strong potential for cell differentiation and growth factor secretion. Meanwhile, the usefulness of platelet-rich plasma in the field of dental surgery has attracted attention. Therapeutic effects of platelet-rich plasma are believed to occur through the provision of concentrated levels of platelet-derived growth factors. Further, recent reports suggested the effect of platelet-rich plasma on mesenchymal stem cell proliferation, differentiation and survival rate. Therefore, the admixture of mesenchymal stem cells and platelet-rich plasma may indicate the great potential for tissue regenerations including periodontal tissue regeneration. In this review, the potential of adipose-derived stem cells and platelet-rich plasma is introduced. Of particular interest, the usefulness in periodontal tissue regeneration and future perspective is discussed.
-
-
-
Induced Pluripotent Stem Cells for the Treatment of Stroke: The Potential and the Pitfalls
Authors: Fenggang Yu, Yingying Li and Cindi M. MorsheadThe extraordinary discovery of induced pluripotent stem cells (iPSCs) has led to the very real possibility that patient-specific cell therapy can be realized. The potential to develop cell replacement therapies outside the ethical and legal limitations, has initiated a new era of hope for regenerative strategies to treat human neurological disease including stroke. In this article, we will review and compare the current approaches to derive iPSCs from different somatic cells, and the induction into neuronal phenotypes, considering the advantages and disadvantages to the methodologies of derivation. We will highlight the work relating to the use of iPSC-based therapies in models of stroke and their potential use in clinical trials. Finally, we will consider future directions and areas of exploration which may promote the realization of iPSC-based cell replacement strategies for the treatment of stroke.
-
Volumes & issues
-
Volume 20 (2025)
-
Volume 19 (2024)
-
Volume 18 (2023)
-
Volume 17 (2022)
-
Volume 16 (2021)
-
Volume 15 (2020)
-
Volume 14 (2019)
-
Volume 13 (2018)
-
Volume 12 (2017)
-
Volume 11 (2016)
-
Volume 10 (2015)
-
Volume 9 (2014)
-
Volume 8 (2013)
-
Volume 7 (2012)
-
Volume 6 (2011)
-
Volume 5 (2010)
-
Volume 4 (2009)
-
Volume 3 (2008)
-
Volume 2 (2007)
-
Volume 1 (2006)
Most Read This Month
