Current Stem Cell Research & Therapy - Volume 17, Issue 2, 2022
Volume 17, Issue 2, 2022
-
-
Therapeutic Potential of Adipose-derived Stem Cells in the Treatment of Pulmonary Diseases
Authors: Nur S. S. Abdul Halim, Badrul H. Yahaya and Jie LianStem cells derived from adipose tissues (ADSCs) have emerged as an ideal candidate for various models of respiratory diseases, including asthma, Chronic Obstructive Pulmonary Disease (COPD), and acute respiratory distress syndrome. ADSCs have qualities that may make them better suited for treating inflammatory lung diseases than other MSCs. ADSCs show a lower senescence ratio, higher proliferative capacity and stability in terms of their genetic and morphology during long-term culture over Bone Marrow-derived Mesenchymal Stem Cells (BMMSCs). With enhanced research methodologies, the beneficial benefits of ADSCs appear to be restricted to their capacity to engraft, differentiate, and be connected to trophic factor secretion. These trophic factors influence treatment and regenerative results in a variety of lung inflammatory disorders. Taken together, these particular qualities of ADSCs make them significantly relevant for clinical applications. This article discusses a recent advance of ADSCs biology and their translational application, emphasizing their anti-inflammatory, immunomodulatory and regenerative properties, particularly on lung inflammatory diseases. Besides, the relevant advancements made in the field, the regulatory aspects, and other challenges and obstacles will be highlighted.
-
-
-
Exploring the Role of Stem Cell Therapy in Treating Neurodegenerative Diseases: Challenges and Current Perspectives
Authors: Nidhi Puranik, Ananta P. Arukha, Shiv Kumar Yadav, Dhananjay Yadav and Jun O. JinSeveral human neurological disorders, such as Parkinson’s disease, Alzheimer’s disease, amyotrophic lateral sclerosis, Huntington’s disease, spinal cord injury, multiple sclerosis, and brain stroke, are caused by the injury to neurons or glial cells. The recent years have witnessed the successful generation of neurons and glia cells driving efforts to develop stem-cell-based therapies for patients to combat a broad spectrum of human neurological diseases. The inadequacy of suitable cell types for cell replacement therapy in patients suffering from neurological disorders has hampered the development of this promising therapeutic approach. Attempts are thus being made to reconstruct viable neurons and glial cells from different stem cells, such as embryonic stem cells, mesenchymal stem cells, and neural stem cells. Dedicated research to cultivate stem cell-based brain transplantation therapies has been carried out. We aim at compiling the breakthroughs in the field of stem cell-based therapy for the treatment of neurodegenerative maladies, emphasizing the shortcomings faced, victories achieved, and the future prospects of the therapy in clinical settings.
-
-
-
Umbilical Cord Mesenchymal Stem/Stromal Cells Potential to Treat Organ Disorders; An Emerging Strategy
Currently, Mesenchymal Stem/Stromal Cells (MSCs) have attracted growing attention in the context of cell-based therapy in regenerative medicine. Following the first successful procurement of human MSCs from Bone Marrow (BM), these cells isolation has been conducted from various origins, in particular, the Umbilical Cord (UC). Umbilical Cord-Derived Mesenchymal Stem/Stromal Cells (UC-MSCs) can be acquired by a non-invasive plan and simply cultured, and thereby signifies their superiority over MSCs derived from other sources for medical purposes. Due to their unique attributes, including self-renewal, multipotency, and accessibility concomitant with their immunosuppressive competence and lower ethical concerns, UC-MSCs therapy is described as encouraging therapeutic options in cell-based therapies. Regardless of their unique aptitude to adjust inflammatory response during tissue recovery and delivering solid milieu for tissue restoration, UC-MSCs can be differentiated into a diverse spectrum of adult cells (e.g., osteoblast, chondrocyte, type II alveolar, hepatocyte, and cardiomyocyte). Interestingly, they demonstrate a prolonged survival and longer telomeres compared with MSCs derived from other sources, suggesting that UC-MSCs are desired source to use in regenerative medicine. In the present review, we deliver a brief review of UC-MSCs isolation, expansion concomitantly with immunosuppressive activities, and try to collect and discuss recent pre-clinical and clinical researches based on the use of UC-MSCs in regenerative medicine, focusing on with special focus on in vivo researches.
-
-
-
Cell-based Therapy for Ocular Disorders: A Promising Frontier
As the ocular disorders causing the long-term blindness or optical abnormalities of the ocular tissue entirely affect life quality, an insight into their corresponding pathogenesis and the expansion of attitudes authorizing earlier detection and treatment need more consideration. Though current therapeutics result in desirable outcomes, they do not offer an inclusive solution for hindrance of development of visual impairment to blindness. Accordingly, stem cells because of their particular competencies have attracted pronounced attention to be applied in regenerative medicine of ocular diseases. In the last decades, a wide spectrum of stem cells surrounding Mesenchymal Stem/Stromal Cells (MSC), Neural Stem Cells (NSCs), and embryonic/induced pluripotent stem cells (ESCs/iPSCs) accompanied by Müller glia, ciliary epithelia-derived stem cells, and Retinal Pigment Epithelial (RPE) stem cells have been widely investigated to report their safety and efficacy in preclinical models and also human subjects. In this regard and the first interventions, RPE cell suspensions were successfully utilized to ameliorate visual defects of the patients suffering from Age-related Macular Degeneration (AMD) after subretinal transplantation. Herein, we will explain the pathogenesis of ocular diseases and highlight the novel discoveries and recent findings in the context of stem cell-based therapies in these disorders, focusing on the last decade's in vivo reports.
-
-
-
Therapeutic and Protective Potential of Mesenchymal Stem Cells, Pharmaceutical Agents and Current Vaccines Against COVID-19
Authors: Mehdi Rasouli, Fatemeh Vakilian and Javad RanjbariIt has been almost 18 months since the first outbreak of COVID-19 disease was reported in Wuhan, China. This unexpected devastating phenomenon, raised a great deal of concerns and anxiety among people around the world and imposed a huge economic burden on the nations’ health care systems. Accordingly, clinical scientists, pharmacologists and physicians worldwide felt an urgent demand for a safe, effective therapeutic agent, treatment strategy or vaccine in order to prevent or cure the recently-emerged disease. Initially, due to the lack of specific pharmacological agents and approved vaccines to combat the COVID-19, the disease control in the confirmed cases was limited to supportive care. Accordingly, repositioning or repurposing current drugs and examining their possible therapeutic efficacy received a great deal of attention. Despite revealing promising results in some clinical trials, the overall results are conflicting. For this reason, there is an urgent need to seek and investigate other potential therapeutics. Mesenchymal stem cells (MSC), representing immunomodulatory and regenerative capacity to treat both curable and intractable diseases, have been investigated in COVID-19 clinical trials carried out in different parts of the world. Nevertheless, up to now, none of the MSC-based approaches has been approved in controlling COVID-19 infection. Thanks to the fact that the final solution for defeating the pandemic is developing a safe, effective vaccine, enormous efforts and clinical research have been carried out. In this review, we will concisely discuss the safety and efficacy of the most relevant pharmacological agents, MSC-based approaches and candidate vaccines for treating and preventing COVID-19 infection.
-
-
-
The Anti-osteoporosis Effects of Vitamin K in Postmenopausal Women
Authors: Yuan Liu, Yuan He, Baorong He and Lingbo KongBackground: As a common systemically muscular-skeleton disorder of aging, osteoporosisis is characterized by the uninterrupted deconstruction in osseous microarchitecture. Osteoporosis can consequently lead to a significantly high risk of osteoporotic fractures, such as Osteoporotic Vertebral Compressive Fractures [OVCF] in the spine and osteoporotic femoral neck fractures in the hip joint, which can significantly increase the numbers of mortality and morbidity in elderly people, especially in postmenopausal women. Methods: In addition, vitamin K has been demonstrated to play a key role in inhibiting osteoporotic fractures among postmenopausal women, but its long-term benefits, potential harms, and side effects of the combination between vitamin K and other anti-osteoporosis medicines, such as bisphosphonates or teriparatide still remain to be extensively studied. Therefore, the present study aimed to systematically reviewed previously published literature on the role of vitamin K in the treatment of osteoporosis. We currently, via multiple query strategies, searched the relevant literature in Cochrane and PubMed from January 2010 to December 2019. Results: Subsequently, we conducted the systematic review according to the standard guideline of Preferred Reporting Item for Systematic Reviews and Meta-Analyses [PRISMA]. Conclusion: Finally, ten relevant studies met our current criteria for inclusion; subsequently, we followed the PRISMA guideline, then systematically reviewed each study by categorizing the data sources and analytical approaches in each study, while setting up variables and defining each study's outcomes.
-
Volumes & issues
-
Volume 20 (2025)
-
Volume 19 (2024)
-
Volume 18 (2023)
-
Volume 17 (2022)
-
Volume 16 (2021)
-
Volume 15 (2020)
-
Volume 14 (2019)
-
Volume 13 (2018)
-
Volume 12 (2017)
-
Volume 11 (2016)
-
Volume 10 (2015)
-
Volume 9 (2014)
-
Volume 8 (2013)
-
Volume 7 (2012)
-
Volume 6 (2011)
-
Volume 5 (2010)
-
Volume 4 (2009)
-
Volume 3 (2008)
-
Volume 2 (2007)
-
Volume 1 (2006)
Most Read This Month
