Current Stem Cell Research & Therapy - Volume 15, Issue 6, 2020
Volume 15, Issue 6, 2020
-
-
The Roles of Different Stem Cells in Premature Ovarian Failure
By Cheng ZhangPremature ovarian failure (POF) is characterized by amenorrhea, hypergonadotropism and hypoestrogenism before the age of 40, which affects 1% of women in the general population. POF is complex and heterogeneous due to its pathogenetic mechanisms. It is one of the significant causes of female infertility. Although many treatments are available for POF, these therapies are less efficient and trigger many side effects. Therefore, to find effective therapeutics for POF is urgently required. Due to stem cells having self-renewal and regeneration potential, they may be effective for the treatment of ovarian failure and consequently infertility. Recent studies have found that stem cells therapy may be able to restore the ovarian structure and function in animal models of POF and provide an effective treatment method. The present review summarizes the biological roles and the possible signaling mechanisms of the different stem cells in POF ovary. Further study on the precise mechanisms of stem cells on POF may provide novel insights into the female reproduction, which not only enhances the understanding of the physiological roles but also supports effective therapy for recovering ovarian functions against infertility.
-
-
-
Potential of Mesenchymal Stem Cells in Anti-Cancer Therapies
Authors: Milena Kostadinova and Milena MourdjevaMesenchymal stem/stromal cells (MSCs) are localized throughout the adult body as a small population in the stroma of the tissue concerned. In injury, tissue damage, or tumor formation, they are activated and leave their niche to migrate to the site of injury, where they release a plethora of growth factors, cytokines, and other bioactive molecules. With the accumulation of data about the interaction between MSCs and tumor cells, the dualistic role of MSCs remains unclear. However, a large number of studies have demonstrated the natural anti-tumor properties inherent in MSCs, so this is the basis for intensive research for new methods using MSCs as a tool to suppress cancer cell development. This review focuses specifically on advanced approaches in modifying MSCs to become a powerful, precision- targeted tool for killing cancer cells, but not normal healthy cells. Suppression of tumor growth by MSCs can be accomplished by inducing apoptosis or cell cycle arrest, suppressing tumor angiogenesis, or blocking mechanisms mediating metastasis. In addition, the chemosensitivity of cancer cells may be increased so that the dose of the chemotherapeutic agent used could be significantly reduced.
-
-
-
Regulation of Stem Cell-Based Research in India in Comparison with the US, EU and other Asian Countries: Current Issues and Future Perspectives
Authors: Jobin Jose, Teena George and Aaron M. ThomasStem cell therapy is applicable for repair and replacement of damaged cells and tissues. Apart from transplanting cells to the body, the stem cell therapy directs them to grow new and healthy tissues. Stem cells in the area of regenerative medicines hold tremendous promise that may help to regenerate the damaged tissues and heal various diseases like multiple sclerosis, heart diseases, Parkinson’s disease, and so on. To prove the safety, efficacy, and for the requirement of a licence for manufacturing and sale, all the stem cell therapies should pass the required criteria and undergo certain examinations of the regulatory agencies. The regulatory authorities review the manufacturing procedures of products to assure its purity and potency. This review summarizes the comparative critical evaluations of existing regulations and developments on the stem cells research in India, USA, EU and Asian regions and also discusses the challenges that have to be overcome and the important points that should be understood to position India as a source of the perspective nation in stem cells around the world.
-
-
-
The Development of Stem Cell-Based Treatment for Acute Ischemic Cerebral Injury
Authors: Xiaojie Bai, Jun Xu, Tiantian Zhu, Yuanyuan He and Hong ZhangAcute ischemic brain injury is a serious disease that severely endangers the life safety of patients. Such disease is hard to predict and highly lethal with very limited effective treatments currently. Although currently, there exist treatments like drug therapy, hyperbaric oxygen therapy, rehabilitation therapy and other treatments in clinical practice, these are not significantly effective for patients when the situation is severe. Thus scientists must explore more effective treatments. Stem cells are undifferentiated cells with a strong potential of self-renewal and differentiate into various types of tissues and organs. Their emergence has brought new hopes for overcoming difficult diseases, further improving medical technology and promoting the development of modern medicine. Some combining therapies and genetically modified stem cell therapy have also been proven to produce obvious neuroprotective function for acute ischemic brain injury. This review is an introduction to the current research findings and discusses the definition, origin and classification of stem cells, as well as the future prospects of the stem cell-based treatment for acute ischemic cerebral injury.
-
-
-
Transplantation Strategies for Spinal Cord Injury Based on Microenvironment Modulation
Spinal cord injury (SCI) is different from peripheral nerve injury; it results in devastating and permanent damage to the spine, leading to severe motor, sensory and autonomic dysfunction. SCI produces a complex microenvironment that can result in hemorrhage, inflammation and scar formation. Not only does it significantly limit regeneration, but it also challenges a multitude of transplantation strategies. In order to promote regeneration, researchers have recently begun to focus their attention on strategies that manipulate the complicated microenvironment produced by SCI. And some have achieved great therapeutic effects. Hence, reconstructing an appropriate microenvironment after transplantation could be a potential therapeutic solution for SCI. In this review, first, we aim to summarize the influential compositions of the microenvironment and their different effects on regeneration. Second, we highlight recent research that used various transplantation strategies to modulate different microenvironments produced by SCI in order to improve regeneration. Finally, we discuss future transplantation strategies regarding SCI.
-
-
-
Metabolic Regulation and Related Molecular Mechanisms in Various Stem Cell Functions
Authors: Hwa-Yong Lee and In-Sun HongRecent studies on the mechanisms that link metabolic changes with stem cell fate have deepened our understanding of how specific metabolic pathways can regulate various stem cell functions during the development of an organism. Although it was originally thought to be merely a consequence of the specific cell state, metabolism is currently known to play a critical role in regulating the self-renewal capacity, differentiation potential, and quiescence of stem cells. Many studies in recent years have revealed that metabolic pathways regulate various stem cell behaviors (e.g., selfrenewal, migration, and differentiation) by modulating energy production through glycolysis or oxidative phosphorylation and by regulating the generation of metabolites, which can modulate multiple signaling pathways. Therefore, a more comprehensive understanding of stem cell metabolism could allow us to establish optimal culture conditions and differentiation methods that would increase stem cell expansion and function for cell-based therapies. However, little is known about how metabolic pathways regulate various stem cell functions. In this context, we review the current advances in metabolic research that have revealed functional roles for mitochondrial oxidative phosphorylation, anaerobic glycolysis, and oxidative stress during the self-renewal, differentiation and aging of various adult stem cell types. These approaches could provide novel strategies for the development of metabolic or pharmacological therapies to promote the regenerative potential of stem cells and subsequently promote their therapeutic utility.
-
-
-
Autologous Chondrocyte Implantation and Mesenchymal Stem Cells for the Treatments of Chondral Defects of the Knee- A Systematic Review
Background: There is still a lack of consensus about the best treatment of chondral defects of the knee. We conducted a systematic PRISMA review to evaluate clinical outcomes of Autologous Chondrocyte Implantation (ACI) and Mesenchymal Stem Cell (MSC) injections for the treatment of focal chondral defects of the knee. Methods: A systematic review of literature was performed according to the PRISMA guidelines. All the articles reporting data on ACI and MSC treatments for chondral defects of the knee were considered for inclusion. The main databases were accessed: PubMed, Medline, CINAHL, Cochrane, Embase and Google Scholar. The statistical analysis was performed using the Review Manager Software. Results: In the p-ACI group (987 knees), the Cincinnati Score improved by 18.94% (p=0.1), VAS by 38% (p=0.01), Tegner score by 19.11% (p=0.03), Lysholm score by 22.40% (p=0.01), IKCD by 27.36% (p=0.003). In the c-ACI group (444 knees), the Cincinnati Score improved by 23.80% (p=0.08), KOOS by 23.48% (p=0.03), VAS by 33.2% (p=0.005), IKDC by 33.30% (p=0.005). In the m-ACI group (599 knees), the Cincinnati Score improved by 26.80% (p=0.08), KOOS by 31.59% (p=0.1), VAS by 30.43% (p=0.4), Tegner score by 23.1% (p=0.002), Lysholm score by 31.14% (p=0.004), IKCD by 30.57% (p<0.001). In the MSCs group (291 knees), the KOOS improved by 29.7% (p=0.003), VAS by 41.89% (p<0.001), Tegner score by 25.81% (p=0.003), Lysholm score by 36.96% (p<0.001), IKCD by 30.57% (p=0.001). Conclusion: Both ACI and MSC therapies can be considered as a concrete solution to treat focal chondral defects of the knee.
-
Volumes & issues
-
Volume 20 (2025)
-
Volume 19 (2024)
-
Volume 18 (2023)
-
Volume 17 (2022)
-
Volume 16 (2021)
-
Volume 15 (2020)
-
Volume 14 (2019)
-
Volume 13 (2018)
-
Volume 12 (2017)
-
Volume 11 (2016)
-
Volume 10 (2015)
-
Volume 9 (2014)
-
Volume 8 (2013)
-
Volume 7 (2012)
-
Volume 6 (2011)
-
Volume 5 (2010)
-
Volume 4 (2009)
-
Volume 3 (2008)
-
Volume 2 (2007)
-
Volume 1 (2006)
Most Read This Month
