Current Stem Cell Research & Therapy - Volume 15, Issue 1, 2020
Volume 15, Issue 1, 2020
-
-
Overview of Cellular Mechanisms and Signaling Pathways of Piceatannol
Authors: Yang Cao, Wanli Smith, Liang Yan and Lingbo KongStilbenoids are a group of naturally occurring phenolic compounds found in various plant species. They share a common backbone structure known as stilbene. However, differences in the nature and position of substituents have made it possible to produce many derivatives. Piceatannol [PT], a hydroxylated derivative from resveratrol, exerts various biological activities ranging from cancer prevention, cardio- protection, neuro-protection, anti-diabetic, depigmentation and so on. Although positive results were obtained in most cell culture and animal studies, the relevant cellular and molecular mechanisms of cytokines and signaling pathway about their biological effects still unclear. Thus, in the current review, we focus on the latest findings of PT on cellular biology in order to better understand the underlying therapeutic mechanisms of PT among various diseases.
-
-
-
Effects of Myricitrin and Relevant Molecular Mechanisms
Authors: Xinliang Zhang, Ke Zhang, Youhan Wang and Rui MaIn humans, oxidative stress is thought to be involved in the development of Parkinson's disease, Alzheimer's disease, atherosclerosis, heart failure, myocardial infarction and depression. Myricitrin, a botanical flavone, is abundantly distributed in the root bark of Myrica cerifera, Myrica esculenta, Ampelopsis grossedentata, Nymphaea lotus, Chrysobalanus icaco, and other plants. Considering the abundance of its natural sources, myricitrin is relatively easy to extract and purify. Myricitrin reportedly possesses effective anti-oxidative, anti-inflammatory, and anti-nociceptive activities, and can protect a variety of cells from in vitro and in vivo injuries. Therefore, our current review summarizes the research progress of myricitrin in cardiovascular diseases, nerve injury and anti-inflammatory, and provides new ideas for the development of myricitrin.
-
-
-
The Study of Cellular Mechanism of Triptolide in the Treatment of Cancer, Bone Loss and Cardiovascular Disease and Triptolide’s Toxicity
Authors: Youhan Wang, Biao Wang and Xiaobin YangTriptolide (TPL), the active component of Tripterygium wilfordii Hook F (Twhf) has been used to treat cancer and bone loss conditions for over two hundred years in traditional Chinese medicine (TCM). In this paper, we reviewed the specific molecular mechanisms in the treatment of cancer, bone loss and cardiovascular disease. In addition, we analyze the toxicity of TPL and collect some optimized derivatives extracted from TPL. Although positive results were obtained in most cell culture and animal studies, further studies are needed to substantiate the beneficial effects of TPL.
-
-
-
Effect of the Histone Deacetylases Inhibitors on the Differentiation of Stem Cells in Bone Damage Repairing and Regeneration
Authors: Qing Zhao, Kun Ji, Tiancong Wang, Guifeng Li, Wei Lu and Jun JiTissue damage repairing and regeneration is a research hot topic. Tissue engineering arises at the historic moment which is a defect repair compound composed of seed cells, tissue engineering scaffolds, and inducing factors. Stem cells have a limited growth period in vitro culture, and they have a pattern of replicating ageing, and these disadvantages are limiting the applications of stem cells in basic research and clinical treatment. The enhancement of stem cell differentiation ability is a difficult problem to overcome, and it is possible to enhance the differentiation ability of stem cells through histone modification so as to provide a more robust foundation for damage repairing and regeneration. Studies have shown that Histone Deacetylases (HDAC) inhibitors can improve mesenchymal stem cells in vitro induced in different directions, conversion efficiency, increasing the feasibility and safety of stem cell therapy and tissue engineering, to offer reference to promote the stem cell therapy in clinical application. Therefore, this paper mainly focusing on the usage and achievements of the deacetylase inhibitors in stem cell differentiation studies and their use and prospects in repair of bone tissue defects.
-
-
-
Mini-review: Functions and Action Mechanisms of PQQ in Osteoporosis and Neuro Injury
Authors: Hao Wen, Yuan He, Ke Zhang, Xiaobin Yang, Dingjun Hao, Yonghong Jiang and Baorong HePyrroloquinoline Quinone (PQQ) is the third coenzyme found after niacinamide and flavone nucleotides and is widely present in microorganisms, plants, animals, and humans. PQQ can stimulate the growth of organisms and is very important for the growth, development and reproduction of animals. Owing to the inherent properties of PQQ as an antioxidant and redox modulator in various systems. In recent years, the role of PQQ in the field of osteoporosis and neuro injury has become a research hotspot. This article mainly discusses the derivatives, distribution of PQQ, in vitro models of osteoporosis and neuro injury, and the research progress of its mechanism of action. It provides new ideas in the study of osteoporosis and neuro injury.
-
-
-
Puerarin for OVX-Induced Postmenopausal Osteoporosis in Murine Model: Systematic Review and Meta-Analysis
Authors: Xiaobin Yang, Haishi Zheng, Yuan Liu, Dingjun Hao, Baorong He and Lingbo KongAims/Background: Ovariectomy (OVX)-induced murine model is widely used for postmenopausal osteoporosis study. Our current study was conducted to systematically review and essentially quantified the bone mass enhancing effect of puerarin on treating OVX-induced postmenopausal osteoporosis in murine model. Methods: Literatures from PUBMED, EMBASE, and CNKI were involved in our searching strategy by limited the inception date to January 9th, 2019. Moreover, the enhancing effect of puerarin on bone mass compared to OVX-induced rats is evaluated by four independent reviewers. Finally, all the data were extracted, quantified and analyzed via RevMan, besides that in our current review study, we assessed the methodological quality for each involved study. Results: Based on the searching strategy, eight randomization studies were finally included in current meta-analysis and systematic review. According to the data analysis by RevMan, puerarin could improve bone mineral density (BMD); (eight studies, n=203; weighted mean difference, 0.05; 95% CI, 0.03-0.07; P<0.0001) using a random-effects model. There is no significant difference between puerarin and estrogen (seven studies, n=184; weighted mean difference, 0.00; 95% CI, -0.01 to 0.00; P=0.30). Conclusion: Puerarin showed upregulating effects on bone mass in OVX-induced postmenopausal osteoporosis in murine model. More studies of the effect of puerarin on bone density in OVX animals are needed.
-
-
-
Gingiva-derived Mesenchymal Stem Cells and Their Potential Applications in Oral and Maxillofacial Diseases
Authors: Xudong Gao and Zhengguo CaoBackground: Stem cells are undifferentiated cells with multilineage differentiation potential. They can be collected from bone marrow, fat, amniotic fluid, and teeth. Stem cell-based therapies have been widely used to treat multiple diseases, such as cardiac disease, and hematological disorders. The cells may also be beneficial for controlling the disease course and promoting tissue regeneration in oral and maxillofacial diseases. Oral-derived gingival mesenchymal stem cells are easy to access and the donor sites heal rapidly without a scar. Such characteristics demonstrate the beneficial role of GMSCs in oral and maxillofacial diseases. Objective: We summarize the features of GMSCs, including their self-renewal, multipotent differentiation, immunomodulation, and anti-inflammation properties. We also discuss their applications in oral and maxillofacial disease treatment and tissue regeneration. Conclusion: GMSCs are easily harvestable adult stem cells with outstanding proliferation, differentiation, and immunomodulation characteristics. A growing body of evidence indicates that GMSCs have strong potential use in accelerating wound healing and promoting the regeneration of bone defects, periodontium, oral neoplasms, salivary glands, peri-implantitis, and nerves. Moreover, alginate, polylactic acid and polycaprolactone can be used as biodegradable scaffolds for GMSC encapsulation. Various growth factors can be applied to the corresponding scaffolds to obtain the desired GMSC differentiation and phenotypes. Three-dimensional spheroid culture systems could optimize GMSC properties and improve the performance of the cells in tissue engineering. The immunomodulatory property of GMSCs in controlling oral and maxillofacial inflammation needs further research.
-
-
-
Co-culture and Mechanical Stimulation on Mesenchymal Stem Cells and Chondrocytes for Cartilage Tissue Engineering
Authors: Yawen Chen, Xinli Ouyang, Yide Wu, Shaojia Guo, Yongfang Xie and Guohui WangDefects in articular cartilage injury and chronic osteoarthritis are very widespread and common, and the ability of injured cartilage to repair itself is limited. Stem cell-based cartilage tissue engineering provides a promising therapeutic option for articular cartilage damage. However, the application of the technique is limited by the number, source, proliferation, and differentiation of stem cells. The co-culture of mesenchymal stem cells and chondrocytes is available for cartilage tissue engineering, and mechanical stimulation is an important factor that should not be ignored. A combination of these two approaches, i.e., co-culture of mesenchymal stem cells and chondrocytes under mechanical stimulation, can provide sufficient quantity and quality of cells for cartilage tissue engineering, and when combined with scaffold materials and cytokines, this approach ultimately achieves the purpose of cartilage repair and reconstruction. In this review, we focus on the effects of co-culture and mechanical stimulation on mesenchymal stem cells and chondrocytes for articular cartilage tissue engineering. An in-depth understanding of the impact of co-culture and mechanical stimulation of mesenchymal stem cells and chondrocytes can facilitate the development of additional strategies for articular cartilage tissue engineering.
-
-
-
Stem Cells from Human Exfoliated Deciduous Teeth: A Concise Review
Authors: Chih-Sheng Ko, Jen-Hao Chen and Wen-Ta SuStem Cells from Human Exfoliated Deciduous Teeth (SHED) originate from the embryonic neural crest as ectodermal mesenchymal stem cells and are isolated from human deciduous teeth. SHED expresses the same cell markers as Embryonic Stem Cells (ESCs), such as OCT4 and NANOG, which make SHED to have a significant impact on clinical applications. SHED possess higher rates of proliferation, higher telomerase activity, increased cell population doubling, form sphere-like clusters, and possess immature and multi-differentiation capacity; such high plasticity makes SHED one of the most popular sources of stem cells for biomedical engineering. In this review, we describe the isolation and banking method, the current development of SHED in regenerative medicine and tissue engineering in vitro and in vivo.
-
-
-
New Progress of Adipose-derived Stem Cells in the Therapy of Hypertrophic Scars
Authors: Xiang He, Julei Zhang, Liang Luo, Jihong Shi and Dahai HuBurns are a global public health issue of great concern. The formation of scars after burns and physical dysfunction of patients remain major challenges in the treatment of scars. Regenerative medicine based on cell therapy has become a hot topic in this century. Adipose-derived stem cells (ADSCs) play an important role in cellular therapy and have become a promising source of regenerative medicine and wound repair transplantation. However, the anti-scarring mechanism of ADSCs is still unclear yet. With the widespread application of ADSCs in medical, we firmly believe that it will bring great benefits to patients with hypertrophic scars.
-
Volumes & issues
-
Volume 20 (2025)
-
Volume 19 (2024)
-
Volume 18 (2023)
-
Volume 17 (2022)
-
Volume 16 (2021)
-
Volume 15 (2020)
-
Volume 14 (2019)
-
Volume 13 (2018)
-
Volume 12 (2017)
-
Volume 11 (2016)
-
Volume 10 (2015)
-
Volume 9 (2014)
-
Volume 8 (2013)
-
Volume 7 (2012)
-
Volume 6 (2011)
-
Volume 5 (2010)
-
Volume 4 (2009)
-
Volume 3 (2008)
-
Volume 2 (2007)
-
Volume 1 (2006)
Most Read This Month
