Current Stem Cell Research & Therapy - Volume 11, Issue 2, 2016
Volume 11, Issue 2, 2016
-
-
Quest for alternate personalized clinical source of MSCs: Advancing towards hiPSCs derived iMSCs
Authors: Vikram Sabapathy and Sanjay KumarThe Human mesenchymal stromal/stem cells (MSCs) have been isolated from various tissue sources. Yet, the lack of a distinctive marker for identifying in vivo MSCs in their tissue niche has hampered the MSC’s in vivo behavior tracking and compared that to the in vitro expanded cultures. In this review, we present a comprehensive report on MSCs history, isolation from assorted tissue sources, classification, long-term cultures for comprehensively characterized MSCs, immunomodulation, regenerative medical applications, iMSCs as a novel source of patient-specific iPSCs and scaleup strategies for translational applications. We have emphasized on prenatal tissue-derived MSCs and iMSCs derived from hiPSCs as an effective alternative to adult MSCs. We also highlight the urgent requirement to revisit the initial criteria laid down by International Society for Cellular Therapy (ISCT) and propose more stringent criteria to define, identify and exclusively characterize the MSCs derived from various tissue sources using advanced molecular tools; also more international workshops are necessary for delineating unique features of MSCs. Unless the proposed goal is achieved, it is extremely difficult to realize the full potential of MSCs in translational applications. Although numerous patients have been tested with MSCs to date, no immediate adverse outcomes or infusion-related toxicity has been reported, suggesting MSCs infusion to be safe. However, rare adverse event and late complications of the treatment may be detected in large cohorts of patients with long-term follow-up.
-
-
-
Generation of Mesenchymal Stem Cells by Blood Cell Reprogramming
Authors: Wanqiu Chen, David J. Baylink, K.-H. William Lau and Xiao-Bing ZhangMesenchymal stem cells (MSCs) have been successfully used to treat multiple diseases in animal studies and clinical trials. Currently, the commonly used MSCs are derived from bone marrow and adipose tissue. Alternative approaches include differentiation of induced pluripotent stem cells (iPSCs) into MSCs, or direct reprogramming of blood cells into MSCs. This review summarizes recent progresses concerning how to generate MSCs by blood cell reprogramming and how studies in cellular reprogramming may help identify new factors to expand or even rejuvenate adult MSCs.
-
-
-
Towards Personalized Regenerative Cell Therapy: Mesenchymal Stem Cells Derived from Human Induced Pluripotent Stem Cells
Authors: Lin Lin, Lars Bolund and Yonglun LuoMesenchymal stem cells (MSCs) are adult stem cells with the capacity of self-renewal and multilineage differentiation, and can be isolated from several adult tissues. However, isolating MSCs from adult tissues for cell therapy is hampered by the invasive procedure, the rarity of the cells and their attenuated proliferation capacity when cultivated and expanded in vitro. Human MSCs derived from induced pluripotent stem cells (iPSC-MSCs) have now evolved as a promising alternative cell source for MSCs and regenerative medicine. Several groups, including ours, have reported successful derivation of functional iPSC-MSCs and applied these cells in MSC-based therapeutic testing. Still, the current experience and understanding of iPSC-MSCs with respect to production methods, safety and efficacy are primitive. In this review, we highlight the methodological progress in iPSC-MSC research, describing the importance of choosing the right sources of iPSCs, iPSC reprogramming methods, iPSC culture systems, embryoid body intermediates, pathway inhibitors, basal medium, serum, growth factors and culture surface coating. We also highlight some progress in the application of iPSC-MSCs in direct cell therapy, tissue engineering and gene therapy.
-
-
-
BMI1 Regulation of Self-Renewal and Multipotency in Human Mesenchymal Stem Cells
Authors: Yunjoon Jung and Jan A. NoltaWe have previously described generation of mesenchymal stem cells (MSCs) from human embryonic and induced pluripotent stem cells. One of the central questions in stem cell biology is to understand how stem cells regulate the decision to self-renew vs. differentiate, at the molecular level. In the current studies we used loss-of-function and gain-of-function analyses in primary human MSCs to demonstrate that BMI1 is a critical regulator for self-renewal and multipotency in this interesting cell type. Knockdown of BMI1 in MSCs reduced self-renewal by upregulation of p16INK4A and increased apoptosis. Knockdown of p16INK4A partially rescued the self-renewal defect in MSCs with loss of BMI1. Overexpressed BMI1 reduced apoptosis and increased cell proliferation by repressing p16INK4A. Loss of BMI1 resulted in deregulation of PPARγ, an adipogenic factor, and imprinted gene network (IGN), which blocks osteogenesis. Knockdown of PPARγ or IGN in BMI1 defect models restored osteogenesis. Overexpression of BMI1 repressed transcripts of RUNX2 and PPARγ, in osteogenesis and adipogenesis, respectively, which lead to decreased lineage specification potential in MSCs. These data show that BMI1 regulates cell proliferation, apoptosis, and differentiation of human MSCs.
-
-
-
Induced pluripotent stem cell-derived mesenchymal stem cells: A leap toward personalized therapies.
Authors: Jason Whitt, Krishna C. Vallabhaneni, Patrice Penfornis and Radhika PochampallyMesenchymal Stem/stromal cell (MSCs) transplantation procedures have been used since the 1960’s to treat leukemia and other diseases, but due to the risks involved only patients with life threatening illnesses were typically subjected to the transplantation procedure until the last decade. Recent advancements in transplantation techniques have made it more feasible to use it for non-life-threatening diseases. However, the potential uses for stem cells are still limited by their rarity, and, in the case of allogeneic transplants, graft-vs.-host complications. An evolving alternative to conventional stem cell therapies is induced pluripotent stem-cell derived mesenchymal stem/stromal cells (iPSC- MSCs), which have a multi-lineage potential comparable to conventionally acquired MSCs with the added benefit of being less immunoreactive. However there are still many hurdles left to be overcome before they can be used regularly for personalized therapies. This review will focus on recent advancements that have been made regarding the role MSCs play in tumor development and the potential uses iPSC-MSCs may have in future cancer treatment.
-
-
-
Neurogenic plasticity of mesenchymal stem cell, an alluring cellular replacement for traumatic brain injury
Traumatic brain injury (TBI) imposes horrendous neurophysiological alterations leading to most devastating forms of neuro-disability. Which includes impaired cognition, distorted locomotors activity and psychosomatic disability in both youths and adults. Emerging evidence from recent studies has identified mesenchymal stem cells (MSCs) as one of the promising category of stem cells having excellent neuroregenerative capability in TBI victims. Some of the clinical and animal studies reported that MSCs transplantation could cure neuronal damage as well as improve cognitive and locomotors behaviors in TBI. However, mechanism behind their broad spectrum neuroregenerative potential in TBI has not been reviewed yet. Therefore, in the present article, we present a comprehensive data on the important attributes of MSCs, such as neurotransdifferentiation, neuroprotection, axonal repair and plasticity, maintenance of blood-brain integrity, reduction of reactive oxygen species (ROS) and immunomodulation. We have reviewed in detail the crucial neurogenic capabilities of MSCs in vivo and provided consolidated knowledge regarding their cellular remodeling in TBI for future therapeutic implications.
-
-
-
Advances in Stem Cell Therapy for Leukemia
Authors: Hong Tian, Qi Qu, Liming Liu and Depei WuAllogeneic hematopoietic stem cell transplantation (allo-HSCT) is the most effective post remission treatment for leukemia, resulting in lower relapse rates than alternative therapies. However, it is limited by the lack of suitable human leukocyte antigen (HLA) matched donors and high rates of transplant-related morbidity and mortality. Cord blood transplantation (CBT) and haploidentical SCT (haplo-SCT) expand the potential donor pool but are also associated with major complications. Co-infusion of third-party donor stem cells with a CBT/haplo-SCT, which is called “dual transplantation,” has been reported to improve the outcome of HSCT by accelerating hematopoietic reconstitution and reducing the incidence of graft-versus-host disease (GVHD). In addition, infusion of HLA-mismatched donor granulocyte colony-stimulating factor–mobilized donor peripheral blood stem cells after chemotherapy, the so called “microtransplantation”, has been shown to promote the graft–versus-leukemia effect and hasten hematopoietic recovery without amplifying GVHD. Herein, we review recent advances in stem cell therapy for leukemia with a specific focus on dual transplantation and microtransplantation.
-
-
-
The Therapeutic Potential of Induced Pluripotent Stem Cells After Stroke: Evidence from Rodent Models
Authors: Karlijn Zents and Sjef CoprayStroke is the second most common cause of death and the leading cause of disability in the world. About 30% of the people that are affected by stroke die within a year; 25% of the patients that survive stroke remain in need of care after a year. Therefore, stroke is a major burden for health care costs. The most common subtype is ischemic stroke. This type is characterized by a reduced and insufficient blood supply to a certain part of the brain. Despite the high prevalence of stroke, the currently used therapeutic interventions are limited. No therapies that aim to restore damaged neuronal tissue or to promote recovery are available nowadays. Transplantation of stem cell-derived cells has been investigated as a potential regenerative and protective treatment. Embryonic stem cell (ESC)-based cell therapy in rodent models of stroke has been shown to improve functional outcome. However, the clinical use of ESCs still raises ethical questions and implantation of ESC-derived cells requires continuous immunosuppression. The groundbreaking detection of induced pluripotent stem cells (iPSCs) has provided a most promising alternative. This mini-review summarizes current literature in which the potential use of iPSC-derived cells has been tested in rodent models of stroke. iPSC-based cell therapy has been demonstrated to improve motor function, decrease stroke volume, promote neurogenesis and angiogenesis and to exert immunomodulatory, anti-inflammatory effects in the brain of stroke-affected rodents.
-
Volumes & issues
-
Volume 20 (2025)
-
Volume 19 (2024)
-
Volume 18 (2023)
-
Volume 17 (2022)
-
Volume 16 (2021)
-
Volume 15 (2020)
-
Volume 14 (2019)
-
Volume 13 (2018)
-
Volume 12 (2017)
-
Volume 11 (2016)
-
Volume 10 (2015)
-
Volume 9 (2014)
-
Volume 8 (2013)
-
Volume 7 (2012)
-
Volume 6 (2011)
-
Volume 5 (2010)
-
Volume 4 (2009)
-
Volume 3 (2008)
-
Volume 2 (2007)
-
Volume 1 (2006)
Most Read This Month
