Skip to content
2000
Volume 20, Issue 9
  • ISSN: 1574-888X
  • E-ISSN: 2212-3946

Abstract

Introduction

Osteoarthritis (OA) is a degenerative joint disease that can affect the many tissues of the joint. There are no officially recognized disease-modifying therapies for clinical use at this time probably due to a lack of complete comprehension of the pathogenesis of the disease. In recent years, emerging regenerative therapy and treatments with stem cells both undifferentiated and differentiated cells have gained much attention as they can efficiently promote tissue repair and regeneration.

Methods

To determine how bone marrow-derived mesenchymal stem cells (BM-MSCs) and chondrogenic differentiated MSCs (CD-MSCs) can treat OA in rats, OA was induced in Wistar rats by injecting three doses of 100 μL physiological saline containing 1 mg of MIA into rat ankle joint of the right hind leg for three consecutive days. Following the induction, the osteoarthritic rats were injected weekly with BM-MSCs or CD-MSCs at a dose of 1x106 cells/rat/dose for three weeks. In addition to morphological and histological investigations of the ankle, spectrophotometric, ELISA, and Western blot analyses were applied to detect various immunological and molecular parameters in serum and ankle.

Results

The results of the study showed that in osteoarthritic rats, BM-MSCs and CD-MSCs significantly reduced right hind paw circumference, total leucocyte count (TLC), differential leukocyte count (DLC) of neutrophils, monocytes, lymphocytes, and eosinophils, serum rheumatoid factor (RF), prostaglandin E2 (PGE2) and interleukin (IL)-1β levels, while they elevated serum IL-10 level. Additionally, BM-MSCs and CD-MSCs markedly reduced lipid peroxides (LPO) levels while they elevated superoxide dismutase (SOD) and glutathione-S-transferase (GST) activities. The monocyte chemoattractant protein-1 (MCP-1) level was significantly downregulated in ankle joint articular tissues by treatment with BM-MSCs or CD-MSCs while nuclear factor erythroid 2-related factor 2 (Nrf2) was upregulated; CD-MSCs treatment was more effective.

Conclusion

According to these findings, it can be inferred that BM-MSCs and CD-MSCs have anti-arthritic potential in MIA-induced OA; CD-MSCs therapy is more effective than MSCs. The ameliorative anti-arthritic effects may be mediated by suppressing inflammation and oxidative stress through the downregulation of MCP-1 and upregulation of Nrf2. Based on the obtained results, BM-MSCs and CD-MSCs therapies are promising new options that can be associated with other clinical treatments to improve cartilage regeneration and joint healing. However, more preclinical and clinical research is required to assess the benefits and safety of treating osteoarthritic patients with BM-MSCs and CD-MSCs.

Loading

Article metrics loading...

/content/journals/cscr/10.2174/011574888X348230241209072307
2025-01-23
2025-12-09
Loading full text...

Full text loading...

References

  1. CoryellP.R. DiekmanB.O. LoeserR.F. Mechanisms and therapeutic implications of cellular senescence in osteoarthritis.Nat. Rev. Rheumatol.2021171475710.1038/s41584‑020‑00533‑733208917
    [Google Scholar]
  2. KloppenburgM. BerenbaumF. Osteoarthritis year in review 2019: Epidemiology and therapy.Osteoarthritis Cartilage202028324224810.1016/j.joca.2020.01.00231945457
    [Google Scholar]
  3. Di NicolaV. Degenerative osteoarthritis a reversible chronic disease.Regen. Ther.20201514916010.1016/j.reth.2020.07.00733426213
    [Google Scholar]
  4. HamdallaH.M. AhmedR.R. GalalyS.R. AhmedO.M. NaguibI.A. AlghamdiB.S. Abdul-HamidM. Assessment of the efficacy of bone marrow-derived mesenchymal stem cells against a monoiodoacetate-induced osteoarthritis model in wistar rats.Stem Cells Int.2022a202211410.1155/2022/190040336017131
    [Google Scholar]
  5. HamdallaH.M. AhmedR.R. GalalyS.R. NaguibI.A. AlghamdiB.S. AhmedO.M. FarghaliA. Abdul-HamidM. Ameliorative effect of curcumin nanoparticles against monosodium iodoacetate-induced knee osteoarthritis in rats.Mediators Inflamm.2022b202211410.1155/2022/835347236578323
    [Google Scholar]
  6. ZhangW. MoskowitzR.W. NukiG. AbramsonS. AltmanR.D. ArdenN. Bierma-ZeinstraS. BrandtK.D. CroftP. DohertyM. DougadosM. HochbergM. HunterD.J. KwohK. LohmanderL.S. TugwellP. OARSI recommendations for the management of hip and knee osteoarthritis, Part II: OARSI evidence-based, expert consensus guidelines.Osteoarthritis Cartilage200816213716210.1016/j.joca.2007.12.01318279766
    [Google Scholar]
  7. HochbergM.C. DougadosM. Pharmacological therapy of osteoarthritis.Best Pract. Res. Clin. Rheumatol.200115458359310.1053/berh.2001.017511567541
    [Google Scholar]
  8. ChenY. LuoX. KangR. CuiK. OuJ. ZhangX. LiangP. Current therapies for osteoarthritis and prospects of CRISPR-based genome, epigenome, and RNA editing in osteoarthritis treatment.J. Genet. Genomics202451215918310.1016/j.jgg.2023.07.00737516348
    [Google Scholar]
  9. JamesS.L. AbateD. AbateK.H. AbayS.M. AbbafatiC. AbbasiN. AbbastabarH. Abd-AllahF. AbdelaJ. AbdelalimA. AbdollahpourI. AbdulkaderR.S. AbebeZ. AberaS.F. AbilO.Z. AbrahaH.N. Abu-RaddadL.J. Abu-RmeilehN.M.E. AccrombessiM.M.K. AcharyaD. AcharyaP. AckermanI.N. AdamuA.A. AdebayoO.M. AdekanmbiV. AdetokunbohO.O. AdibM.G. AdsuarJ.C. AfanviK.A. AfaridehM. AfshinA. AgarwalG. AgesaK.M. AggarwalR. AghayanS.A. AgrawalS. AhmadiA. AhmadiM. AhmadiehH. AhmedM.B. AichourA.N. AichourI. AichourM.T.E. AkinyemijuT. AkseerN. Al-AlyZ. Al-EyadhyA. Al-MekhlafiH.M. Al-RaddadiR.M. AlahdabF. AlamK. AlamT. AlashiA. AlavianS.M. AleneK.A. AlijanzadehM. Alizadeh-NavaeiR. AljunidS.M. AlkerwiA. AllaF. AllebeckP. AlouaniM.M.L. AltirkawiK. Alvis-GuzmanN. AmareA.T. AmindeL.N. AmmarW. AmoakoY.A. AnberN.H. AndreiC.L. AndroudiS. AnimutM.D. AnjomshoaM. AnshaM.G. AntonioC.A.T. AnwariP. ArablooJ. ArauzA. AremuO. ArianiF. ArmoonB. ÄrnlövJ. AroraA. ArtamanA. AryalK.K. AsayeshH. AsgharR.J. AtaroZ. AtreS.R. AusloosM. Avila-BurgosL. AvokpahoE.F.G.A. AwasthiA. Ayala QuintanillaB.P. AyerR. AzzopardiP.S. BabazadehA. BadaliH. BadawiA. BaliA.G. BallesterosK.E. BallewS.H. BanachM. BanoubJ.A.M. BanstolaA. BaracA. BarbozaM.A. Barker-ColloS.L. BärnighausenT.W. BarreroL.H. BauneB.T. Bazargan-HejaziS. BediN. BeghiE. BehzadifarM. BehzadifarM. BéjotY. BelachewA.B. BelayY.A. BellM.L. BelloA.K. BensenorI.M. BernabeE. BernsteinR.S. BeuranM. BeyranvandT. BhalaN. BhattaraiS. BhaumikS. BhuttaZ.A. BiadgoB. BijaniA. BikbovB. BilanoV. BililignN. Bin SayeedM.S. BisanzioD. BlackerB.F. BlythF.M. Bou-OrmI.R. BoufousS. BourneR. BradyO.J. BraininM. BrantL.C. BrazinovaA. BreitbordeN.J.K. BrennerH. BriantP.S. BriggsA.M. BrikoA.N. BrittonG. BrughaT. BuchbinderR. BusseR. ButtZ.A. Cahuana-HurtadoL. CanoJ. CárdenasR. CarreroJ.J. CarterA. CarvalhoF. Castañeda-OrjuelaC.A. Castillo RivasJ. CastroF. Catalá-LópezF. CercyK.M. CerinE. ChaiahY. ChangA.R. ChangH-Y. ChangJ-C. CharlsonF.J. ChattopadhyayA. ChattuV.K. ChaturvediP. ChiangP.P-C. ChinK.L. ChitheerA. ChoiJ-Y.J. ChowdhuryR. ChristensenH. ChristopherD.J. CicuttiniF.M. CiobanuL.G. CirilloM. ClaroR.M. Collado-MateoD. CooperC. CoreshJ. CortesiP.A. CortinovisM. CostaM. CousinE. CriquiM.H. CromwellE.A. CrossM. CrumpJ.A. DadiA.F. DandonaL. DandonaR. DarganP.I. DaryaniA. Das GuptaR. Das NevesJ. DasaT.T. DaveyG. DavisA.C. DavitoiuD.V. De CourtenB. De La HozF.P. De LeoD. De NeveJ-W. DegefaM.G. DegenhardtL. DeiparineS. DellavalleR.P. DemozG.T. DeribeK. DervenisN. Des JarlaisD.C. DessieG.A. DeyS. DharmaratneS.D. DinberuM.T. DiracM.A. DjalaliniaS. DoanL. DokovaK. DokuD.T. DorseyE.R. DoyleK.E. DriscollT.R. DubeyM. DubljaninE. DukenE.E. DuncanB.B. DuraesA.R. EbrahimiH. EbrahimpourS. EchkoM.M. EdvardssonD. EffiongA. EhrlichJ.R. El BcheraouiC. El Sayed ZakiM. El-KhatibZ. ElkoutH. ElyazarI.R.F. EnayatiA. EndriesA.Y. ErB. ErskineH.E. EshratiB. EskandariehS. EsteghamatiA. EsteghamatiS. FakhimH. Fallah OmraniV. FaramarziM. FareedM. FarhadiF. FaridT.A. FarinhaC.S.E. FarioliA. FaroA. FarvidM.S. FarzadfarF. FeiginV.L. FentahunN. FereshtehnejadS-M. FernandesE. FernandesJ.C. FerrariA.J. FeyissaG.T. FilipI. FischerF. FitzmauriceC. FoigtN.A. ForemanK.J. FoxJ. FrankT.D. FukumotoT. FullmanN. FürstT. FurtadoJ.M. FutranN.D. GallS. GanjiM. GankpeF.G. Garcia-BasteiroA.L. GardnerW.M. GebreA.K. GebremedhinA.T. GebremichaelT.G. GelanoT.F. GeleijnseJ.M. Genova-MalerasR. GeramoY.C.D. GethingP.W. GezaeK.E. GhadiriK. Ghasemi FalavarjaniK. Ghasemi-KasmanM. GhimireM. GhoshR. GhoshalA.G. GiampaoliS. GillP.S. GillT.K. GinawiI.A. GiussaniG. GnedovskayaE.V. GoldbergE.M. GoliS. Gómez-DantésH. GonaP.N. GopalaniS.V. GormanT.M. GoulartA.C. GoulartB.N.G. GradaA. GramsM.E. GrossoG. GugnaniH.C. GuoY. GuptaP.C. GuptaR. GuptaR. GuptaT. GyawaliB. HaagsmaJ.A. HachinskiV. Hafezi-NejadN. Haghparast BidgoliH. HagosT.B. HailuG.B. Haj-MirzaianA. Haj-MirzaianA. HamadehR.R. HamidiS. HandalA.J. HankeyG.J. HaoY. HarbH.L. HarikrishnanS. HaroJ.M. HasanM. HassankhaniH. HassenH.Y. HavmoellerR. HawleyC.N. HayR.J. HayS.I. Hedayatizadeh-OmranA. HeibatiB. HendrieD. HenokA. HerteliuC. HeydarpourS. HibstuD.T. HoangH.T. HoekH.W. HoffmanH.J. HoleM.K. Homaie RadE. HoogarP. HosgoodH.D. HosseiniS.M. HosseinzadehM. HostiucM. HostiucS. HotezP.J. HoyD.G. HsairiM. HtetA.S. HuG. HuangJ.J. HuynhC.K. IburgK.M. IkedaC.T. IleanuB. IlesanmiO.S. IqbalU. IrvaniS.S.N. IrvineC.M.S. IslamS.M.S. IslamiF. JacobsenK.H. JahangiryL. JahanmehrN. JainS.K. JakovljevicM. JavanbakhtM. JayatillekeA.U. JeemonP. JhaR.P. JhaV. JiJ.S. JohnsonC.O. JonasJ.B. JozwiakJ.J. JungariS.B. JürissonM. KabirZ. KadelR. KahsayA. KalaniR. KanchanT. KaramiM. Karami MatinB. KarchA. KaremaC. KarimiN. KarimiS.M. KasaeianA. KassaD.H. KassaG.M. KassaT.D. KassebaumN.J. KatikireddiS.V. KawakamiN. KaryaniA.K. KeighobadiM.M. KeiyoroP.N. KemmerL. KempG.R. KengneA.P. KerenA. KhaderY.S. KhafaeiB. KhafaieM.A. KhajaviA. KhalilI.A. KhanE.A. KhanM.S. KhanM.A. KhangY-H. KhazaeiM. KhojaA.T. KhosraviA. KhosraviM.H. KiadaliriA.A. KiirithioD.N. KimC-I. KimD. KimP. KimY-E. KimY.J. KimokotiR.W. KinfuY. KisaA. Kissimova-SkarbekK. KivimäkiM. KnudsenA.K.S. KocarnikJ.M. KochharS. KokuboY. KololaT. KopecJ.A. KosenS. KotsakisG.A. KoulP.A. KoyanagiA. KravchenkoM.A. KrishanK. KrohnK.J. Kuate DefoB. Kucuk BicerB. KumarG.A. KumarM. KyuH.H. LadD.P. LadS.D. LafranconiA. LallooR. LallukkaT. LamiF.H. LansinghV.C. LatifiA. LauK.M-M. LazarusJ.V. LeasherJ.L. LedesmaJ.R. LeeP.H. LeighJ. LeungJ. LeviM. LewyckaS. LiS. LiY. LiaoY. LibenM.L. LimL-L. LimS.S. LiuS. LodhaR. LookerK.J. LopezA.D. LorkowskiS. LotufoP.A. LowN. LozanoR. LucasT.C.D. LucchesiL.R. LuneviciusR. LyonsR.A. MaS. MacarayanE.R.K. MackayM.T. MadottoF. Magdy Abd El RazekH. Magdy Abd El RazekM. MaghavaniD.P. MahotraN.B. MaiH.T. MajdanM. MajdzadehR. MajeedA. MalekzadehR. MaltaD.C. MamunA.A. MandaA-L. ManguerraH. ManhertzT. MansourniaM.A. MantovaniL.G. MapomaC.C. MaravillaJ.C. MarcenesW. MarksA. Martins-MeloF.R. MartopulloI. MärzW. MarzanM.B. Mashamba-ThompsonT.P. MassenburgB.B. MathurM.R. MatsushitaK. MaulikP.K. MazidiM. McAlindenC. McGrathJ.J. McKeeM. MehndirattaM.M. MehrotraR. MehtaK.M. MehtaV. Mejia-RodriguezF. MekonenT. MeleseA. MelkuM. MeltzerM. MemiahP.T.N. MemishZ.A. MendozaW. MengistuD.T. MengistuG. MensahG.A. MeretaS.T. MeretojaA. MeretojaT.J. MestrovicT. MezerjiN.M.G. MiazgowskiB. MiazgowskiT. MillearA.I. MillerT.R. MiltzB. MiniG.K. MirarefinM. MirrakhimovE.M. MisganawA.T. MitchellP.B. MitikuH. MoazenB. MohajerB. MohammadK.A. MohammadifardN. Mohammadnia-AfrouziM. MohammedM.A. MohammedS. MohebiF. MoitraM. MokdadA.H. MolokhiaM. MonastaL. MoodleyY. MoosazadehM. MoradiG. Moradi-LakehM. MoradinazarM. MoragaP. MorawskaL. Moreno VelásquezI. Morgado-Da-CostaJ. MorrisonS.D. MoschosM.M. Mountjoy-VenningW.C. MousaviS.M. MrutsK.B. MucheA.A. MuchieK.F. MuellerU.O. MuhammedO.S. MukhopadhyayS. MullerK. MumfordJ.E. MurhekarM. MusaJ. MusaK.I. MustafaG. NabhanA.F. NagataC. NaghaviM. NaheedA. NahvijouA. NaikG. NaikN. NajafiF. NaldiL. NamH.S. NangiaV. NansseuJ.R. NascimentoB.R. NatarajanG. NeamatiN. NegoiI. NegoiR.I. NeupaneS. NewtonC.R.J. NgunjiriJ.W. NguyenA.Q. NguyenH.T. NguyenH.L.T. NguyenH.T. NguyenL.H. NguyenM. NguyenN.B. NguyenS.H. NicholsE. NingrumD.N.A. NixonM.R. NolutshunguN. NomuraS. NorheimO.F. NorooziM. NorrvingB. NoubiapJ.J. NouriH.R. Nourollahpour ShiadehM. NowrooziM.R. NsoesieE.O. NyasuluP.S. OdellC.M. Ofori-AsensoR. OgboF.A. OhI-H. OladimejiO. OlagunjuA.T. OlagunjuT.O. OlivaresP.R. OlsenH.E. OlusanyaB.O. OngK.L. OngS.K. OrenE. OrtizA. OtaE. OtstavnovS.S. ØverlandS. OwolabiM.O. P AM. PacellaR. PakpourA.H. PanaA. Panda-JonasS. ParisiA. ParkE-K. ParryC.D.H. PatelS. PatiS. PatilS.T. PatleA. PattonG.C. PaturiV.R. PaulsonK.R. PearceN. PereiraD.M. PericoN. PesudovsK. PhamH.Q. PhillipsM.R. PigottD.M. PillayJ.D. PiradovM.A. PirsahebM. PishgarF. Plana-RipollO. PlassD. PolinderS. PopovaS. PostmaM.J. PourshamsA. PoustchiH. PrabhakaranD. PrakashS. PrakashV. PurcellC.A. PurwarM.B. QorbaniM. QuistbergD.A. RadfarA. RafayA. RafieiA. RahimF. RahimiK. Rahimi-MovagharA. Rahimi-MovagharV. RahmanM. RahmanM.H. RahmanM.A. RahmanS.U. RaiR.K. RajatiF. RamU. RanjanP. RantaA. RaoP.C. RawafD.L. RawafS. ReddyK.S. ReinerR.C. ReinigN. ReitsmaM.B. RemuzziG. RenzahoA.M.N. ResnikoffS. RezaeiS. RezaiM.S. RibeiroA.L.P. RobertsN.L.S. RobinsonS.R. RoeverL. RonfaniL. RoshandelG. RostamiA. RothG.A. RoyA. RubagottiE. SachdevP.S. SadatN. SaddikB. SadeghiE. Saeedi MoghaddamS. SafariH. SafariY. Safari-FaramaniR. SafdarianM. SafiS. SafiriS. SagarR. SahebkarA. SahraianM.A. SajadiH.S. SalamN. SalamaJ.S. SalamatiP. SaleemK. SaleemZ. SalimiY. SalomonJ.A. SalviS.S. SalzI. SamyA.M. SanabriaJ. SangY. SantomauroD.F. SantosI.S. SantosJ.V. Santric MilicevicM.M. Sao JoseB.P. SardanaM. SarkerA.R. SarrafzadeganN. SartoriusB. SarviS. SathianB. SatpathyM. SawantA.R. SawhneyM. SaxenaS. SaylanM. SchaeffnerE. SchmidtM.I. SchneiderI.J.C. SchöttkerB. SchwebelD.C. SchwendickeF. ScottJ.G. SekerijaM. SepanlouS.G. Serván-MoriE. SeyedmousaviS. ShabaninejadH. ShafieesabetA. ShahbaziM. ShaheenA.A. ShaikhM.A. Shams-BeyranvandM. ShamsiM. ShamsizadehM. SharafiH. SharafiK. SharifM. Sharif-AlhoseiniM. SharmaM. SharmaR. SheJ. SheikhA. ShiP. ShibuyaK. ShigematsuM. ShiriR. ShirkoohiR. ShishaniK. ShiueI. ShokranehF. ShomanH. ShrimeM.G. SiS. SiabaniS. SiddiqiT.J. SigfusdottirI.D. SigurvinsdottirR. SilvaJ.P. SilveiraD.G.A. SingamN.S.V. SinghJ.A. SinghN.P. SinghV. SinhaD.N. SkiadaresiE. SlepakE.L.N. SliwaK. SmithD.L. SmithM. Soares FilhoA.M. SobaihB.H. SobhaniS. SobngwiE. SonejiS.S. SoofiM. SoosaraeiM. SorensenR.J.D. SorianoJ.B. SoyiriI.N. SposatoL.A. SreeramareddyC.T. SrinivasanV. StanawayJ.D. SteinD.J. SteinerC. SteinerT.J. StokesM.A. StovnerL.J. SubartM.L. SudaryantoA. SufiyanM.B. SunguyaB.F. SurP.J. SutradharI. SykesB.L. SylteD.O. Tabarés-SeisdedosR. TadakamadlaS.K. TadesseB.T. TandonN. TassewS.G. TavakkoliM. TaveiraN. TaylorH.R. Tehrani-BanihashemiA. TekalignT.G. TekelemedhinS.W. TekleM.G. TemesgenH. TemsahM-H. TemsahO. TerkawiA.S. TeweldemedhinM. ThankappanK.R. ThomasN. TilahunB. ToQ.G. TonelliM. Topor-MadryR. TopouzisF. TorreA.E. Tortajada-GirbésM. TouvierM. Tovani-PaloneM.R. TowbinJ.A. TranB.X. TranK.B. TroegerC.E. TruelsenT.C. TsilimbarisM.K. TsoiD. Tudor CarL. TuzcuE.M. UkwajaK.N. UllahI. UndurragaE.A. UnutzerJ. UpdikeR.L. UsmanM.S. UthmanO.A. VaduganathanM. VaeziA. ValdezP.R. VarugheseS. VasankariT.J. VenketasubramanianN. VillafainaS. ViolanteF.S. VladimirovS.K. VlassovV. VollsetS.E. VosoughiK. VujcicI.S. WagnewF.S. WaheedY. WallerS.G. WangY. WangY-P. WeiderpassE. WeintraubR.G. WeissD.J. WeldegebrealF. WeldegwergsK.G. WerdeckerA. WestT.E. WhitefordH.A. WideckaJ. WijeratneT. WilnerL.B. WilsonS. WinklerA.S. WiyehA.B. WiysongeC.S. WolfeC.D.A. WoolfA.D. WuS. WuY-C. WyperG.M.A. XavierD. XuG. YadgirS. YadollahpourA. Yahyazadeh JabbariS.H. YamadaT. YanL.L. YanoY. YaseriM. YasinY.J. YeshanehA. YimerE.M. YipP. YismaE. YonemotoN. YoonS-J. YotebiengM. YounisM.Z. YousefifardM. YuC. ZadnikV. ZaidiZ. ZamanS.B. ZamaniM. ZareZ. ZelekeA.J. ZenebeZ.M. ZhangK. ZhaoZ. ZhouM. ZodpeyS. ZuckerI. VosT. MurrayC.J.L. Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990–2017: A systematic analysis for the Global Burden of Disease Study 2017.Lancet2018392101591789185810.1016/S0140‑6736(18)32279‑730496104
    [Google Scholar]
  10. HunterD.J. Bierma-ZeinstraS. Osteoarthritis.Lancet2019393101821745175910.1016/S0140‑6736(19)30417‑931034380
    [Google Scholar]
  11. LanzaR. LangerR. VacantiJ.P. Principles of Tissue Engineering3rd edBurlington, VT, USAAcademic Press2011
    [Google Scholar]
  12. ČamernikK. BarličA. DrobničM. MarcJ. JerasM. ZupanJ. Mesenchymal stem cells in the musculoskeletal sys-tem: From animal models to human tissue regeneration? Stem Cell Rev.Stem Cell Rev.201814334636910.1007/s12015‑018‑9800‑629556896
    [Google Scholar]
  13. MianehsazE. MirzaeiH.R. Mahjoubin-TehranM. RezaeeA. SahebnasaghR. PourhanifehM.H. MirzaeiH. HamblinM.R. Mesenchymal stem cell-derived exosomes: A new therapeutic approach to osteoarthritis?Stem Cell Res. Ther.201910134010.1186/s13287‑019‑1445‑031753036
    [Google Scholar]
  14. MirzaeiH. SahebkarA. SichaniL.S. MoridikiaA. NazariS. Sadri NahandJ. salehiH. StenvangJ. MasoudifarA. MirzaeiH.R. JaafariM.R. Therapeutic application of multipotent stem cells.J. Cell. Physiol.201823342815282310.1002/jcp.2599028475219
    [Google Scholar]
  15. WuJ. KuangL. ChenC. YangJ. ZengW.N. LiT. ChenH. HuangS. FuZ. LiJ. LiuR. NiZ. ChenL. YangL. miR-100-5p-abundant exosomes derived from infrapatellar fat pad MSCs protect articular cartilage and ameliorate gait abnormalities via inhibition of mTOR in osteoarthritis.Biomaterials20192068710010.1016/j.biomaterials.2019.03.02230927715
    [Google Scholar]
  16. Moradian TehraniR. VerdiJ. NoureddiniM. SalehiR. SalariniaR. MosalaeiM. SimonianM. AlaniB. GhiasiM.R. JaafariM.R. MirzaeiH.R. MirzaeiH. Mesenchymal stem cells: A new platform for targeting suicide genes in cancer.J. Cell. Physiol.201823353831384510.1002/jcp.2609428703313
    [Google Scholar]
  17. MatasJ. OrregoM. AmenabarD. InfanteC. Tapia-LimonchiR. CadizM.I. Alcayaga-MirandaF. GonzálezP.L. MuseE. KhouryM. FigueroaF.E. EspinozaF. Umbilical cord-derived mesenchymal stromal cells (MSCs) for knee osteo-arthritis: Repeated MSC dosing is superior to a single MSC dose and to hyaluronic acid in a controlled randomized phase I/II trial.Stem Cells Transl. Med.20198321522410.1002/sctm.18‑005330592390
    [Google Scholar]
  18. EnomotoT. AkagiR. OgawaY. YamaguchiS. HoshiH. SasakiT. SatoY. NakagawaR. KimuraS. OhtoriS. SashoT. Timing of intra-articular injection of synovial mesenchymal stem cells affects cartilage restoration in a partial thickness cartilage defect model in rats.Cartilage202011112212910.1177/194760351878654229989441
    [Google Scholar]
  19. YoshimuraH. MunetaT. NimuraA. YokoyamaA. KogaH. SekiyaI. Comparison of rat mesenchymal stem cells derived from bone marrow, synovium, periosteum, adipose tissue, and muscle.Cell Tissue Res.3273449462200710.1007/s00441‑006‑0308‑z
    [Google Scholar]
  20. Jiang Roles of vitamin D and TGF-β1 in BMSCs.Cell. Physiol. Biochem.2017422230224110.1159/00047999728817810
    [Google Scholar]
  21. PuetzerJ.L. PetitteJ.N. LoboaE.G. Comparative review of growth factors for induction of three-dimensional in vitro chondrogenesis in human mesenchymal stem cells isolated from bone marrow and adipose tissue.Tissue Eng. Part B Rev.201016443544410.1089/ten.teb.2009.070520196646
    [Google Scholar]
  22. DengS. zhouX. GeZ. SongY. WangH. LiuX. ZhangD. Exosomes from adipose-derived mesenchymal stem cells ameliorate cardiac damage after myocardial infarction by activating S1P/SK1/S1PR1 signaling and promoting macrophage M2 polarization.Int. J. Biochem. Cell Biol.201911410556410.1016/j.biocel.2019.10556431276786
    [Google Scholar]
  23. LiN. HuaJ. Interactions between mesenchymal stem cells and the immune system.Cell. Mol. Life Sci.201774132345236010.1007/s00018‑017‑2473‑528214990
    [Google Scholar]
  24. WangY. ChenX. CaoW. ShiY. Plasticity of mesenchymal stem cells in immunomodulation: Pathological and therapeutic implications.Nat. Immunol.201415111009101610.1038/ni.300225329189
    [Google Scholar]
  25. ZhaoX. ZhaoY. SunX. XingY. WangX. YangQ. Immunomodulation of MSCs and MSC-derived extracellular vesicles in osteoarthritis.Front. Bioeng. Biotechnol.2020857505710.3389/fbioe.2020.57505733251195
    [Google Scholar]
  26. MolnarV. MatišićV. KodvanjI. BjelicaR. JelečŽ. HudetzD. RodE. ČukeljF. VrdoljakT. VidovićD. StarešinićM. SabalićS. DobričićB. PetrovićT. AntičevićD. BorićI. KoširR. ZmrzljakU.P. PrimoracD. Cytokines and chemokines involved in osteoarthritis pathogenesis.Int. J. Mol. Sci.20212217920810.3390/ijms2217920834502117
    [Google Scholar]
  27. Garcia-ContrerasM. ThakorA.S. Human adipose tissue-derived mesenchymal stem cells and their extracellular vesicles modulate lipopolysaccharide activated human microglia.Cell Death Discov.2021719810.1038/s41420‑021‑00471‑733972507
    [Google Scholar]
  28. BennettN.T. SchultzG.S. Growth factors and wound healing: Biochemical properties of growth factors and their receptors.Am. J. Surg.1993165672873710.1016/S0002‑9610(05)80797‑48506974
    [Google Scholar]
  29. FaulknorR.A. OleksonM.A. EkwuemeE.C. KrzyszczykP. FreemanJ.W. BerthiaumeF. Hypoxia impairs mesenchymal stromal cell-induced macrophage M1 to M2 transition.Technology (Singap.)201752818610.1142/S233954781750004229552603
    [Google Scholar]
  30. NiJ. LiuX. YinY. ZhangP. XuY.W. LiuZ. Exosomes derived from TIMP2-modified human umbilical cord mesenchymal stem cells enhance the repair effect in rat model with myocardial infarction possibly by the Akt/ SFRP2 pathway.Oxid. Med. Cell. Longev.2019201911910.1155/2019/195894131182988
    [Google Scholar]
  31. KurodaK. KabataT. HayashiK. MaedaT. KajinoY. IwaiS. FujitaK. HasegawaK. InoueD. SugimotoN. TsuchiyaH. The paracrine effect of adipose-derived stem cells inhibits osteoarthritis progression.BMC Musculoskelet. Disord.201516123610.1186/s12891‑015‑0701‑426336958
    [Google Scholar]
  32. DuffyM.M. PindjakovaJ. HanleyS.A. McCarthyC. WeidhoferG.A. SweeneyE.M. EnglishK. ShawG. MurphyJ.M. BarryF.P. MahonB.P. BeltonO. CeredigR. GriffinM.D. Mesenchymal stem cell inhibition of T-helper 17 cell-differentiation is triggered by cell–cell contact and mediated by prostaglandin E2 via the EP4 receptor.Eur. J. Immunol.201141102840285110.1002/eji.20114149921710489
    [Google Scholar]
  33. PersY.M. RuizM. NoëlD. JorgensenC. Mesenchymal stem cells for the management of inflammation in osteoarthritis: State of the art and perspectives.Osteoarthritis Cartilage201523112027203510.1016/j.joca.2015.07.00426521749
    [Google Scholar]
  34. WangS. ZhuR. LiH. LiJ. HanQ. ZhaoR.C. Mesenchymal stem cells and immune disorders: From basic science to clinical transition.Front. Med.201830062557
    [Google Scholar]
  35. KimJ. HemattiP. Mesenchymal stem cell-educated macrophages: A novel type of alternatively activated macrophages.Exp. Hematol.200937121445145310.1016/j.exphem.2009.09.00419772890
    [Google Scholar]
  36. JoC.H. LeeY.G. ShinW.H. KimH. ChaiJ.W. JeongE.C. KimJ.E. ShimH. ShinJ.S. ShinI.S. RaJ.C. OhS. YoonK.S. Intra-articular injection of mesenchymal stem cells for the treatment of osteoarthritis of the knee: A proof-of-concept clinical trial.Stem Cells20143251254126610.1002/stem.163424449146
    [Google Scholar]
  37. WuM.C. MengQ.H. Current understanding of mesenchymal stem cells in liver diseases.World J. Stem Cells20211391349135910.4252/wjsc.v13.i9.134934630867
    [Google Scholar]
  38. Rodríguez-FuentesD.E. Fernández-GarzaL.E. Samia-MezaJ.A. Barrera-BarreraS.A. CaplanA.I. Barrera-SaldañaH.A. Mesenchymal stem cells current clinical applications: A systematic review.Arch. Med. Res.20215219310110.1016/j.arcmed.2020.08.00632977984
    [Google Scholar]
  39. ZhangQ. LiuJ. DuanH. LiR. PengW. WuC. Activation of Nrf2/HO-1 signaling: An important molecular mechanism of herbal medicine in the treatment of atherosclerosis via the protection of vascular endothelial cells from oxidative stress.J. Adv. Res.202134436310.1016/j.jare.2021.06.02335024180
    [Google Scholar]
  40. MansouriA. ReinerŽ. RuscicaM. Tedeschi-ReinerE. RadbakhshS. Bagheri EktaM. SahebkarA. Antioxidant effects of statins by modulating Nrf2 and Nrf2/HO-1 signaling in different diseases.J. Clin. Med.2022115131310.3390/jcm1105131335268403
    [Google Scholar]
  41. SuC.J. ZhangJ.T. ZhaoF.L. XuD.L. PanJ. LiuT. Resolvin D1/N- formyl peptide receptor 2 ameliorates paclitaxel-induced neuropathic pain through the activation of IL-10/Nrf2/HO-1 pathway in mice.Front. Immunol.202314109175310.3389/fimmu.2023.109175336993950
    [Google Scholar]
  42. MohammadzadehM. HalabianR. GharehbaghianA. AmirizadehN. Jahanian-NajafabadiA. RoushandehA.M. RoudkenarM.H. Nrf-2 overexpression in mesenchymal stem cells reduces oxidative stress-induced apoptosis and cytotoxicity.Cell Stress Chaperones201217555356510.1007/s12192‑012‑0331‑922362068
    [Google Scholar]
  43. SzekaneczZ. HalloranM.M. VolinM.V. WoodsJ.M. StrieterR.M. HainesG.K. KunkelS.L. BurdickM.D. KochA.E. Temporal expression of inflammatory cytokines and chemokines in rat adjuvant-induced arthritis.Arthritis Rheum.20004361266127710.1002/1529‑0131(200006)43:6<1266::AID‑ANR9>3.0.CO;2‑P10857785
    [Google Scholar]
  44. AkiyamaK. ChenC. WangD. XuX. QuC. YamazaT. CaiT. ChenW. SunL. ShiS. Mesenchymal-stem-cell-induced immunoregulation involves FAS-ligand-/FAS-mediated T cell apoptosis.Cell Stem Cell201210554455510.1016/j.stem.2012.03.00722542159
    [Google Scholar]
  45. ZhangR. MaJ. HanJ. ZhangW. MaJ. Mesenchymal stem cell related therapies for cartilage lesions and osteoarthritis.Am. J. Transl. Res.201911106275628931737182
    [Google Scholar]
  46. SongY. ZhangJ. XuH. LinZ. ChangH. LiuW. KongL. Mesenchymal stem cells in knee osteoarthritis treatment: A systematic review and meta-analysis.J. Orthop. Translat.20202412113010.1016/j.jot.2020.03.01532913710
    [Google Scholar]
  47. CetinZ. SaygiliE.I. GörgisenG. SokulluE. Preclinical experimental applications of miRNA loaded BMSC extracellular vesicles.Stem Cell Rev. Rep.202117247150110.1007/s12015‑020‑10082‑x33398717
    [Google Scholar]
  48. ThapaR. MogladE. GoyalA. BhatA.A. AlmalkiW.H. KazmiI. AlzareaS.I. AliH. OliverB.G. MacLoughlinR. DurejaH. SinghS.K. DuaK. GuptaG. Deciphering NF-kappaB pathways in smoking-related lung carcinogenesis.EXCLI J.202423991101739253534
    [Google Scholar]
  49. HussainM.S. AltamimiA.S.A. AfzalM. AlmalkiW.H. KazmiI. AlzareaS.I. GuptaG. ShahwanM. KukretiN. WongL.S. KumarasamyV. SubramaniyanV. Kaempferol: Paving the path for advanced treatments in aging-related diseases.Exp. Gerontol.202418811238910.1016/j.exger.2024.11238938432575
    [Google Scholar]
  50. JimboS. TerashimaY. TakebayashiT. TeramotoA. OgonI. A novel rat model of ankle osteoarthritis induced by the application of monoiodoacetate.Br. J. Med. Med. Res.201762602
    [Google Scholar]
  51. PittengerM.F. MackayA.M. BeckS.C. JaiswalR.K. DouglasR. MoscaJ.D. MoormanM.A. SimonettiD.W. CraigS. MarshakD.R. Multilineage potential of adult human mesenchymal stem cells.Science1999284541114314710.1126/science.284.5411.14310102814
    [Google Scholar]
  52. AggarwalS. PittengerM.F. Human mesenchymal stem cells modulate allogeneic immune cell responses.Blood200510541815182210.1182/blood‑2004‑04‑155915494428
    [Google Scholar]
  53. ChaudharyJ.K. RathP.C. A simple method for isolation, propagation, characterization, and differentiation of adult mouse bone marrow-derived multipotent mesenchymal stem cells.J. Cell Sci. Ther.20178261
    [Google Scholar]
  54. AhmedE.A. AhmedO.M. FahimH.I. Combinatory effects of bone marrow-derived mesenchymal stem cells and in-domethacin on adjuvant-induced arthritis in Wistar rats: roles of IL-1β, IL-4, Nrf-2, and oxidative stress.J. Evid. Based Complementary Altern. Med.2021a2021a8899143
    [Google Scholar]
  55. AhmedO.M. EbaidH. El-NahassE.S. RagabM. AlhazzaI.M. Nephroprotective effect of pleurotus ostreatus and agaricus bisporus extracts and carvedilol on ethylene glycol-induced urolithiasis: Roles of NF-κB, p53, bcl-2, bax and bak.Biomolecules2020109131710.3390/biom1009131732937925
    [Google Scholar]
  56. SolchagaL.A. PenickK.J. WelterJ.F. Chondrogenic differentiation of bone marrow-derived mesenchymal stem cells: Tips and tricks.Methods Mol. Biol.201169825327810.1007/978‑1‑60761‑999‑4_2021431525
    [Google Scholar]
  57. KalamegamG. AbbasM. GariM. AlsehliH. KadamR. AlkaffM. ChaudharyA. Al-QahtaniM. AbuzenadahA. KafienahW. MobasheriA. Pelleted bone marrow derived mesenchymal stem cells are better protected from the deleterious effects of arthroscopic heat shock.Front. Physiol.2016718010.3389/fphys.2016.0018027252654
    [Google Scholar]
  58. HsiehC.C. ChangC.C. HsuP.J. ChenL. YenB.L. Protocol for efficient human MSC chondrogenesis via Wnt antagonism instead of TGF-β.STAR Protoc.20234410272810.1016/j.xpro.2023.10272837979177
    [Google Scholar]
  59. van BuulG.M. SiebeltM. LeijsM.J.C. BosP.K. WaarsingJ.H. KopsN. WeinansH. VerhaarJ.A.N. BernsenM.R. van OschG.J.V.M. Mesenchymal stem cells reduce pain but not degenerative changes in a mono-iodoacetate rat model of osteoarthritis.J. Orthop. Res.20143291167117410.1002/jor.2265024839120
    [Google Scholar]
  60. AhmedE.A. AhmedO.M. FahimH.I. AliT.M. ElesawyB.H. AshourM.B. Potency of bone marrow-derived mesenchymal stem cells and indomethacin in complete Freund’s adjuvant-induced arthritic rats: roles of TNF-α, IL-10, iNOS, MMP-9, and TGF-β1.Stem Cells Int.2021b202111110.1155/2021/666560133884000
    [Google Scholar]
  61. MialeJ.B. Laboratory medicine - Haematology.J. R. Coll. Physicians Lond.1972643803855043441
    [Google Scholar]
  62. GargP. GoyalV. Role of synovial fluid examination in diagnosis of joint diseases.J. Clin. Diagn. Res.2018127EC06EC09
    [Google Scholar]
  63. SuvarnaK.S. LaytonC. BancroftJ.D. Bancroft’s Theory and Practice of Histological Techniques E-BookLondon, UKElsevier2017
    [Google Scholar]
  64. SanchoD. GómezM. ViedmaF. EspluguesE. Gordón-AlonsoM. Angeles García-LópezM. de la FuenteH. Martínez-AC. LauzuricaP. Sánchez-MadridF. CD69 downregulates autoimmune reactivity through active transforming growth factor-β production in collagen-induced arthritis.J. Clin. Invest.2003112687288210.1172/JCI20031911212975472
    [Google Scholar]
  65. GözelN. ÇakirerM. KarataşA. TuzcuM. ÖzdemirF.A. DağliA.F. ŞahinK. KocaS.S. Sorafenib reveals antiarthritic potentials in collagen induced experimental arthritis model.Arch. Rheumatol.201833330931510.5606/ArchRheumatol.2018.665230632530
    [Google Scholar]
  66. LiuG. WuR. YangB. ShiY. DengC. AtalaA. ZhangY. A cocktail of growth factors released from a heparin hyaluron-ic-acid hydrogel promotes the myogenic potential of human urine-derived stem cells in vivo.Acta Biomater.2020
    [Google Scholar]
  67. MustonenA.M. NieminenP. Extracellular vesicles and their potential significance in the pathogenesis and treatment of osteoarthritis.Pharmaceuticals (Basel)202114431510.3390/ph1404031533915903
    [Google Scholar]
  68. WuX. WangY. XiaoY. CrawfordR. MaoX. PrasadamI. Extracellular vesicles: Potential role in osteoarthritis regenerative medicine.J. Orthop. Translat.202021738010.1016/j.jot.2019.10.01232099807
    [Google Scholar]
  69. AhmedO.M. HassanM.A. SalehA.S. Combinatory effect of hesperetin and mesenchymal stem cells on the deteriorated lipid profile, heart and kidney functions and antioxidant activity in STZ-induced diabetic rats.Biocell2020441272910.32604/biocell.2020.08040
    [Google Scholar]
  70. AhmedO.M. AshourM.B. FahimH.I. AhmedN.A. The role of Th1/Th2/Th17 cytokines and antioxidant defense system in mediating the effects of lemon and grapefruit peel hydroethanolic extracts on adjuvant-induced arthritis in rats.J. Appl. Pharm. Sci.2018810698110.7324/JAPS.2018.81010
    [Google Scholar]
  71. LiangZ. ZhangG. GanG. NarenD. LiuX. LiuH. MoJ. LuS. NieD. MaL. Preclinical short-term and long-term safety of human bone marrow mesenchymal stem cells.Cell Transplant.2023320963689723121327110.1177/0963689723121327138059278
    [Google Scholar]
  72. JimboS. TerashimaY. TeramotoA. TakebayashiT. OgonI. WatanabeK. SatoT. IchiseN. TohseN. YamashitaT. Antinociceptive effects of hyaluronic acid on monoiodoacetate-induced ankle osteoarthritis in rats.J. Pain Res.20191219120010.2147/JPR.S18641330655688
    [Google Scholar]
  73. SouthS. CrabtreeK. VijayagopalP. AverittD. JumaS. Dose dependent effects of whole blueberry on cartilage health and pain in a monosodium iodoacetate (MIA) induced rat model of osteoarthritis.Curr. Dev. Nutr.202042nzaa045_11010.1093/cdn/nzaa045_110
    [Google Scholar]
  74. ImH.J. KimJ.S. LiX. KotwalN. SumnerD.R. van WijnenA.J. DavisF.J. YanD. LevineB. HenryJ.L. DesevréJ. KroinJ.S. Alteration of sensory neurons and spinal response to an experimental osteoarthritis pain model.Arthritis Rheum.201062102995300510.1002/art.2760820556813
    [Google Scholar]
  75. Ferreira-GomesJ. AdãesS. SousaR.M. MendonçaM. Castro-LopesJ.M. Dose-dependent expression of neuronal injury markers during experimental osteoarthritis induced by monoiodoacetate in the rat.Mol. Pain201281744-8069-8-5010.1186/1744‑8069‑8‑5022769424
    [Google Scholar]
  76. MoonS.J. JeongJ.H. JhunJ.Y. YangE.J. MinJ.K. ChoiJ.Y. ChoM.L. Ursodeoxycholic acid ameliorates pain severity and cartilage degeneration in monosodium iodoacetate-induced osteoarthritis in rats.Immune Netw.2014141455310.4110/in.2014.14.1.4524605080
    [Google Scholar]
  77. NaveenS.V. AhmadR.E. HuiW.J. SuhaebA.M. MuraliM.R. ShanmugamR. KamarulT. Histology, glycosaminoglycan level and cartilage stiffness in monoiodoacetate-induced osteoarthritis: Comparative analysis with anterior cruciate ligament transection in rat model and human osteoarthritis.Int. J. Med. Sci.20141119710510.7150/ijms.696424396291
    [Google Scholar]
  78. ChenD. ShenJ. ZhaoW. WangT. HanL. HamiltonJ.L. ImH.J. Osteoarthritis: Toward a comprehensive understanding of pathological mechanism.Bone Res.2017511604410.1038/boneres.2016.4428149655
    [Google Scholar]
  79. CottomJ.M. MakerJ.M. Cartilage allograft techniques and materials.Clin. Podiatr. Med. Surg.2015321939810.1016/j.cpm.2014.09.01225440420
    [Google Scholar]
  80. PinalP. DharmikP. NatvarlalP. Experimental investigation of anti-rheumatoid activity of Pleurotus sajorcaju in adjuvant-induced arthritic rats.Chin. J. Nat. Med.2012104269274[i].10.3724/SP.J.1009.2012.00269
    [Google Scholar]
  81. FranchA. CastelloteC. CastellM. Blood lymphocyte subsets in rats with adjuvant arthritis.Ann. Rheum. Dis.199453746146610.1136/ard.53.7.4617944619
    [Google Scholar]
  82. BahtiarA. NurazizahM. RoselinaT. TambunanA.P. ArsiantiA. Ethanolic extracts of babandotan leaves (Ageratum conyzoides L.) prevents inflammation and proteoglycan degradation by inhibiting TNF-α and MMP-9 on osteoarthritis rats induced by monosodium iodoacetate.Asian Pac. J. Trop. Med.201710327027710.1016/j.apjtm.2017.03.00628442110
    [Google Scholar]
  83. TatiyaA.U. SalujaA.K. Further studies on membrane stabilizing, anti-inflammatory and FCA induced arthritic activity of various fractions of bark of Machilus macrantha in rats.Rev. Bras. Farmacogn.20112161052106410.1590/S0102‑695X2011005000152
    [Google Scholar]
  84. DeviS.M. BalachV. SasikalaK. ManikantanP. ArunM. KrishnanB.B. SudhaS. Elevated rheumatoid factor (RF) from peripheral blood of patients with rheumatoid arthritis (RA) has altered chromosomes in Coimbatore population.South India. J. Clin. Med. Res.20102167174
    [Google Scholar]
  85. SlaughterL. CarsonD.A. JensenF.C. HolbrookT.L. VaughanJ.H. In vitro effects of Epstein-Barr virus on peripheral blood mononuclear cells from patients with rheumatoid arthritis and normal subjects.J. Exp. Med.197814851429143410.1084/jem.148.5.1429214511
    [Google Scholar]
  86. GadS.S. FayezA.M. AbdelazizM. Abou El-ezzD. Amelioration of autoimmunity and inflammation by zinc oxide nanoparticles in experimental rheumatoid arthritis.Naunyn Schmiedebergs Arch. Pharmacol.202139491975198110.1007/s00210‑021‑02105‑234236500
    [Google Scholar]
  87. van DelftM.A.M. HuizingaT.W.J. An overview of autoantibodies in rheumatoid arthritis.J. Autoimmun.202011010239210.1016/j.jaut.2019.10239231911013
    [Google Scholar]
  88. RobinsonW.H. LepusC.M. WangQ. RaghuH. MaoR. LindstromT.M. SokoloveJ. Low-grade inflammation as a key mediator of the pathogenesis of osteoarthritis.Nat. Rev. Rheumatol.2016121058059210.1038/nrrheum.2016.13627539668
    [Google Scholar]
  89. RichardsM.M. MaxwellJ.S. WengL. AngelosM.G. GolzarianJ. Intra-articular treatment of knee osteoarthritis: From anti-inflammatories to products of regenerative medicine.Phys. Sportsmed.201644210110810.1080/00913847.2016.116827226985986
    [Google Scholar]
  90. GrayA. Marrero-BerriosI. WeinbergJ. ManchikalapatiD. SchianodiColaJ. SchlossR.S. YarmushJ. The effect of local anesthetic on pro-inflammatory macrophage modulation by mesenchymal stromal cells.Int. Immunopharmacol.201633485410.1016/j.intimp.2016.01.01926854576
    [Google Scholar]
  91. YiT. SongS.U. Immunomodulatory properties of mesenchymal stem cells and their therapeutic applications.Arch. Pharm. Res.201235221322110.1007/s12272‑012‑0202‑z22370776
    [Google Scholar]
  92. Al FaqehH. Nor HamdanB.M.Y. ChenH.C. AminuddinB.S. RuszymahB.H.I. The potential of intra-articular injection of chondrogenic-induced bone marrow stem cells to retard the progression of osteoarthritis in a sheep model.Exp. Gerontol.201247645846410.1016/j.exger.2012.03.01822759409
    [Google Scholar]
  93. ElBatshM.M. EledelR. NoreldinR.I. Effect of intra-articular injection of chondrocytes differentiated from mesenchymal stem cells in monosodium iodoacetate induced osteoarthritis in male rats.412144156202010.21608/besps.2020.29649.1059
    [Google Scholar]
  94. NamY. RimY.A. JungS.M. JuJ.H. Cord blood cell-derived iPSCs as a new candidate for chondrogenic differentiation and cartilage regeneration.Stem Cell Res. Ther.2017811610.1186/s13287‑017‑0477‑628129782
    [Google Scholar]
  95. FarrugiaM. BaronB. The role of TNF-α in rheumatoid arthritis: A focus on regulatory T cells.J. Clin. Transl. Res.201623849010.18053/jctres.02.201603.00530873466
    [Google Scholar]
  96. RagabG.H. HalfayaF.M. AhmedO.M. Abou El-KheirW. MahdiE.A. AliT.M. AlmehmadiM.M. HagagU. Platelet-rich plasma ameliorates monosodium iodoacetate-induced ankle osteoarthritis in the rat model via suppression of inflammation and oxidative stress.Evid. Based Complement. Alternat. Med.2021202111310.1155/2021/669243233531920
    [Google Scholar]
  97. Abo-AzizaF.A.M. ZakiA.K.A. Abo El-MaatyA.M. Bone marrow-derived mesenchymal stem cell (BM-MSC): A tool of cell therapy in hydatid experimentally infected rats.Cell Regen. (Lond.)201982587110.1016/j.cr.2019.11.00131844519
    [Google Scholar]
  98. FanM-P. SiM. LiB-J. HuG.H. HouY. YangW. LiuL. TangB. NieL. Cell therapy of a knee osteoarthritis rat model using precartilaginous stem cells.Eur. Rev. Med. Pharmacol. Sci.20182272119212529687871
    [Google Scholar]
  99. KondoM. YamaokaK. TanakaY. Acquiring chondrocyte phenotype from human mesenchymal stem cells under inflammatory conditions.Int. J. Mol. Sci.20141511212702128510.3390/ijms15112127025407530
    [Google Scholar]
  100. HoogduijnM.J. PoppF. VerbeekR. MasoodiM. NicolaouA. BaanC. DahlkeM.H. The immunomodulatory properties of mesenchymal stem cells and their use for immunotherapy.Int. Immunopharmacol.201010121496150010.1016/j.intimp.2010.06.01920619384
    [Google Scholar]
  101. LiF. LiX. LiuG. GaoC. LiX. Bone marrow mesenchymal stem cells decrease the expression of RANKL in collagen-induced arthritis rats via reducing the levels of IL-22.J. Immunol. Res.201920191910.1155/2019/845928131828174
    [Google Scholar]
  102. ParkK.H. MunC.H. KangM.I. LeeS.W. LeeS.K. ParkY.B. Treatment of collagen-induced arthritis using immune modulatory properties of human mesenchymal stem cells.Cell Transplant.20162561057107210.3727/096368915X68794925853338
    [Google Scholar]
  103. ChangY.H. WuK.C. DingD.C. Induced pluripotent stem cell-differentiated chondrocytes repair cartilage defect in a rabbit osteoarthritis model.Stem Cells Int.2020202011610.1155/2020/886734933224204
    [Google Scholar]
  104. YamadaE.F. SalgueiroA.F. GoulartA.S. MendesV.P. AnjosB.L. FolmerV. da SilvaM.D. Evaluation of monosodium iodoacetate dosage to induce knee osteoarthritis: Relation with oxidative stress and pain.Int. J. Rheum. Dis.201922339941010.1111/1756‑185X.1345030585422
    [Google Scholar]
  105. HalfayaF.M. RagabG.H. HagagU. AhmedO.M. ElkheirW.A. Efficacy of hyaluronic acid in the treatment of MIA-induced ankle osteoarthritis in rats and its effect on antioxidant response element.J Vet Med Res.202027210.21608/jvmr.2020.34766.1020
    [Google Scholar]
  106. AnsariM.Y. AhmadN. HaqqiT.M. Oxidative stress and inflammation in osteoarthritis pathogenesis: Role of polyphenols.Biomed. Pharmacother.202012911045210.1016/j.biopha.2020.11045232768946
    [Google Scholar]
  107. Pathak NN, Balaganur V, Lingaraju MC, Kant V, Kumar D, Kumar D, Sharma AK, Tandan SK. Effect of atorvastatin, a HMG- CoA reductase inhibitor in monosodium iodoacetate-induced osteoarthritic pain: Implication for osteoarthritis therapy. Pharmacol Rep. 2015 Jun;67(3):513-9.10.1016/j.pharep.2014.12.005
  108. ZahanO.M. SerbanO. GhermanC. FodorD. The evaluation of oxidative stress in osteoarthritis.Med. Pharm. Rep.2020931122210.15386/mpr‑142232133442
    [Google Scholar]
  109. VaillancourtF. FahmiH. ShiQ. LavigneP. RangerP. FernandesJ.C. BenderdourM. 4-Hydroxynonenal induces apoptosis in human osteoarthritic chondrocytes: The protective role of glutathione-S-transferase.Arthritis Res. Ther.2008105R10710.1186/ar250318782442
    [Google Scholar]
  110. Nejad-MoghaddamA. AjdariS. TahmasbpourE. GoodarziH. PanahiY. GhaneiM. Adipose-derived mesenchymal stem cells for treatmentof airway injuries in a patient after long-term exposure to sulfur mustard.Cell J.201719111712628367422
    [Google Scholar]
  111. BhakkiyalakshmiE. SireeshD. RamkumarK.M. Chapter 12 - Redox sensitive transcription via Nrf2-Keap1 in suppression of inflammation.Immunity and Inflammation in Health and DiseaseAcademic Press201814916110.1016/B978‑0‑12‑805417‑8.00012‑3
    [Google Scholar]
  112. SuH. WangZ. ZhouL. LiuD. ZhangN. Regulation of the Nrf2/HO-1 axis by mesenchymal stem cells-derived extracellular vesicles: Implications for disease treatment.Front. Cell Dev. Biol.202412139795410.1016/B978‑0‑12‑805417‑8.00012‑3
    [Google Scholar]
  113. GhareghomiS. Moosavi-MovahediF. SasoL. Habibi-RezaeiM. KhatibiA. HongJ. Moosavi-MovahediA.A. Modulation of Nrf2/HO-1 by natural compounds in lung cancer.Antioxidants (Basel)202312373510.3390/antiox1203073536978983
    [Google Scholar]
  114. LalR. DhaliwalJ. DhaliwalN. DharavathR.N. ChopraK. Activation of the Nrf2/HO-1 signaling pathway by dimethyl fumarate ameliorates complete Freund’s adjuvant-induced arthritis in rats.Eur. J. Pharmacol.202189917404410.1016/j.ejphar.2021.17404433745959
    [Google Scholar]
  115. WangX. YeL. ZhangK. GaoL. XiaoJ. ZhangY. Upregulation of microRNA-200a in bone marrow mesenchymal stem cells enhances the repair of spinal cord injury in rats by reducing oxidative stress and regulating Keap1/Nrf2 pathway.Artif. Organs202044774475210.1111/aor.1365631995644
    [Google Scholar]
  116. DeshmaneS.L. KremlevS. AminiS. SawayaB.E. Monocyte chemoattractant protein-1 (MCP-1): An overview.J. Interferon Cytokine Res.200929631332610.1089/jir.2008.002719441883
    [Google Scholar]
  117. HaikalS.M. AbdeltawabN.F. RashedL.A. Abd El-GalilT.I. ElmaltH.A. AminM.A. Combination therapy of mesenchymal stromal cells and interleukin-4 attenuates rheumatoid arthritis in a collagen-induced murine model.Cells20198882310.3390/cells808082331382595
    [Google Scholar]
  118. Ängeby MöllerK. KleinS. SeeligerF. FinnA. StenforsC. SvenssonC.I. Monosodium iodoacetate-induced monoarthritis develops differently in knee versus ankle joint in rats.Neurobiol. Pain2019610003610.1016/j.ynpai.2019.10003631535058
    [Google Scholar]
  119. FinnA. Ängeby MöllerK. GustafssonC. AbdelmoatyS. NordahlG. FermM. SvenssonC. Influence of model and matrix on cytokine profile in rat and human.Rheumatology (Oxford)201453122297230510.1093/rheumatology/keu28125065008
    [Google Scholar]
  120. ZhouB. YuanJ. ZhouY. GhawjiM. DengY.P. LeeA.J. LeeA.J. NairU. KangA.H. BrandD.D. YooT.J. Administering human adipose-derived mesenchymal stem cells to prevent and treat experimental arthritis.Clin. Immunol.2011141332833710.1016/j.clim.2011.08.01421944669
    [Google Scholar]
  121. UccelliA. MorettaL. PistoiaV. Mesenchymal stem cells in health and disease.Nat. Rev. Immunol.20088972673610.1038/nri239519172693
    [Google Scholar]
  122. ShiY. SuJ. RobertsA.I. ShouP. RabsonA.B. RenG. How mesenchymal stem cells interact with tissue immune responses.Trends Immunol.201233313614310.1016/j.it.2011.11.00422227317
    [Google Scholar]
  123. SuzukiK. ChosaN. SawadaS. TakizawaN. YaegashiT. IshisakiA. Enhancement of anti-inflammatory and osteogenic abilities of mesenchymal stem cells via cell-to-cell adhesion to periodontal ligament-derived fibroblasts.Stem Cells Int.20172017329649810.1155/2017/329649828167967
    [Google Scholar]
  124. ParkH.J. LeeC.K. SongS.H. YunJ.H. LeeA. ParkH.J. Highly bioavailable curcumin powder suppresses articular cartilage damage in rats with mono-iodoacetate (MIA)-induced osteoarthritis.Food Sci. Biotechnol.202029225126310.1007/s10068‑019‑00679‑532064134
    [Google Scholar]
  125. MoqbelS.A.A. HeY. XuL. MaC. RanJ. XuK. WuL. Rat chondrocyte inflammation and osteoarthritis are ameliorated by madecassoside.Oxid. Med. Cell Longev.20202020754019710.1155/2020/7540197
    [Google Scholar]
  126. PapT. Müller-LadnerU. GayR.E. GayS. Fibroblast biology. Role of synovial fibroblasts in the pathogenesis of rheumatoid arthritis.Arthritis Res.20002536136710.1186/ar11311094449
    [Google Scholar]
  127. TakP.P. BresnihanB. The pathogenesis and prevention of joint damage in rheumatoid arthritis: Advances from synovial biopsy and tissue analysis.Arthritis Rheum.200043122619263310.1002/1529‑0131(200012)43:12<2619::AID‑ANR1>3.0.CO;2‑V11145019
    [Google Scholar]
  128. SinghA. GoelS.C. GuptaK.K. KumarM. ArunG.R. PatilH. KumaraswamyV. JhaS. The role of stem cells in osteoarthri-tis: An experimental study in rabbits.Bone Joint20133323710.1302/2046‑3758.32.2000187
    [Google Scholar]
  129. GreishS. AbogreshaN. Abdel-HadyZ. ZakariaE. GhalyM. HefnyM. Human umbilical cord mesenchymal stem cells as treatment of adjuvant rheumatoid arthritis in a rat model.World J. Stem Cells201241010110910.4252/wjsc.v4.i10.10123189211
    [Google Scholar]
  130. AugelloA. KurthT. De BariS. Eur. Cell Mater.Mesenchymal stem cells: A perspective from in vitro cultures to in vivo migration and niches.20121133201010.22203/eCM.v020a11
    [Google Scholar]
  131. KuyinuE.L. NarayananG. NairL.S. LaurencinC.T. Animal models of osteoarthritis: Classification, update, and measurement of outcomes.J. Orthop. Surg. Res.20161111910.1186/s13018‑016‑0346‑526837951
    [Google Scholar]
  132. Ritskes-HoitingaM. LeenaarsC. BeumerW. Coenen-de RooT. StafleuF. MeijboomF.L.B. Improving translation by identifying evidence for more human-relevant preclinical strategies.Animals (Basel)2020107117010.3390/ani1007117032664195
    [Google Scholar]
  133. PoundP. Ritskes-HoitingaM. Is it possible to overcome issues of external validity in preclinical animal research? Why most animal models are bound to fail.J. Transl. Med.201816130410.1186/s12967‑018‑1678‑130404629
    [Google Scholar]
/content/journals/cscr/10.2174/011574888X348230241209072307
Loading
/content/journals/cscr/10.2174/011574888X348230241209072307
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test