Skip to content
2000
Volume 20, Issue 9
  • ISSN: 1574-888X
  • E-ISSN: 2212-3946

Abstract

Objectives

The osteogenic potential of periodontal ligament stem cells (PDLSCs) is crucial for periodontal tissue regeneration. Prolonged and excessive oxidative stress (OS) impairs the osteogenic function of PDLSCs. Recently, Semaphorin 3A (Sema3A) has been reported to have multiple roles in bone protection. This study aimed to investigate the protective effect of Sema3A on the osteogenic differentiation of PDLSCs under OS conditions induced by hydrogen peroxide (HO).

Methods

PDLSCs were subjected to HO treatment to induce OS. The OS indices in PDLSCs were evaluated by analyzing levels of reactive oxygen species (ROS), cell viability, and expression of antioxidant factors using relevant assay kits. A small molecule inhibitor, XAV-939, was employed to block the Wnt/β-catenin pathway. Osteogenic differentiation was assessed using alkaline phosphatase (ALP) activity staining and Alizarin Red S (ARS) staining for mineralized nodules. Expression levels of osteogenic gene markers and β-catenin were determined real-time quantitative polymerase chain reaction (RT-qPCR) or western blot (WB) analysis.

Results

The stimulation of HO induced OS in PDLSCs, resulting in a downregulation of Sema3A expression and a decrease in osteogenic markers, including ALP activity, mineralized nodule formation, and the expression of osteogenic genes (RUNX2 and ALP). However, the application of recombinant human Sema3A (rhSema3A) counteracted HO-induced OS and restored these osteogenic markers in PDLSCs under OS induced by HO. Mechanistic studies revealed that these effects were associated with an upregulation of β-catenin levels. Moreover, inhibiting β- catenin expression compromised the protective effect of Sema3A on osteogenesis in PDLSCs under OS.

Conclusion

Sema3A exerts a protective effect against HO-induced OS and activates the Wnt/β- catenin pathway to restore osteogenic differentiation impaired by OS in PDLSCs.

Loading

Article metrics loading...

/content/journals/cscr/10.2174/011574888X343230250107145153
2025-01-17
2025-12-18
Loading full text...

Full text loading...

References

  1. LarvinH. KangJ. AggarwalV.R. PavittS. WuJ. Multimorbid disease trajectories for people with periodontitis.J. Clin. Periodontol.202148121587159610.1111/jcpe.1353634409647
    [Google Scholar]
  2. HajishengallisG. ChavakisT. Local and systemic mechanisms linking periodontal disease and inflammatory comorbidities.Nat. Rev. Immunol.202121742644010.1038/s41577‑020‑00488‑633510490
    [Google Scholar]
  3. SunX. GaoJ. MengX. LuX. ZhangL. ChenR. Polarized macrophages in periodontitis: Characteristics, function, and molecular signaling.Front. Immunol.20211276333410.3389/fimmu.2021.76333434950140
    [Google Scholar]
  4. D’AiutoF. NibaliL. ParkarM. PatelK. SuvanJ. DonosN. Oxidative stress, systemic inflammation, and severe periodontitis.J. Dent. Res.201089111241124610.1177/002203451037583020739696
    [Google Scholar]
  5. ChappleI.L.C. MatthewsJ.B. The role of reactive oxygen and antioxidant species in periodontal tissue destruction.Periodontol. 2000200743116023210.1111/j.1600‑0757.2006.00178.x17214840
    [Google Scholar]
  6. MatthewsJ.B. WrightH.J. RobertsA. Ling-MountfordN. CooperP.R. ChappleI.L.C. Neutrophil hyper-responsiveness in periodontitis.J. Dent. Res.200786871872210.1177/15440591070860080617652198
    [Google Scholar]
  7. JiaL. XiongY. ZhangW. MaX. XuX. Metformin promotes osteogenic differentiation and protects against oxidative stress-induced damage in periodontal ligament stem cells via activation of the Akt/Nrf2 signaling pathway.Exp. Cell Res.2020386211171710.1016/j.yexcr.2019.11171731715142
    [Google Scholar]
  8. TomokiyoA. WadaN. MaedaH. Periodontal ligament stem cells: Regenerative potency in periodontium.Stem Cells Dev.2019281597498510.1089/scd.2019.003131215350
    [Google Scholar]
  9. ZhaoY. LiuH. XiX. ChenS. LiuD. TRIM16 protects human periodontal ligament stem cells from oxidative stress-induced damage via activation of PICOT.Exp. Cell Res.2020397111233610.1016/j.yexcr.2020.11233633091421
    [Google Scholar]
  10. CatalanoA. CaprariP. MorettiS. FaronatoM. TamagnoneL. ProcopioA. Semaphorin-3A is expressed by tumor cells and alters T- cell signal transduction and function.Blood200610783321332910.1182/blood‑2005‑06‑244516380453
    [Google Scholar]
  11. HayashiM. NakashimaT. TaniguchiM. KodamaT. KumanogohA. TakayanagiH. Osteoprotection by semaphorin 3A.Nature20124857396697410.1038/nature1100022522930
    [Google Scholar]
  12. ZaidiM. IqbalJ. Double protection for weakened bones.Nature20124857396474810.1038/485047a22552091
    [Google Scholar]
  13. QiuQ. YuX. ChenQ. HeX. Sema3A inactivates the ERK/JNK signalling pathways to alleviate inflammation and oxidative stress in lipopolysaccharide-stimulated rat endothelial cells and lung tissues.Autoimmunity2023561220090810.1080/08916934.2023.220090837128697
    [Google Scholar]
  14. WangZ. WeiS. Local treatment with Sema3a could promote the osseointegration of hydroxyapatite coated titanium rod in diabetic rats.J. Biomater. Appl.202236101775178510.1177/0885328222107570735225049
    [Google Scholar]
  15. WangN. WangL. YangJ. WangZ. ChengL. Quercetin promotes osteogenic differentiation and antioxidant responses of mouse bone mesenchymal stem cells through activation of the AMPK/SIRT1 signaling pathway.Phytother. Res.20213552639265010.1002/ptr.701033421256
    [Google Scholar]
  16. NieF. ZhangW. CuiQ. FuY. LiH. ZhangJ. Kaempferol promotes proliferation and osteogenic differentiation of periodontal ligament stem cells via Wnt/β-catenin signaling pathway.Life Sci.202025811814310.1016/j.lfs.2020.11814332717269
    [Google Scholar]
  17. WeiY. FuJ. WuW. MaP. RenL. YiZ. WuJ. Quercetin prevents oxidative stress-induced injury of periodontal ligament cells and alveolar bone loss in periodontitis.Drug Des. Devel. Ther.2021153509352210.2147/DDDT.S31524934408403
    [Google Scholar]
  18. ChenH. HuangX. FuC. WuX. PengY. LinX. WangY. Recombinant klotho protects human periodontal ligament stem cells by regulating mitochondrial function and the antioxidant system during H2O2-induced oxidative stress.Oxid. Med. Cell. Longev.2019201911410.1155/2019/926156531885825
    [Google Scholar]
  19. SatomiK. NishimuraK. IgarashiK. Semaphorin 3A protects against alveolar bone loss during orthodontic tooth movement in mice with periodontitis.J. Periodontal Res.2022575991100210.1111/jre.1303835899793
    [Google Scholar]
  20. ŞenS. LuxC.J. ErberR. A potential role of semaphorin 3a during orthodontic tooth movement.Int. J. Mol. Sci.20212215829710.3390/ijms2215829734361063
    [Google Scholar]
  21. ChangX. ZhouF. BuL. WangN. DengJ. WangS. Semaphorin 3A attenuates the hypoxia suppression of osteogenesis in periodontal ligament stem cells.J. Periodontal Res.202257242543310.1111/jre.1297335037251
    [Google Scholar]
  22. ChenM.F. LiouS.S. HongT.Y. KaoS.T. LiuI.M. Gigantol has protective effects against high glucose-evoked nephrotoxicity in mouse glomerulus mesangial cells by suppressing ROS/MAPK/NF-κB signaling pathways.Molecules20182418010.3390/molecules2401008030587838
    [Google Scholar]
  23. RosaA.C. CorsiD. CaviN. BruniN. DosioF. Superoxide dismutase administration: A review of proposed human uses.Molecules2021267184410.3390/molecules2607184433805942
    [Google Scholar]
  24. ThanguduS. SuC.H. Peroxidase mimetic nanozymes in cancer phototherapy: Progress and perspectives.Biomolecules2021117101510.3390/biom1107101534356639
    [Google Scholar]
  25. LuoW. WangY. YangH. DaiC. HongH. LiJ. LiuZ. GuoZ. ChenX. HeP. LiZ. LiF. JiangJ. LiuP. LiZ. Heme oxygenase-1 ameliorates oxidative stress-induced endothelial senescence via regulating endothelial nitric oxide synthase activation and coupling.Aging20181071722174410.18632/aging.10150630048241
    [Google Scholar]
  26. YangS. OuyangJ. LuY. HarypursatV. ChenY. A dual role of heme oxygenase-1 in tuberculosis.Front. Immunol.20221384285810.3389/fimmu.2022.84285835281042
    [Google Scholar]
  27. WadaN. MaedaH. HasegawaD. GronthosS. BartoldP.M. MenicaninD. FujiiS. YoshidaS. TomokiyoA. MonnouchiS. AkamineA. Semaphorin 3A induces mesenchymal-stem-like properties in human periodontal ligament cells.Stem Cells Dev.201423182225223610.1089/scd.2013.040524380401
    [Google Scholar]
  28. PurwaningrumM. GiachelliC.M. OsathanonT. RattanapuchpongS. SawangmakeC. Dissecting specific Wnt components governing osteogenic differentiation potential by human periodontal ligament stem cells through interleukin-6.Sci. Rep.2023131905510.1038/s41598‑023‑35569‑837270571
    [Google Scholar]
  29. ShinS.Y. KimC.G. JhoE.H. RhoM.S. KimY.S. KimY.H. LeeY.H. Hydrogen peroxide negatively modulates Wnt signaling through downregulation of β-catenin.Cancer Lett.2004212222523110.1016/j.canlet.2004.03.00315279902
    [Google Scholar]
  30. Kook SH, Lee D, Cho ES, et al. Activation of canonical Wnt/β- catenin signaling inhibits H2O2-induced decreases in proliferation and differentiation of human periodontal ligament fibroblasts. Mol Cell Biochem 2016; 411(1-2): 83-94.10.1007/s11010‑015‑2570‑4 26369531
  31. Sun Z, Yan K, Liu S, et al. Semaphorin 3A promotes the osteogenic differentiation of rat bone marrow-derived mesenchymal stem cells in inflammatory environments by suppressing the Wnt/β-catenin signaling pathway. J Mol Histol 2021; 52(6): 1245-55.10.1007/s10735‑020‑09941‑1 33566267
/content/journals/cscr/10.2174/011574888X343230250107145153
Loading
/content/journals/cscr/10.2174/011574888X343230250107145153
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test