Skip to content
2000
Volume 20, Issue 10
  • ISSN: 1574-888X
  • E-ISSN: 2212-3946

Abstract

Tissue homeostasis and regeneration depend on differentiated stem cells into specialized cell types. Dietary interventions, such as caloric restriction, are critical regulators of stem cell functions by altering their metabolism. This review discusses recent studies illustrating how diet interventions impact stem cell function. We summarize molecular targets and physiological effects of different types of caloric restriction and ketogenic mimicking diets in stem cells from bone marrow, muscle, and intestine. Furthermore, we highlight the nutrient-sensing pathway target of stem cells during caloric restriction. Understanding how nutrient signaling controls stem cell fate decisions is important to developing dietary interventions to improve the clinical application of stem cells.

Loading

Article metrics loading...

/content/journals/cscr/10.2174/011574888X340501250210042712
2025-02-18
2026-02-05
Loading full text...

Full text loading...

References

  1. MishraA. GiulianiG. LongoV.D. Nutrition and dietary restrictions in cancer prevention.Biochim. Biophys. Acta Rev. Cancer20241879118906310.1016/j.bbcan.2023.189063 38147966
    [Google Scholar]
  2. HwangboD.S. LeeH.Y. AbozaidL.S. MinK.J. Mechanisms of lifespan regulation by calorie restriction and intermittent fasting in model organisms.Nutrients2020124119410.3390/nu12041194 32344591
    [Google Scholar]
  3. BrandhorstS. ChoiI.Y. WeiM. A periodic diet that mimics fasting promotes multi-system regeneration, enhanced cognitive performance, and healthspan.Cell Metab.2015221869910.1016/j.cmet.2015.05.012 26094889
    [Google Scholar]
  4. LeeC. RaffaghelloL. BrandhorstS. Fasting cycles retard growth of tumors and sensitize a range of cancer cell types to chemotherapy.Sci. Transl. Med.20124124124ra2710.1126/scitranslmed.3003293 22323820
    [Google Scholar]
  5. CarusoA. GelsominoL. PanzaS. Leptin: A heavyweight player in obesity-related cancers.Biomolecules2023137108410.3390/biom13071084 37509120
    [Google Scholar]
  6. AjonaD. Ortiz-EspinosaS. LozanoT. Short-term starvation reduces IGF-1 levels to sensitize lung tumors to PD-1 immune checkpoint blockade.Nat. Can.202011758510.1038/s43018‑019‑0007‑9 35121837
    [Google Scholar]
  7. SurugiuR. IancuM.A. VintilescuȘ.B. Molecular mechanisms of healthy aging: the role of caloric restriction, intermittent fasting, mediterranean diet, and ketogenic diet—a scoping review.Nutrients20241617287810.3390/nu16172878 39275194
    [Google Scholar]
  8. LongoV.D. Di TanoM. MattsonM.P. GuidiN. Intermittent and periodic fasting, longevity and disease.Nature Aging202111475910.1038/s43587‑020‑00013‑3 35310455
    [Google Scholar]
  9. Poisa-BeiroL. ThomaJ. LandryJ. Glycogen accumulation, central carbon metabolism, and aging of hematopoietic stem and progenitor cells.Sci. Rep.20201011159710.1038/s41598‑020‑68396‑2 32665666
    [Google Scholar]
  10. HennrichM.L. RomanovN. HornP. Cell-specific proteome analyses of human bone marrow reveal molecular features of age-dependent functional decline.Nat. Commun.201891400410.1038/s41467‑018‑06353‑4 30275468
    [Google Scholar]
  11. ManaM.D. KuoE.Y.S. YilmazÖ.H. Dietary regulation of adult stem cells.Curr. Stem Cell Rep.2017311810.1007/s40778‑017‑0072‑x 28966904
    [Google Scholar]
  12. PoliwodaS. NoorN. DownsE. Stem cells: A comprehensive review of origins and emerging clinical roles in medical practice.Orthop. Rev.20221433749810.52965/001c.37498 36034728
    [Google Scholar]
  13. TaoS. WangY. WuJ. Long‐term mid‐onset dietary restriction rejuvenates hematopoietic stem cells and improves regeneration capacity of total bone marrow from aged mice.Aging Cell20201910e1324110.1111/acel.13241 32935456
    [Google Scholar]
  14. CerlettiM. JangY.C. FinleyL.W.S. HaigisM.C. WagersA.J. Short-term calorie restriction enhances skeletal muscle stem cell function.Cell Stem Cell201210551551910.1016/j.stem.2012.04.002 22560075
    [Google Scholar]
  15. IgarashiM. GuarenteL. mTORC1 and SIRT1 Cooperate to Foster Expansion of Gut Adult Stem Cells during Calorie Restriction.Cell2016166243645010.1016/j.cell.2016.05.044 27345368
    [Google Scholar]
  16. YousefiM. Nakauka-DdambaA. BerryC.T. Calorie restriction governs intestinal epithelial regeneration through cell-autonomous regulation of mTORC1 in reserve stem cells.Stem Cell Reports2023184104810.1016/j.stemcr.2023.03.010 37044068
    [Google Scholar]
  17. MaharajanN. VijayakumarK. JangC.H. ChoG.W. Caloric restriction maintains stem cells through niche and regulates stem cell aging.J. Mol. Med. (Berl.)2020981253710.1007/s00109‑019‑01846‑1 31713638
    [Google Scholar]
  18. LiuG.Y. SabatiniD.M. mTOR at the nexus of nutrition, growth, ageing and disease.Nat. Rev. Mol. Cell Biol.202021418320310.1038/s41580‑019‑0199‑y 31937935
    [Google Scholar]
  19. ParzychK.R. KlionskyD.J. An overview of autophagy: morphology, mechanism, and regulation.Antioxid. Redox Signal.201420346047310.1089/ars.2013.5371 23725295
    [Google Scholar]
  20. (a ChangNC Autophagy and Stem Cells: Self-Eating for Self-Renewal.Front Cell Dev Biol.2020 Mar 4813810.3389/fcell.2020.00138
    [Google Scholar]
  21. (b PentinmikkoN. IqbalS. ManaM, Andersson S, Cognetta AB 3rd, Suciu RM, Roper J, Luopajärvi K, Markelin E, Gopalakrishnan S, Smolander OP, Naranjo S, Saarinen T, Juuti A, Pietiläinen K, Auvinen P, Ristimäki A, Gupta N, Tammela T, Jacks T, Sabatini DM, Relaix F, Bencze M, Borok MJ, Der Vartanian A, Gattazzo F, Mademtzoglou D, Perez-Diaz S, Prola A, Reyes-Fernandez PC, Rotini A, Taglietti 5th. Perspectives on skeletal muscle stem cells.Nat. Commun.2021121692
    [Google Scholar]
  22. LongoV.D. MattsonM.P. Fasting: molecular mechanisms and clinical applications.Cell Metab.201419218119210.1016/j.cmet.2013.12.008 24440038
    [Google Scholar]
  23. HoferS.J. Carmona-GutierrezD. MuellerM.I. MadeoF. The ups and downs of caloric restriction and fasting: from molecular effects to clinical application.EMBO Mol. Med.2022141e1441810.15252/emmm.202114418 34779138
    [Google Scholar]
  24. TinsleyG.M. La BountyP.M. Effects of intermittent fasting on body composition and clinical health markers in humans.Nutr. Rev.2015731066167410.1093/nutrit/nuv041 26374764
    [Google Scholar]
  25. PattersonR.E. LaughlinG.A. LaCroixA.Z. Intermittent fasting and human metabolic health.J. Acad. Nutr. Diet.201511581203121210.1016/j.jand.2015.02.018 25857868
    [Google Scholar]
  26. EzpeletaM. CienfuegosS. LinS. Time-restricted eating: Watching the clock to treat obesity.Cell Metab.202436230131410.1016/j.cmet.2023.12.004 38176412
    [Google Scholar]
  27. BrandhorstS. HarputlugilE. MitchellJ.R. LongoV.D. Protective effects of short-term dietary restriction in surgical stress and chemotherapy.Ageing Res. Rev.201739687710.1016/j.arr.2017.02.001 28216454
    [Google Scholar]
  28. McDonaldT.J.W. CervenkaM.C. Ketogenic diet therapies for seizures and status epilepticus.Semin. Neurol.202040671972910.1055/s‑0040‑1719077 33155184
    [Google Scholar]
  29. LaiR.C. YeoR.W.Y. LimS.K. Mesenchymal stem cell exosomes.Semin. Cell Dev. Biol.201540828810.1016/j.semcdb.2015.03.001 25765629
    [Google Scholar]
  30. KawashimaN. NodaS. YamamotoM. OkijiT. Properties of dental pulp-derived mesenchymal stem cells and the effects of culture conditions.J. Endod.2017439S31S3410.1016/j.joen.2017.06.004 28781092
    [Google Scholar]
  31. BaghaeiK. HashemiS.M. TokhanbigliS. Isolation, differentiation, and characterization of mesenchymal stem cells from human bone marrow.Gastroenterol. Hepatol. Bed Bench2017103208213 29118937
    [Google Scholar]
  32. ChenY.R. YanX. YuanF.Z. The use of peripheral blood-derived stem cells for cartilage repair and regeneration in vivo: A review.Front. Pharmacol.2020111140410.3389/fphar.2020.00404 32308625
    [Google Scholar]
  33. WangX. YangK. WuQ. Targeting pyrimidine synthesis accentuates molecular therapy response in glioblastoma stem cells.Sci. Transl. Med.201911504eaau497210.1126/scitranslmed.aau4972 31391321
    [Google Scholar]
  34. SchneiderS. UngerM. van GriensvenM. BalmayorE.R. Adipose-derived mesenchymal stem cells from liposuction and resected fat are feasible sources for regenerative medicine.Eur. J. Med. Res.20172211710.1186/s40001‑017‑0258‑9 28526089
    [Google Scholar]
  35. ArifT. BilgeS. UyarR. Biosensors for stem cell-based applications: Current trends and future prospects.Microchem. J.202419811014110.1016/j.microc.2024.110141
    [Google Scholar]
  36. ChengC.W. AdamsG.B. PerinL. Prolonged fasting reduces IGF-1/PKA to promote hematopoietic-stem-cell-based regeneration and reverse immunosuppression.Cell Stem Cell201414681082310.1016/j.stem.2014.04.014 24905167
    [Google Scholar]
  37. KimY. LeeY. LeeM.N. Time-restricted feeding reduces monocyte production by controlling hematopoietic stem and progenitor cells in the bone marrow during obesity.Front. Immunol.202213105487510.3389/fimmu.2022.1054875 36569870
    [Google Scholar]
  38. TakakuwaT. NakashimaY. KohH. NakaneT. NakamaeH. HinoM. Short-term fasting induces cell cycle arrest in immature hematopoietic cells and increases the number of naïve T cells in the bone marrow of mice.Acta Haematol.2019141318919810.1159/000496096 30840964
    [Google Scholar]
  39. SimsekT. KocabasF. ZhengJ. The distinct metabolic profile of hematopoietic stem cells reflects their location in a hypoxic niche.Cell Stem Cell20107338039010.1016/j.stem.2010.07.011 20804973
    [Google Scholar]
  40. BenjaminD.I. BothP. BenjaminJ.S. Fasting induces a highly resilient deep quiescent state in muscle stem cells via ketone body signaling.Cell Metab.2022346902918.e610.1016/j.cmet.2022.04.012 35584694
    [Google Scholar]
  41. JiC.C. HuY.Y. ChengG. A ketogenic diet attenuates proliferation and stemness of glioma stem like cells by altering metabolism resulting in increased ROS production.Int. J. Oncol.2020562606617 31894296
    [Google Scholar]
  42. ChengC.W. BitonM. HaberA.L. Ketone body signaling mediates intestinal stem cell homeostasis and adaptation to diet.Cell2019178511151131.e1510.1016/j.cell.2019.07.048 31442404
    [Google Scholar]
  43. NewmanJ.C. VerdinE. β-hydroxybutyrate: a signaling metabolite.Annu. Rev. Nutr.2017371517610.1146/annurev‑nutr‑071816‑064916 28826372
    [Google Scholar]
  44. ChoiJ. AugenlichtL.H. Intestinal stem cells: guardians of homeostasis in health and aging amid environmental challenges.Exp. Mol. Med.202456349550010.1038/s12276‑024‑01179‑1 38424189
    [Google Scholar]
  45. YilmazÖ.H. KatajistoP. LammingD.W. mTORC1 in the Paneth cell niche couples intestinal stem-cell function to calorie intake.Nature2012486740449049510.1038/nature11163 22722868
    [Google Scholar]
  46. DengM. Guerrero-JuarezC.F. ShengX. Lepr+ mesenchymal cells sense diet to modulate intestinal stem/progenitor cells via Leptin–Igf1 axis.Cell Res.202232767068610.1038/s41422‑022‑00643‑9 35296796
    [Google Scholar]
  47. ParkH.K. AhimaR.S. Physiology of leptin: energy homeostasis, neuroendocrine function and metabolism.Metabolism2015641243410.1016/j.metabol.2014.08.004 25199978
    [Google Scholar]
  48. ShibaoS. MinamiN. KoikeN. Metabolic heterogeneity and plasticity of glioma stem cells in a mouse glioblastoma model.Neuro-oncol.201820334335410.1093/neuonc/nox170 29016888
    [Google Scholar]
  49. FlavahanW.A. WuQ. HitomiM. Brain tumor initiating cells adapt to restricted nutrition through preferential glucose uptake.Nat. Neurosci.201316101373138210.1038/nn.3510 23995067
    [Google Scholar]
  50. WangB. LiuX.M. LiuZ.N. Human hair follicle-derived mesenchymal stem cells: Isolation, expansion, and differentiation.World J. Stem Cells202012646247010.4252/wjsc.v12.i6.462 32742563
    [Google Scholar]
  51. DellorussoP.V. ProvenM.A. Calero-NietoF.J. Autophagy counters inflammation-driven glycolytic impairment in aging hematopoietic stem cells.Cell Stem Cell202431710201037.e910.1016/j.stem.2024.04.020 38754428
    [Google Scholar]
  52. LiC. ZhouY. WeiR. Glycolytic regulation of intestinal stem cell self-renewal and differentiation.Cell. Mol. Gastroenterol. Hepatol.202315493194710.1016/j.jcmgh.2022.12.012 36584817
    [Google Scholar]
  53. McCauleyH.A. RiedmanA.M. EnriquezJ.R. Enteroendocrine cells protect the stem cell niche by regulating crypt metabolism in response to nutrients.Cell. Mol. Gastroenterol. Hepatol.20231561293131010.1016/j.jcmgh.2022.12.016 36608902
    [Google Scholar]
  54. MihaylovaM.M. ChengC.W. CaoA.Q. Fasting activates fatty acid oxidation to enhance intestinal stem cell function during homeostasis and aging.Cell Stem Cell2018225769778.e410.1016/j.stem.2018.04.001 29727683
    [Google Scholar]
  55. Thalacker-MercerA. BlumJ. GhellerB. The essentiality of serine and glycine for skeletal muscle regeneration.The Faseb J201933S159059510.1096/fasebj.2019.33.1_supplement.590.5
    [Google Scholar]
  56. ChandelN.S. JasperH. HoT.T. PasseguéE. Metabolic regulation of stem cell function in tissue homeostasis and organismal ageing.Nat. Cell Biol.201618882383210.1038/ncb3385 27428307
    [Google Scholar]
  57. DrowleyL. OkadaM. BeckmanS. Cellular antioxidant levels influence muscle stem cell therapy.Mol. Ther.201018101865187310.1038/mt.2010.160 20664528
    [Google Scholar]
  58. MiaoW XuFengR ParkMR Hematopoietic stem cell regeneration enhanced by ectopic expression of ROS-detoxifying enzymes in transplant mice.Mol. Ther.201321242343210.1038/mt.2012.232 23295952
    [Google Scholar]
  59. LvS. ShenQ. LiH. Caloric restriction delays age-related muscle atrophy by inhibiting 11β−HSD1 to promote the differentiation of muscle stem cells.Front. Med. (Lausanne)20239102705510.3389/fmed.2022.1027055 36687405
    [Google Scholar]
  60. AbreuP. SernaJ.D.C. MunhozA.C. KowaltowskiA.J. Calorie restriction changes muscle satellite cell proliferation in a manner independent of metabolic modulation.Mech. Ageing Dev.202019211136210.1016/j.mad.2020.111362 33010305
    [Google Scholar]
  61. ImadaS ShinH KhawaledS Post-fast refeeding enhances intestinal stem cell-mediated regeneration and tumourigenesis through mTORC1-dependent polyamine synthesis.Res Sq202410: rs.3.rs-2320717.10.21203/rs.3.rs‑2320717/v1 36711807
    [Google Scholar]
/content/journals/cscr/10.2174/011574888X340501250210042712
Loading
/content/journals/cscr/10.2174/011574888X340501250210042712
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test