Skip to content
2000
Volume 20, Issue 10
  • ISSN: 1574-888X
  • E-ISSN: 2212-3946

Abstract

Introduction

Neural stem cells (NSCs) are vulnerable to oxidative stress, which triggers aging and subsequently leads to a reduced regenerative capacity of the central nervous system (CNS). Due to the challenges in acquiring aged human NSCs and the lack of an oxidative stress-induced aging model specifically designed for human NSCs, research related to the aging mechanisms and the screening of anti-aging drugs has been limited. Here, we aimed to establish an oxidative stress-induced senescence model of NSCs by using D-galactose (D-gal).

Methods

Human embryonic stem cells (hESCs) were differentiated into hESC-NSCs using a type I collagen method. hESC-NSCs were characterized by flow cytometry combined with immunofluorescence. A senescence model of hESC-NSCs was established using D-gal and characterized by CCK-8 assay, neurosphere formation, crystal violet staining, DNA damage assay, SA-β-gal staining, and ROS levels measurement. To further explore the profile of gene expression in the D-gal-induced hESC-NSCs senescence model, transcriptome sequencing was performed and analysed by bioinformatics method, followed by verification using qPCR.

Results

The hESC-derived NSCs senescence model demonstrated reduced proliferation and elevated β-galactosidase activity, accompanied by DNA damage, and increased levels of reactive oxygen species. Furthermore, transcriptome analysis unveiled the potential central role of the MAPK signaling pathway in D-gal-induced senescence, involving key genes, including , , , , and .

Conclusion

We presented an oxidative stress-induced senescence model of hESC-NSCs and identified key pathways and genes related to D-gal-induced senescence. Our study might offer an alternative approach to investigating human NSCs aging and provide valuable data for understanding the underlying mechanisms of oxidative stress-induced aging.

Loading

Article metrics loading...

/content/journals/cscr/10.2174/011574888X365639250214045110
2025-04-22
2026-02-05
Loading full text...

Full text loading...

References

  1. AudesseA.J. WebbA.E. Mechanisms of enhanced quiescence in neural stem cell aging.Mech. Ageing Dev.202019111132310.1016/j.mad.2020.111323 32781077
    [Google Scholar]
  2. ChenF. LiuY. WongN.K. XiaoJ. SoK.F. Oxidative stress in stem cell aging.Cell Transplant.20172691483149510.1177/0963689717735407 29113471
    [Google Scholar]
  3. EscamesG. LópezA. Antonio GarciaJ. The role of mitochondria in brain aging and the effects of melatonin.Curr. Neuropharmacol.20108318219310.2174/157015910792246245 21358969
    [Google Scholar]
  4. HuJ. WangJ. From embryonic stem cells to induced pluripotent stem cells—Ready for clinical therapy?Clin. Transplant.2019336e1357310.1111/ctr.13573 31013374
    [Google Scholar]
  5. CarpenterM.K. InokumaM.S. DenhamJ. MujtabaT. ChiuC.P. RaoM.S. Enrichment of neurons and neural precursors from human embryonic stem cells.Exp. Neurol.2001172238339710.1006/exnr.2001.7832 11716562
    [Google Scholar]
  6. OhJ.H. JungC.R. LeeM.O. KimJ. SonM.Y. Comparative analysis of human embryonic stem cell derived neural stem cells as an in vitro human model.Int. J. Mol. Med.2018412783790 29207026
    [Google Scholar]
  7. AzmanK.F. ZakariaR. d-Galactose-induced accelerated aging model: An overview.Biogerontology201920676378210.1007/s10522‑019‑09837‑y 31538262
    [Google Scholar]
  8. ZhaoC. ChenZ. LiangW. YangZ. DuZ. GongS. D-galactose-induced accelerated aging model on auditory cortical neurons by regulating oxidative stress and apoptosis in vitro.J. Nutr. Health Aging2022261132210.1007/s12603‑021‑1721‑4 35067698
    [Google Scholar]
  9. ZhouY. DongY. XuQ. Mussel oligopeptides ameliorate cognition deficit and attenuate brain senescence in d-galactose-induced aging mice.Food Chem. Toxicol.20135941242010.1016/j.fct.2013.06.009 23796539
    [Google Scholar]
  10. Sadigh-EteghadS. MajdiA. McCannS.K. MahmoudiJ. VafaeeM.S. MacleodM.R. D-galactose-induced brain ageing model: A systematic review and meta-analysis on cognitive outcomes and oxidative stress indices.PLoS One2017128e018412210.1371/journal.pone.0184122 28854284
    [Google Scholar]
  11. HuL. RanJ. WangL. Ginsenoside Rg1 attenuates D‐galactose‐induced neural stem cell senescence via the Sirt1‐Nrf2‐BDNF pathway.Eur. J. Neurosci.20235894084410110.1111/ejn.16147 37753701
    [Google Scholar]
  12. HuD. GeY. YeL. d ‐Galactose induces the senescence and phenotype switch of corpus cavernosum smooth muscle cells.J. Cell. Physiol.20242391e3115010.1002/jcp.31150 37942832
    [Google Scholar]
  13. XuX. ShenX. FengW. D-galactose induces senescence of glioblastoma cells through YAP-CDK6 pathway.Aging20201218185011852110.18632/aging.103819 32991321
    [Google Scholar]
  14. XuB. WangG. XuL. DingL. LiS. HanY. Vitamin C ameliorates D-galactose-induced senescence in HEI-OC1 cells by inhibiting the ROS/NF-κB pathway.Mol. Biol. Rep.2024511115710.1007/s11033‑024‑10098‑3 39546096
    [Google Scholar]
  15. LiuP. ChenS. WangY. Efficient induction of neural progenitor cells from human ESC/iPSCs on Type I Collagen.Sci. China Life Sci.202164122100211310.1007/s11427‑020‑1897‑0 33740188
    [Google Scholar]
  16. HartigSM Basic image analysis and manipulation in ImageJ.Curr Protoc Mol Biol201314Unit14.1510.1002/0471142727.mb1415s102
    [Google Scholar]
  17. LoveM.I. HuberW. AndersS. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2.Genome Biol.2014151255010.1186/s13059‑014‑0550‑8 25516281
    [Google Scholar]
  18. AshburnerM. BallC.A. BlakeJ.A. Gene ontology: Tool for the unification of biology.Nat. Genet.2000251252910.1038/75556 10802651
    [Google Scholar]
  19. KanehisaM. FurumichiM. SatoY. Ishiguro-WatanabeM. TanabeM. KEGG: Integrating viruses and cellular organisms.Nucleic Acids Res.202149D1D545D55110.1093/nar/gkaa970 33125081
    [Google Scholar]
  20. MuH. ChenJ. HuangW. OmicShare tools: A zero‐code interactive online platform for biological data analysis and visualization.iMeta202435e22810.1002/imt2.228 39429881
    [Google Scholar]
  21. DonchevaN.T. MorrisJ.H. GorodkinJ. JensenL.J. Cytoscape stringapp: Network analysis and visualization of proteomics data.J. Proteome Res.201918262363210.1021/acs.jproteome.8b00702 30450911
    [Google Scholar]
  22. ZhangY. DingC. CaiY. Astilbin ameliorates oxidative stress and apoptosis in D-galactose-induced senescence by regulating the PI3K/Akt/m-TOR signaling pathway in the brains of mice.Int. Immunopharmacol.20219910803510.1016/j.intimp.2021.108035 34435579
    [Google Scholar]
  23. GaoY. HuY. LiuQ. Two‐dimensional design strategy to construct smart fluorescent probes for the precise tracking of senescence.Angew. Chem. Int. Ed.20216019107561076510.1002/anie.202101278 33624914
    [Google Scholar]
  24. HuangW. HicksonL.J. EirinA. KirklandJ.L. LermanL.O. Cellular senescence: The good, the bad and the unknown.Nat. Rev. Nephrol.2022181061162710.1038/s41581‑022‑00601‑z 35922662
    [Google Scholar]
  25. Di MiccoR. KrizhanovskyV. BakerD. d’Adda di FagagnaF. Cellular senescence in ageing: From mechanisms to therapeutic opportunities.Nat. Rev. Mol. Cell Biol.2021222759510.1038/s41580‑020‑00314‑w 33328614
    [Google Scholar]
  26. RufiniA. TucciP. CelardoI. MelinoG. Senescence and aging: The critical roles of p53.Oncogene201332435129514310.1038/onc.2012.640 23416979
    [Google Scholar]
  27. AnerillasC. AbdelmohsenK. GorospeM. Regulation of senescence traits by MAPKs.Geroscience202042239740810.1007/s11357‑020‑00183‑3 32300964
    [Google Scholar]
  28. MartinN. BernardD. Calcium signaling and cellular senescence.Cell Calcium201870162310.1016/j.ceca.2017.04.001 28410770
    [Google Scholar]
  29. DiMauroT. DavidG. Ras-induced senescence and its physiological relevance in cancer.Curr. Cancer Drug Targets201010886987610.2174/156800910793357998 20718709
    [Google Scholar]
  30. LiS. XiaoJ. HuangC. SunJ. Identification and validation of oxidative stress and immune-related hub genes in Alzheimer’s disease through bioinformatics analysis.Sci. Rep.202313165710.1038/s41598‑023‑27977‑7 36635346
    [Google Scholar]
  31. PapassotiropoulosA. de QuervainD.J.F. Failed drug discovery in psychiatry: Time for human genome-guided solutions.Trends Cogn. Sci.201519418318710.1016/j.tics.2015.02.002 25727774
    [Google Scholar]
  32. LiuS. QiuY. XiangR. HuangP. Characterization of H2O2-induced alterations in global transcription of mRNA and lncRNA.Antioxidants202211349510.3390/antiox11030495 35326145
    [Google Scholar]
  33. WuY. GongY. LiuY. Comparative analysis of differentially expressed genes in chondrocytes from rats exposed to low selenium and T-2 toxin.Biol. Trace Elem. Res.202420231020103010.1007/s12011‑023‑03725‑w 37326932
    [Google Scholar]
  34. LiangD. MaX. ZhongX. ZhouY. ChenW. HeX. Integration of host gene regulation and oral microbiome reveals the influences of smoking during the development of oral squamous cell carcinoma.Front. Oncol.202414140962310.3389/fonc.2024.1409623 39474111
    [Google Scholar]
  35. Koloko NgassieM.L. DrakeL.Y. RoosB.B. Endoplasmic reticulum stress-induced senescence in human lung fibroblasts.Am. J. Physiol. Lung Cell. Mol. Physiol.20243271L126L13910.1152/ajplung.00264.2023 38771153
    [Google Scholar]
  36. UddinM.S. YuW.S. LimL.W. Exploring ER stress response in cellular aging and neuroinflammation in Alzheimer’s disease.Ageing Res. Rev.20217010141710.1016/j.arr.2021.101417 34339860
    [Google Scholar]
  37. SalamaR. SadaieM. HoareM. NaritaM. Cellular senescence and its effector programs.Genes Dev.20142829911410.1101/gad.235184.113 24449267
    [Google Scholar]
  38. YanX. WangD. NingZ. MengZ. Lenvatinib inhibits intrahepatic cholangiocarcinoma via Gadd45a-mediated cell cycle arrest.Discov. Oncol.20231412610.1007/s12672‑023‑00631‑4 36821012
    [Google Scholar]
  39. ZhuL. DongC. SunC. Rejuvenation of MPTP-induced human neural precursor cell senescence by activating autophagy.Biochem. Biophys. Res. Commun.2015464252653310.1016/j.bbrc.2015.06.174 26159917
    [Google Scholar]
  40. DongC-M. WangX-L. WangG-M. A stress-induced cellular aging model with postnatal neural stem cells.Cell Death Dis.201453e111610.1038/cddis.2014.82 24625975
    [Google Scholar]
  41. DanieleS. Da PozzoE. IofridaC. MartiniC. Human neural stem cell aging is counteracted by α-glycerylphosphorylethanolamine.ACS Chem. Neurosci.20167795296310.1021/acschemneuro.6b00078 27168476
    [Google Scholar]
  42. ChenP. ChenF. LeiJ. LiQ. ZhouB. Activation of the miR-34a-mediated SIRT1/mTOR signaling pathway by urolithin A attenuates d-galactose-induced brain aging in mice.Neurotherapeutics20191641269128210.1007/s13311‑019‑00753‑0 31420820
    [Google Scholar]
  43. QianJ. WangX. CaoJ. ZhangW. LuC. ChenX. Dihydromyricetin attenuates D-galactose-induced brain aging of mice via inhibiting oxidative stress and neuroinflammation.Neurosci. Lett.202175613596310.1016/j.neulet.2021.135963 34022267
    [Google Scholar]
  44. NamS.M. SeoM. SeoJ.S. Ascorbic acid mitigates D-galactose-induced brain aging by increasing hippocampal neurogenesis and improving memory function.Nutrients201911117610.3390/nu11010176 30650605
    [Google Scholar]
  45. TianS. ZhaoH. GuoH. FengW. JiangC. JiangY. Propolis ethanolic extract attenuates D-gal-induced C2C12 cell injury by modulating Nrf2/HO-1 and p38/p53 signaling pathways.Int. J. Mol. Sci.2023247640810.3390/ijms24076408 37047379
    [Google Scholar]
  46. ZhangY. NiX. WeiL. METTL3 alleviates D-gal-induced renal tubular epithelial cellular senescence via promoting miR-181a maturation.Mech. Ageing Dev.202321011177410.1016/j.mad.2022.111774 36608773
    [Google Scholar]
  47. ZhangD. ChenY. XuX. Autophagy inhibits the mesenchymal stem cell aging induced by D‐galactose through ROS/JNK/p38 signalling.Clin. Exp. Pharmacol. Physiol.202047346647710.1111/1440‑1681.13207 31675454
    [Google Scholar]
  48. ShweT. PratchayasakulW. ChattipakornN. ChattipakornS.C. Role of D-galactose-induced brain aging and its potential used for therapeutic interventions.Exp. Gerontol.2018101133610.1016/j.exger.2017.10.029 29129736
    [Google Scholar]
  49. ShiZ. GengY. LiuJ. Single-cell transcriptomics reveals gene signatures and alterations associated with aging in distinct neural stem/progenitor cell subpopulations.Protein Cell201894351364 28748452
    [Google Scholar]
  50. ApostolopoulouM. KiehlT.R. WinterM. Non-monotonic changes in progenitor cell behavior and gene expression during aging of the adult V-SVZ neural stem cell niche.Stem Cell Reports2017961931194710.1016/j.stemcr.2017.10.005 29129683
    [Google Scholar]
  51. ZhuH. BlakeS. KusumaF.K. PearsonR.B. KangJ. ChanK.T. Oncogene-induced senescence: From biology to therapy.Mech. Ageing Dev.202018711122910.1016/j.mad.2020.111229 32171687
    [Google Scholar]
  52. MalumbresM. Pérez De CastroI. HernándezM.I. JiménezM. CorralT. PellicerA. Cellular response to oncogenic ras involves induction of the Cdk4 and Cdk6 inhibitor p15(INK4b).Mol. Cell. Biol.20002082915292510.1128/MCB.20.8.2915‑2925.2000 10733595
    [Google Scholar]
  53. CoppéJ.P. PatilC.K. RodierF. Senescence-associated secretory phenotypes reveal cell-nonautonomous functions of oncogenic RAS and the p53 tumor suppressor.PLoS Biol.2008612e30110.1371/journal.pbio.0060301 19053174
    [Google Scholar]
  54. BaharM.E. KimH.J. KimD.R. Targeting the RAS/RAF/MAPK pathway for cancer therapy: From mechanism to clinical studies.Signal Transduct. Target. Ther.20238145510.1038/s41392‑023‑01705‑z 38105263
    [Google Scholar]
  55. WangB. HanJ. ElisseeffJ.H. DemariaM. The senescence-associated secretory phenotype and its physiological and pathological implications.Nat. Rev. Mol. Cell Biol.2024251295897810.1038/s41580‑024‑00727‑x 38654098
    [Google Scholar]
  56. XuY. LiN. XiangR. SunP. Emerging roles of the p38 MAPK and PI3K/AKT/mTOR pathways in oncogene-induced senescence.Trends Biochem. Sci.201439626827610.1016/j.tibs.2014.04.004 24818748
    [Google Scholar]
  57. Moreno-CugnonL. ArrizabalagaO. LlarenaI. MatheuA. Elevated p38MAPK activity promotes neural stem cell aging.Aging20201276030603610.18632/aging.102994 32243258
    [Google Scholar]
  58. CortezI BulavinD V WuP Aged dominant negative p38α MAPK mice are resistant to age-dependent decline in adult-neurogenesis and context discrimination fear conditioning.Behav Brain Res2017322Pt B2122210.1016/j.bbr.2016.10.023
    [Google Scholar]
  59. RayessH. WangM.B. SrivatsanE.S. Cellular senescence and tumor suppressor gene p16.Int. J. Cancer201213081715172510.1002/ijc.27316 22025288
    [Google Scholar]
  60. MoskalevA.A. Smit-McBrideZ. ShaposhnikovM.V. Gadd45 proteins: Relevance to aging, longevity and age-related pathologies.Ageing Res. Rev.2012111516610.1016/j.arr.2011.09.003 21986581
    [Google Scholar]
  61. LiuY. PengL. ChenJ. EIF5A2 specifically regulates the transcription of aging-related genes in human neuroblastoma cells.BMC Geriatr.20232318310.1186/s12877‑023‑03793‑6 36750933
    [Google Scholar]
  62. WodrichA.P.K. ScottA.W. ShuklaA.K. HarrisB.T. GinigerE. The unfolded protein responses in health, aging, and neurodegeneration: Recent advances and future considerations.Front. Mol. Neurosci.20221583111610.3389/fnmol.2022.831116 35283733
    [Google Scholar]
  63. NemetskiS.M. GardnerL.B. Hypoxic regulation of Id-1 and activation of the unfolded protein response are aberrant in neuroblastoma.J. Biol. Chem.2007282124024810.1074/jbc.M607275200 17102133
    [Google Scholar]
  64. ChenC. DudenhausenE.E. PanY.X. ZhongC. KilbergM.S. Human CCAAT/enhancer-binding protein beta gene expression is activated by endoplasmic reticulum stress through an unfolded protein response element downstream of the protein coding sequence.J. Biol. Chem.200427927279482795610.1074/jbc.M313920200 15102854
    [Google Scholar]
  65. MatosL. GouveiaA.M. AlmeidaH. ER stress response in human cellular models of senescence.J. Gerontol. A Biol. Sci. Med. Sci.201570892493510.1093/gerona/glu129 25149687
    [Google Scholar]
  66. JacobK. Quang-KhuongD.A. JonesD.T.W. Genetic aberrations leading to MAPK pathway activation mediate oncogene-induced senescence in sporadic pilocytic astrocytomas.Clin. Cancer Res.201117144650466010.1158/1078‑0432.CCR‑11‑0127 21610151
    [Google Scholar]
  67. WuD. TanH. SuW. MZF1 mediates oncogene-induced senescence by promoting the transcription of p16INK4A.Oncogene202241341442610.1038/s41388‑021‑02110‑y 34773072
    [Google Scholar]
  68. SalottiJ. JohnsonP.F. Regulation of senescence and the SASP by the transcription factor C/EBPβ.Exp. Gerontol.201912811075210.1016/j.exger.2019.110752 31648009
    [Google Scholar]
  69. MontesM. LubasM. ArendrupF.S. The long non-coding RNA MIR31HG regulates the senescence associated secretory phenotype.Nat. Commun.2021121245910.1038/s41467‑021‑22746‑4 33911076
    [Google Scholar]
  70. Martínez-ZamudioR.I. RouxP.F. de FreitasJ.A.N.L.F. AP-1 imprints a reversible transcriptional programme of senescent cells.Nat. Cell Biol.202022784285510.1038/s41556‑020‑0529‑5 32514071
    [Google Scholar]
  71. ChongW. ShastriM. EriR. Endoplasmic reticulum stress and oxidative stress: A vicious nexus implicated in bowel disease pathophysiology.Int. J. Mol. Sci.201718477110.3390/ijms18040771 28379196
    [Google Scholar]
  72. CaoS.S. KaufmanR.J. Endoplasmic reticulum stress and oxidative stress in cell fate decision and human disease.Antioxid. Redox Signal.201421339641310.1089/ars.2014.5851 24702237
    [Google Scholar]
  73. LiuX. HuangZ. ZhangY. Lacidipine ameliorates the endothelial senescence and inflammatory injury through CXCR7/P38/C/EBP-β signaling pathway.Front. Cardiovasc. Med.2021869254010.3389/fcvm.2021.692540 34295928
    [Google Scholar]
  74. GuindiC. CloutierA. GaudreauS. Role of the p38 MAPK/C/EBPβ pathway in the regulation of phenotype and IL-10 and IL-12 production by tolerogenic bone marrow-derived dendritic cells.Cells201871225610.3390/cells7120256 30544623
    [Google Scholar]
  75. MaytinE.V. UbedaM. LinJ.C. HabenerJ.F. Stress-inducible transcription factor CHOP/gadd153 induces apoptosis in mammalian cells via p38 kinase-dependent and -independent mechanisms.Exp. Cell Res.2001267219320410.1006/excr.2001.5248 11426938
    [Google Scholar]
  76. TanH.K. MuhammadT.S.T. TanM.L. 14-Deoxy-11,12-didehydroandrographolide induces DDIT3-dependent endoplasmic reticulum stress-mediated autophagy in T-47D breast carcinoma cells.Toxicol. Appl. Pharmacol.2016300556910.1016/j.taap.2016.03.017 27049118
    [Google Scholar]
  77. HanN. YuanF. XianP. GADD45a mediated cell cycle inhibition is regulated By P53 in bladder cancer.OncoTargets Ther.2019127591759910.2147/OTT.S222223 31571910
    [Google Scholar]
  78. OkazawaH. EstusS. The JNK/c-Jun cascade and Alzheimer’s disease.Am. J. Alzheimers Dis. Other Demen.2002172798810.1177/153331750201700209 11954673
    [Google Scholar]
/content/journals/cscr/10.2174/011574888X365639250214045110
Loading
/content/journals/cscr/10.2174/011574888X365639250214045110
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test