Skip to content
2000
Volume 20, Issue 7
  • ISSN: 1574-888X
  • E-ISSN: 2212-3946

Abstract

Osteoarthritis is a costly and debilitating condition, especially as the population ages and more people are affected. The primary osteoarthritis targets in the joint cavity are chondrocytes and synovial cells. Researchers are increasingly convinced that macrophages play a crucial role in the development or therapy of osteoarthritis despite being largely ignored in earlier studies due to their capacity to switch from a pro-inflammatory to an anti-inflammatory phenotype. Stem cell or similar extracellular vesicle intraarticular injection offers fresh promise for treating osteoarthritis. However, the mechanism by which this works needs further investigation. It is important to investigate the intricate cellular interactions between mesenchymal stem cells (MSCs) and macrophages. Emerging routes using extracellular vesicles (EVs) are garnering more and more attention in intercellular communication, which has historically focused on cytokines and soluble mediators. Therefore, we focus on the polarization of macrophages as a primary consideration in our study of stem cells and associated EVs utilization in treating knee osteoarthritis.

Loading

Article metrics loading...

/content/journals/cscr/10.2174/011574888X338318241213055616
2024-12-27
2025-12-25
Loading full text...

Full text loading...

References

  1. SafiriS. KolahiA.A. SmithE. HillC. BettampadiD. MansourniaM.A. HoyD. Ashrafi-AsgarabadA. SepidarkishM. Almasi-HashianiA. CollinsG. KaufmanJ. QorbaniM. Moradi-LakehM. WoolfA.D. GuilleminF. MarchL. CrossM. Global, regional and national burden of osteoarthritis 1990-2017: A systematic analysis of the global burden of disease study 2017.Ann. Rheum. Dis.202079681982810.1136/annrheumdis‑2019‑21651532398285
    [Google Scholar]
  2. Martel-PelletierJ. BarrA.J. CicuttiniF.M. ConaghanP.G. CooperC. GoldringM.B. GoldringS.R. JonesG. TeichtahlA.J. PelletierJ.P. Osteoarthritis.Nat. Rev. Dis. Primers2016211607210.1038/nrdp.2016.7227734845
    [Google Scholar]
  3. ConaghanP.G. CookA.D. HamiltonJ.A. TakP.P. Therapeutic options for targeting inflammatory osteoarthritis pain.Nat. Rev. Rheumatol.201915635536310.1038/s41584‑019‑0221‑y31068673
    [Google Scholar]
  4. MadryH. Surgical therapy in osteoarthritis.Osteoarthr. Carti.20223081019103410.1016/j.joca.2022.01.01235183776
    [Google Scholar]
  5. BeamE. OsmonD. Prosthetic joint infection update.Infect. Dis. Clin. North Am.201832484385910.1016/j.idc.2018.06.00530241717
    [Google Scholar]
  6. FujiiY. LiuL. YagasakiL. InotsumeM. ChibaT. AsaharaH. Cartilage homeostasis and osteoarthritis.Int. J. Mol. Sci.20222311631610.3390/ijms2311631635682994
    [Google Scholar]
  7. Sanchez-LopezE. CorasR. TorresA. LaneN.E. GumaM. Synovial inflammation in osteoarthritis progression.Nat. Rev. Rheumatol.202218525827510.1038/s41584‑022‑00749‑935165404
    [Google Scholar]
  8. KnightsA.J. ReddingS.J. MaerzT. Inflammation in osteoarthritis: The latest progress and ongoing challenges.Curr. Opin. Rheumatol.202335212813410.1097/BOR.000000000000092336695054
    [Google Scholar]
  9. ThomsonA. HilkensC.M.U. Synovial macrophages in osteoarthritis: The key to understanding pathogenesis?Front. Immunol.20211267875710.3389/fimmu.2021.67875734211470
    [Google Scholar]
  10. WangD. ChaiX.Q. HuS.S. PanF. Joint synovial macrophages as a potential target for intra-articular treatment of osteoarthritis-related pain.Osteoarth. Carti.202230340641510.1016/j.joca.2021.11.01434861384
    [Google Scholar]
  11. FernandesT.L. GomollA.H. LattermannC. HernandezA.J. BuenoD.F. AmanoM.T. Macrophage: A potential target on cartilage regeneration.Front. Immunol.20201111110.3389/fimmu.2020.0011132117263
    [Google Scholar]
  12. ShuC.C. ZakiS. RaviV. SchiavinatoA. SmithM.M. LittleC.B. The relationship between synovial inflammation, structural pathology, and pain in post-traumatic osteoarthritis: Differential effect of stem cell and hyaluronan treatment.Arthritis Res. Ther.20202212910.1186/s13075‑020‑2117‑232059749
    [Google Scholar]
  13. ManferdiniC. PaolellaF. GabusiE. GambariL. PiacentiniA. FilardoG. Fleury-CappellessoS. BarberoA. MurphyM. LisignoliG. Adipose stromal cells mediated switching of the pro-inflammatory profile of M1-like macrophages is facilitated by PGE2: In vitro evaluation.Osteoarthr. Carti.20172571161117110.1016/j.joca.2017.01.01128153787
    [Google Scholar]
  14. TopolukN. SteckbeckK. SiatkowskiS. BurnikelB. TokishJ. MercuriJ. Amniotic mesenchymal stem cells mitigate osteoarthritis progression in a synovial macrophage-mediated in vitro explant coculture model.J. Tissue Eng. Regen. Med.20181241097111010.1002/term.261029131526
    [Google Scholar]
  15. FahyN. de Vries-van MelleM.L. LehmannJ. WeiW. GrotenhuisN. FarrellE. van der KraanP.M. MurphyJ.M. Bastiaansen-JenniskensY.M. van OschG.J.V.M. Human osteoarthritic synovium impacts chondrogenic differentiation of mesenchymal stem cells via macrophage polarisation state.Osteoarthr. Carti.20142281167117510.1016/j.joca.2014.05.02124911520
    [Google Scholar]
  16. YuH. HuangY. YangL. Research progress in the use of mesenchymal stem cells and their derived exosomes in the treatment of osteoarthritis.Ageing Res. Rev.20228010168410.1016/j.arr.2022.10168435809775
    [Google Scholar]
  17. WuC.L. HarasymowiczN.S. KlimakM.A. CollinsK.H. GuilakF. The role of macrophages in osteoarthritis and cartilage repair.Osteoarthr. Carti.202028554455410.1016/j.joca.2019.12.00731926267
    [Google Scholar]
  18. Martel-PelletierJ. Pathophysiology of osteoarthritis.Osteoarthr. Carti.200412Suppl. A313310.1016/j.joca.2003.10.00214698638
    [Google Scholar]
  19. MathiessenA. ConaghanP.G. Synovitis in osteoarthritis: Current understanding with therapeutic implications.Arthritis Res. Ther.20171911810.1186/s13075‑017‑1229‑928148295
    [Google Scholar]
  20. ScanzelloC.R. GoldringS.R. The role of synovitis in osteoarthritis pathogenesis.Bone201251224925710.1016/j.bone.2012.02.01222387238
    [Google Scholar]
  21. ZhaoK. RuanJ. NieL. YeX. LiJ. Effects of synovial macrophages in osteoarthritis.Front. Immunol.202314116413710.3389/fimmu.2023.116413737492583
    [Google Scholar]
  22. KompelA.J. RoemerF.W. MurakamiA.M. DiazL.E. CremaM.D. GuermaziA. Intra-articular corticosteroid injections in the hip and knee: Perhaps not as safe as we thought?Radiology2019293365666310.1148/radiol.201919034131617798
    [Google Scholar]
  23. ArdenN.K. PerryT.A. BannuruR.R. BruyèreO. CooperC. HaugenI.K. HochbergM.C. McAlindonT.E. MobasheriA. ReginsterJ.Y. Non-surgical management of knee osteoarthritis: Comparison of ESCEO and OARSI 2019 guidelines.Nat. Rev. Rheumatol.2021171596610.1038/s41584‑020‑00523‑933116279
    [Google Scholar]
  24. WoodM.J. LeckenbyA. ReynoldsG. SpieringR. PrattA.G. RankinK.S. IsaacsJ.D. HaniffaM.A. MillingS. HilkensC.M.U. Macrophage proliferation distinguishes 2 subgroups of knee osteoarthritis patients.JCI Insight201942e12532510.1172/jci.insight.12532530674730
    [Google Scholar]
  25. ZhangH. CaiD. BaiX. Macrophages regulate the progression of osteoarthritis.Osteoarthr. Carti.202028555556110.1016/j.joca.2020.01.00731982565
    [Google Scholar]
  26. LiuB. ZhangM. ZhaoJ. ZhengM. YangH. Imbalance of M1/M2 macrophages is linked to severity level of knee osteoarthritis.Exp. Ther. Med.20181665009501410.3892/etm.2018.685230546406
    [Google Scholar]
  27. PittengerM.F. MackayA.M. BeckS.C. JaiswalR.K. DouglasR. MoscaJ.D. MoormanM.A. SimonettiD.W. CraigS. MarshakD.R. Multilineage potential of adult human mesenchymal stem cells.Science1999284541114314710.1126/science.284.5411.14310102814
    [Google Scholar]
  28. GiorginoR. AlbanoD. FuscoS. PerettiG.M. MangiaviniL. MessinaC. Knee osteoarthritis: Epidemiology, pathogenesis, and mesenchymal stem cells: What else is new? an update.Int. J. Mol. Sci.2023247640510.3390/ijms2407640537047377
    [Google Scholar]
  29. ChenY. ChengR.J. WuY. HuangD. LiY. LiuY. Advances in stem cell-based therapies in the treatment of osteoarthritis.Int. J. Mol. Sci.202325139410.3390/ijms2501039438203565
    [Google Scholar]
  30. AbumareeM.H. Al JumahM.A. KalionisB. JawdatD. Al KhaldiA. AbomarayF.M. FataniA.S. ChamleyL.W. KnawyB.A. Human placental mesenchymal stem cells (pMSCs) play a role as immune suppressive cells by shifting macrophage differentiation from inflammatory M1 to anti-inflammatory M2 macrophages.Stem Cell Rev.20139562064110.1007/s12015‑013‑9455‑223812784
    [Google Scholar]
  31. YangC.Y. ChangP.Y. ChenJ.Y. WuB.S. YangA.H. LeeO.K.S. Adipose-derived mesenchymal stem cells attenuate dialysis-induced peritoneal fibrosis by modulating macrophage polarization via interleukin-6.Stem Cell Res. Ther.202112119310.1186/s13287‑021‑02270‑433741073
    [Google Scholar]
  32. WangY. HanB. WangY. WangC. ZhangH. XueJ. WangX. NiuT. NiuZ. ChenY. Mesenchymal stem cell–secreted extracellular vesicles carrying TGF-β1 up-regulate miR-132 and promote mouse M2 macrophage polarization.J. Cell. Mol. Med.20202421127501276410.1111/jcmm.1586032965772
    [Google Scholar]
  33. PilnyE. SmolarczykR. Jarosz-BiejM. HadykA. SkorupaA. CiszekM. KrakowczykŁ. KułachN. GillnerD. SokółM. SzalaS. CichońT. Human ADSC xenograft through IL-6 secretion activates M2 macrophages responsible for the repair of damaged muscle tissue.Stem Cell Res. Ther.20191019310.1186/s13287‑019‑1188‑y30867059
    [Google Scholar]
  34. EspagnolleN. BalguerieA. ArnaudE. SensebéL. VarinA. CD54-mediated interaction with pro-inflammatory macrophages increases the immunosuppressive function of human mesenchymal stromal cells.Stem Cell Reports20178496197610.1016/j.stemcr.2017.02.00828330617
    [Google Scholar]
  35. TakizawaN. OkuboN. KamoM. ChosaN. MikamiT. SuzukiK. YokotaS. IbiM. OhtsukaM. TairaM. YaegashiT. IshisakiA. KyakumotoS. Bone marrow-derived mesenchymal stem cells propagate immunosuppressive/anti-inflammatory macrophages in cell-to-cell contact-independent and -dependent manners under hypoxic culture.Exp. Cell Res.2017358241142010.1016/j.yexcr.2017.07.01428712928
    [Google Scholar]
  36. Shapouri-MoghaddamA. MohammadianS. VaziniH. TaghadosiM. EsmaeiliS.A. MardaniF. SeifiB. MohammadiA. AfshariJ.T. SahebkarA. Macrophage plasticity, polarization, and function in health and disease.J. Cell. Physiol.201823396425644010.1002/jcp.2642929319160
    [Google Scholar]
  37. LiY. TuQ. XieD. ChenS. GaoK. XuX. ZhangZ. MeiX. Triamcinolone acetonide-loaded nanoparticles encapsulated by CD90+ MCSs-derived microvesicles drive anti-inflammatory properties and promote cartilage regeneration after osteoarthritis.J. Nanobiotechnology202220115010.1186/s12951‑022‑01367‑z35305656
    [Google Scholar]
  38. WangT. HeC. Pro-inflammatory cytokines: The link between obesity and osteoarthritis.Cytokine Growth Factor Rev.201844385010.1016/j.cytogfr.2018.10.00230340925
    [Google Scholar]
  39. HarrellC.R. MarkovicB.S. FellabaumC. ArsenijevicN. DjonovV. VolarevicV. The role of Interleukin 1 receptor antagonist in mesenchymal stem cell-based tissue repair and regeneration.Biofactors202046226327510.1002/biof.158731755595
    [Google Scholar]
  40. LeeK. ParkN. JungH. RimY.A. NamY. LeeJ. ParkS.H. JuJ.H. Mesenchymal stem cells ameliorate experimental arthritis via expression of interleukin-1 receptor antagonist.PLoS One2018132e019308610.1371/journal.pone.019308629481574
    [Google Scholar]
  41. LiuW. ZhangS. GuS. SangL. DaiC. Mesenchymal stem cells recruit macrophages to alleviate experimental colitis through TGFβ1.Cell. Physiol. Biochem.201535385886510.1159/00036974325632987
    [Google Scholar]
  42. WangR. XuB. TGF-β1-modified MSC-derived exosomal miR-135b attenuates cartilage injury via promoting M2 synovial macrophage polarization by targeting MAPK6.Cell Tissue Res.2021384111312710.1007/s00441‑020‑03319‑133404840
    [Google Scholar]
  43. WangW. LiangM. WangL. BeiW. RongX. XuJ. GuoJ. Role of prostaglandin E2 in macrophage polarization: Insights into atherosclerosis.Biochem. Pharmacol.202320711535710.1016/j.bcp.2022.11535736455672
    [Google Scholar]
  44. BouffiC. BonyC. CourtiesG. JorgensenC. NoëlD. IL-6-dependent PGE2 secretion by mesenchymal stem cells inhibits local inflammation in experimental arthritis.PLoS One2010512e1424710.1371/journal.pone.001424721151872
    [Google Scholar]
  45. LeeS. ZhangQ.Z. KarabucakB. LeA.D. DPSCs from inflamed pulp modulate macrophage function via the TNF-α/IDO axis.J. Dent. Res.201695111274128110.1177/002203451665781727384335
    [Google Scholar]
  46. TohW.S. LaiR.C. ZhangB. LimS.K. MSC exosome works through a protein-based mechanism of action.Biochem. Soc. Trans.201846484385310.1042/BST2018007929986939
    [Google Scholar]
  47. VadhanA. GuptaT. HsuW.L. Mesenchymal stem cell-derived exosomes as a treatment option for osteoarthritis.Int. J. Mol. Sci.20242517914910.3390/ijms2517914939273098
    [Google Scholar]
  48. RagniE. PapaitA. Perucca OrfeiC. SiliniA.R. ColombiniA. ViganòM. LibonatiF. ParoliniO. GirolamoL. Amniotic membrane-mesenchymal stromal cells secreted factors and extracellular vesicle-miRNAs: Anti-inflammatory and regenerative features for musculoskeletal tissues.Stem Cells Transl. Med.20211071044106210.1002/sctm.20‑039033656805
    [Google Scholar]
  49. WuH. PengZ. XuY. ShengZ. LiuY. LiaoY. WangY. WenY. YiJ. XieC. ChenX. HuJ. YanB. WangH. YaoX. FuW. OuyangH. Engineered adipose-derived stem cells with IGF-1-modified mRNA ameliorates osteoarthritis development.Stem Cell Res. Ther.20221311910.1186/s13287‑021‑02695‑x35033199
    [Google Scholar]
  50. ColombiniA. LibonatiF. CangelosiD. LopaS. De LucaP. CovielloD.A. MorettiM. de GirolamoL. Inflammatory priming with IL-1β promotes the immunomodulatory behavior of adipose derived stem cells.Front. Bioeng. Biotechnol.202210100087910.3389/fbioe.2022.100087936338130
    [Google Scholar]
  51. ChangL.H. WuS.C. ChenC.H. ChenJ.W. HuangW.C. WuC.W. LinY.S. ChenY.J. ChangJ.K. HoM.L. Exosomes derived from hypoxia-cultured human adipose stem cells alleviate articular chondrocyte inflammaging and post-traumatic osteoarthritis progression.Int. J. Mol. Sci.202324171341410.3390/ijms24171341437686220
    [Google Scholar]
  52. XiaP. WangX. WangQ. WangX. LinQ. ChengK. LiX. Low-intensity pulsed ultrasound promotes autophagy-mediated migration of mesenchymal stem cells and cartilage repair.Cell Transplant.202130096368972098614210.1177/096368972098614233412895
    [Google Scholar]
  53. CaiY. WuC. OuQ. ZengM. XueS. ChenJ. LuY. DingC. Enhanced osteoarthritis therapy by nanoengineered mesenchymal stem cells using biomimetic CuS nanoparticles loaded with plasmid DNA encoding TGF-β1.Bioact. Mater.20231944445710.1016/j.bioactmat.2022.04.02135574050
    [Google Scholar]
  54. LinY.Y. KuanC.Y. ChangC.T. ChuangM.H. SyuW.S. ZhangK.L. LeeC.H. LinP.C. DongG.C. LinF.H. 3D-cultured adipose-derived stem cell spheres using calcium-alginate scaffolds for osteoarthritis treatment in a mono-iodoacetate-induced rat model.Int. J. Mol. Sci.2023248706210.3390/ijms2408706237108239
    [Google Scholar]
  55. WengZ. WangY. OuchiT. LiuH. QiaoX. WuC. ZhaoZ. LiL. LiB. Mesenchymal stem/stromal cell senescence: Hallmarks, mechanisms, and combating strategies.Stem Cells Transl. Med.202211435637110.1093/stcltm/szac00435485439
    [Google Scholar]
  56. LeiJ. JiangX. LiW. RenJ. WangD. JiZ. WuZ. ChengF. CaiY. YuZ.R. BelmonteJ.C.I. LiC. LiuG.H. ZhangW. QuJ. WangS. Exosomes from antler stem cells alleviate mesenchymal stem cell senescence and osteoarthritis.Prot. Cell202213322022610.1007/s13238‑021‑00860‑934342820
    [Google Scholar]
  57. LiH. XiangD. GongC. WangX. LiuL. Naturally derived injectable hydrogels with ROS-scavenging property to protect transplanted stem cell bioactivity for osteoarthritic cartilage repair.Front. Bioeng. Biotechnol.202310110907410.3389/fbioe.2022.110907436686241
    [Google Scholar]
  58. HamiltonA.M. CheungW.Y. Gómez-AristizábalA. SharmaA. NakamuraS. ChaboureauA. BhattS. RabaniR. KapoorM. FosterP.J. ViswanathanS. Iron nanoparticle-labeled murine mesenchymal stromal cells in an osteoarthritic model persists and suggests anti-inflammatory mechanism of action.PLoS One20191412e021410710.1371/journal.pone.021410731794570
    [Google Scholar]
  59. CosenzaS. ToupetK. MaumusM. Luz-CrawfordP. Blanc-BrudeO. JorgensenC. NoëlD. Mesenchymal stem cells-derived exosomes are more immunosuppressive than microparticles in inflammatory arthritis.Theranostics2018851399141010.7150/thno.2107229507629
    [Google Scholar]
  60. ShenX. QinJ. WeiZ. LiuF. Bone marrow mesenchymal stem cell exosome-derived lncRNA TUC339 influences the progression of osteoarthritis by regulating synovial macrophage polarization and chondrocyte apoptosis.Biomed. Pharmacother.202316711548810.1016/j.biopha.2023.11548837729727
    [Google Scholar]
  61. SunW. QuS. JiM. SunY. HuB. BMP-7 modified exosomes derived from synovial mesenchymal stem cells attenuate osteoarthritis by M2 polarization of macrophages.Heliyon202399e1993410.1016/j.heliyon.2023.e1993437809369
    [Google Scholar]
  62. PangL. JinH. LuZ. XieF. ShenH. LiX. ZhangX. JiangX. WuL. ZhangM. ZhangT. ZhaiY. ZhangY. GuanH. SuJ. LiM. GaoJ. Treatment with mesenchymal stem cell-derived nanovesicle-containing gelatin methacryloyl hydrogels alleviates osteoarthritis by modulating chondrogenesis and macrophage polarization.Adv. Healthc. Mater.20231217230031510.1002/adhm.20230031536848378
    [Google Scholar]
  63. WangT. ZhaoH. ZhangY. LiuY. LiuJ. ChenG. DuanK. LiZ. HuiH.P.J. YanJ. A novel extracellular vesicles production system harnessing matrix homeostasis and macrophage reprogramming mitigates osteoarthritis.J. Nanobiotechnol.20242217910.1186/s12951‑024‑02324‑838419097
    [Google Scholar]
  64. ZhangS. ChuahS.J. LaiR.C. HuiJ.H.P. LimS.K. TohW.S. MSC exosomes mediate cartilage repair by enhancing proliferation, attenuating apoptosis and modulating immune reactivity.Biomaterials2018156162710.1016/j.biomaterials.2017.11.02829182933
    [Google Scholar]
  65. ZhangJ. RongY. LuoC. CuiW. Bone marrow mesenchymal stem cell-derived exosomes prevent osteoarthritis by regulating synovial macrophage polarization.Aging20201224251382515210.18632/aging.10411033350983
    [Google Scholar]
  66. LiP.L. ChenD.F. LiX.T. HaoR.C. ZhaoZ.D. LiZ.L. YinB.F. TangJ. LuoY.W. WuC.T. NieJ.J. ZhuH. Microgel-based carriers enhance skeletal stem cell reprogramming towards immunomodulatory phenotype in osteoarthritic therapy.Bioact. Mater.20243420422010.1016/j.bioactmat.2023.12.02238235309
    [Google Scholar]
  67. LiB. ShenE. WuZ. QiH. WuC. LiuD. JiangX. BMSC-derived exosomes attenuate rat osteoarthritis by regulating macrophage polarization through pink1/parkin signaling pathway.Cartilage2024111947603524124580510.1177/1947603524124580538641989
    [Google Scholar]
  68. HsuehY.H. BuddhakosaiW. LeP.N. TuY.Y. HuangH.C. LuH.E. ChenW.L. TuY.K. Therapeutic effect of induced pluripotent stem cell -derived extracellular vesicles in an in vitro and in vivo osteoarthritis model.J. Orthop. Translat.20233814115510.1016/j.jot.2022.10.00436381245
    [Google Scholar]
  69. ZhouH. ShenX. YanC. XiongW. MaZ. TanZ. WangJ. LiY. LiuJ. DuanA. LiuF. Extracellular vesicles derived from human umbilical cord mesenchymal stem cells alleviate osteoarthritis of the knee in mice model by interacting with METTL3 to reduce m6A of NLRP3 in macrophage.Stem Cell Res. Ther.202213132210.1186/s13287‑022‑03005‑935842714
    [Google Scholar]
  70. (a) Li PD, LvS, Jiang WY, et al. Exosomes derived from umbilical cord mesenchymal stem cells protect cartilage and regulate the polarization of macrophages in osteoarthritis. Ann Transl Med 2022; 10(18):976. https://dx.doi.org/10.21037/atm-22-3912 PMID: 36267713 (b) Huang HY, Hsu CW, Lin GC, et al. Comparing efficacy of a single intraarticular injection of platelet-rich plasma (PRP) combined with different hyaluronans for knee osteoarthritis: A randomizedcontrolled clinical trial. BMC Musculoskelet Disord 2022; 23(1): 954. http://dx.doi.org/10.1186/s12891-022-05906-5 PMID: 36329428
  71. TangS. ChenP. ZhangH. WengH. FangZ. ChenC. PengG. GaoH. HuK. ChenJ. ChenL. ChenX. Comparison of curative effect of human umbilical cord-derived mesenchymal stem cells and their small extracellular vesicles in treating osteoarthritis.Int. J. Nanom.2021168185820210.2147/IJN.S33606234938076
    [Google Scholar]
  72. LiP.L. WangY.X. ZhaoZ.D. LiZ.L. LiangJ.W. WangQ. YinB.F. HaoR.C. HanM.Y. DingL. WuC.T. ZhuH. Clinical-grade human dental pulp stem cells suppressed the activation of osteoarthritic macrophages and attenuated cartilaginous damage in a rabbit osteoarthritis model.Stem Cell Res. Ther.202112126010.1186/s13287‑021‑02353‑233933140
    [Google Scholar]
  73. LeeM. KimG.H. KimM. SeoJ.M. KimY.M. SeonM.R. UmS. ChoiS.J. OhW. SongB.R. JinH.J. PTX-3 secreted by intra-articular-injected SMUP-cells reduces pain in an osteoarthritis rat model.Cells2021109242010.3390/cells1009242034572070
    [Google Scholar]
  74. ZavattiM. BerettiF. CasciaroF. BertucciE. MaraldiT. Comparison of the therapeutic effect of amniotic fluid stem cells and their exosomes on monoiodoacetate-induced animal model of osteoarthritis.Biofactors202046110611710.1002/biof.157631625201
    [Google Scholar]
  75. WooC.H. KimH.K. JungG.Y. JungY.J. LeeK.S. YunY.E. HanJ. LeeJ. KimW.S. ChoiJ.S. YangS. ParkJ.H. JoD.G. ChoY.W. Small extracellular vesicles from human adipose-derived stem cells attenuate cartilage degeneration.J. Extracell. Vesicles202091173524910.1080/20013078.2020.173524932284824
    [Google Scholar]
  76. TongW. ZhangX. ZhangQ. FangJ. LiuY. ShaoZ. YangS. WuD. ShengX. ZhangY. TianH. Multiple umbilical cord–derived MSCs administrations attenuate rat osteoarthritis progression via preserving articular cartilage superficial layer cells and inhibiting synovitis.J. Orthop. Translat.202023212810.1016/j.jot.2020.03.00732455113
    [Google Scholar]
  77. ManferdiniC. MaumusM. GabusiE. PiacentiniA. FilardoG. PeyrafitteJ.A. JorgensenC. BourinP. Fleury-CappellessoS. FacchiniA. NoëlD. LisignoliG. Adipose-derived mesenchymal stem cells exert antiinflammatory effects on chondrocytes and synoviocytes from osteoarthritis patients through prostaglandin E2.Arthritis Rheum.20136551271128110.1002/art.3790823613363
    [Google Scholar]
  78. WangS. JiangW. LvS. SunZ. SiL. HuJ. YangY. QiuD. LiuX. ZhuS. YangL. QiL. ChiG. WangG. LiP. LiaoB. Human umbilical cord mesenchymal stem cells-derived exosomes exert anti-inflammatory effects on osteoarthritis chondrocytes.Aging202315189544956010.18632/aging.20503437724890
    [Google Scholar]
  79. LiuQ. WuJ. WangH. JiaZ. LiG. Human infrapatellar fat pad mesenchymal stem cell–derived extracellular vesicles purified by anion exchange chromatography suppress osteoarthritis progression in a mouse model.Clin. Orthop. Relat. Res.202448271246126210.1097/CORR.000000000000306738662932
    [Google Scholar]
  80. LiebmannK. CastilloM.A. JergovaS. BestT.M. SagenJ. KouroupisD. Modification of mesenchymal stem/stromal cell-derived small extracellular vesicles by calcitonin gene related peptide (CGRP) antagonist: Potential implications for inflammation and pain reversal.Cells202413648410.3390/cells1306048438534328
    [Google Scholar]
/content/journals/cscr/10.2174/011574888X338318241213055616
Loading
/content/journals/cscr/10.2174/011574888X338318241213055616
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): cell interplay; macrophage; osteoarthritis, exosome, inflammation; Stem cell
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test