Skip to content
2000
image of Efficacy of Stem Cell-derived Extracellular Vesicles in the Treatment of Alzheimer's Disease Model Mice: A Systematic Review and Meta-analysis

Abstract

Background

Alzheimer's disease (AD) is a neurodegenerative disease that is still incurable. Therapy with stem cell or extracellular vesicles is a promising strategy for AD treatment. Therefore, we evaluated whether stem cell-derived extracellular vesicles could improve cognitive function and pathological features in AD model mice.

Methods

PubMed, Web of Science, Embase, and The Cochrane Library were searched for studies reporting stem cell-derived extracellular vesicles treatment of AD mice from the establishment of each database to 1st August 2023. SYRCLE was used to assess the risk of bias. The extracted data were analyzed using RevMan 5.4 and Stata 15 software.

Results

19 studies were included in the analysis. Meta-analysis showed that treatment with stem cell-derived extracellular vesicles significantly improved cognitive performance of AD mice in the Morris water maze test and the novel object recognition test, reduced β-amyloid deposition, alleviated neuroinflammation and decreased levels of the proinflammatory cytokines and glial fibrillary acidic protein (GFAP) in the brain of AD mice. However, stem cell-derived extracellular vesicle did not affect the level of brain phosphorylated tau (p-Tau).

Conclusions

stem cell-derived extracellular vesicles may promote the degradation of β-amyloid plaques in the brain, regulate immunity and protect nerves, which result in cognitive improvement in AD mice.

Loading

Article metrics loading...

/content/journals/cscr/10.2174/011574888X352270250407170235
2025-04-18
2025-10-26
Loading full text...

Full text loading...

References

  1. Förstl H. Kurz A. Clinical features of Alzheimer’s disease. Eur. Arch. Psychiatry Clin. Neurosci. 1999 249 6 288 290 10.1007/s004060050101 10653284
    [Google Scholar]
  2. Lane C.A. Hardy J. Schott J.M. Alzheimer’s disease. Eur. J. Neurol. 2018 25 1 59 70 10.1111/ene.13439 28872215
    [Google Scholar]
  3. Gaugler J. James B. Johnson T. Reimer J. Solis M. Weuve J. Alzheimer’s disease facts and figures. Alzheimers Dement. 2022 18 4 700 789 10.1002/alz.12638 35289055
    [Google Scholar]
  4. Jia J. Wei C. Chen S. Li F. Tang Y. Qin W. Zhao L. Jin H. Xu H. Wang F. Zhou A. Zuo X. Wu L. Han Y. Han Y. Huang L. Wang Q. Li D. Chu C. Shi L. Gong M. Du Y. Zhang J. Zhang J. Zhou C. Lv J. Lv Y. Xie H. Ji Y. Li F. Yu E. Luo B. Wang Y. Yang S. Qu Q. Guo Q. Liang F. Zhang J. Tan L. Shen L. Zhang K. Zhang J. Peng D. Tang M. Lv P. Fang B. Chu L. Jia L. Gauthier S. The cost of Alzheimer’s disease in China and re‐estimation of costs worldwide. Alzheimers Dement. 2018 14 4 483 491 10.1016/j.jalz.2017.12.006 29433981
    [Google Scholar]
  5. Ju YJ Tam KY Pathological mechanisms and therapeutic strategies for Alzheimer's disease. Neural. Regen. Res 2022 17 3 543
    [Google Scholar]
  6. Howland R.H. Drug therapies for cognitive impairment and dementia. J. Psychosoc. Nurs. Ment. Health Serv. 2010 48 4 11 14 10.3928/02793695‑20100311‑01 20349884
    [Google Scholar]
  7. Lao K. Ji N. Zhang X. Qiao W. Tang Z. Gou X. Drug development for Alzheimer’s disease: Review. J. Drug Target. 2019 27 2 164 173 10.1080/1061186X.2018.1474361 29732929
    [Google Scholar]
  8. Xiao S. Chan P. Wang T. Hong Z. Wang S. Kuang W. He J. Pan X. Zhou Y. Ji Y. Wang L. Cheng Y. Peng Y. Ye Q. Wang X. Wu Y. Qu Q. Chen S. Li S. Chen W. Xu J. Peng D. Zhao Z. Li Y. Zhang J. Du Y. Chen W. Fan D. Yan Y. Liu X. Zhang W. Luo B. Wu W. Shen L. Liu C. Mao P. Wang Q. Zhao Q. Guo Q. Zhou Y. Li Y. Jiang L. Ren W. Ouyang Y. Wang Y. Liu S. Jia J. Zhang N. Liu Z. He R. Feng T. Lu W. Tang H. Gao P. Zhang Y. Chen L. Wang L. Yin Y. Xu Q. Xiao J. Cong L. Cheng X. Zhang H. Gao D. Xia M. Lian T. Peng G. Zhang X. Jiao B. Hu H. Chen X. Guan Y. Cui R. Huang Q. Xin X. Chen H. Ding Y. Zhang J. Feng T. Cantillon M. Chen K. Cummings J.L. Ding J. Geng M. Zhang Z. A 36-week multicenter, randomized, double-blind, placebo-controlled, parallel-group, phase 3 clinical trial of sodium oligomannate for mild-to-moderate Alzheimer’s dementia. Alzheimers Res. Ther. 2021 13 1 62 10.1186/s13195‑021‑00795‑7 33731209
    [Google Scholar]
  9. van Dyck C.H. Swanson C.J. Aisen P. Bateman R.J. Chen C. Gee M. Kanekiyo M. Li D. Reyderman L. Cohen S. Froelich L. Katayama S. Sabbagh M. Vellas B. Watson D. Dhadda S. Irizarry M. Kramer L.D. Iwatsubo T. Lecanemab in early Alzheimer’s Disease. N. Engl. J. Med. 2023 388 1 9 21 10.1056/NEJMoa2212948 36449413
    [Google Scholar]
  10. Ge M. Zhang Y. Hao Q. Zhao Y. Dong B. Effects of mesenchymal stem cells transplantation on cognitive deficits in animal models of Alzheimer’s disease: A systematic review and meta‐analysis. Brain Behav. 2018 8 7 e00982 10.1002/brb3.982 29877067
    [Google Scholar]
  11. Zhou Z. Shi B. Xu Y. Zhang J. liu X. Zhou X. Feng B. Ma J. Cui H. Neural stem/progenitor cell therapy for Alzheimer disease in preclinical rodent models: a systematic review and meta-analysis. Stem Cell Res. Ther. 2023 14 1 3 10.1186/s13287‑022‑03231‑1 36600321
    [Google Scholar]
  12. Jung J.W. Kwon M. Choi J.C. Shin J.W. Park I.W. Choi B.W. Kim J.Y. Familial occurrence of pulmonary embolism after intravenous, adipose tissue-derived stem cell therapy. Yonsei Med. J. 2013 54 5 1293 1296 10.3349/ymj.2013.54.5.1293 23918585
    [Google Scholar]
  13. Tang Q. Chen Q. Lai X. Liu S. Chen Y. Zheng Z. Xie Q. Maldonado M. Cai Z. Qin S. Ho G. Ma L. Malignant transformation potentials of human umbilical cord mesenchymal stem cells both spontaneously and via 3-methycholanthrene induction. PLoS One 2013 8 12 e81844 10.1371/journal.pone.0081844 24339974
    [Google Scholar]
  14. Zhao T. Zhang Z.N. Rong Z. Xu Y. Immunogenicity of induced pluripotent stem cells. Nature 2011 474 7350 212 215 10.1038/nature10135 21572395
    [Google Scholar]
  15. Zhi ZK Sun QC Tang WB Research advances and challenges in tissue-derived extracellular vesicles. Front. Mol. Biosci 2022 9 1036746 10.3389/fmolb.2022.1036746
    [Google Scholar]
  16. Guo M. Yin Z. Chen F. Lei P. Mesenchymal stem cell-derived exosome: A promising alternative in the therapy of Alzheimer’s disease. Alzheimers Res. Ther. 2020 12 1 109 10.1186/s13195‑020‑00670‑x 32928293
    [Google Scholar]
  17. Keshtkar S Azarpira N Ghahremani MH Mesenchymal stem cell-derived extracellular vesicles: novel frontiers in regenerative medicine. Stem Cell Res Ther 9 1 63 10.1186/s13287‑018‑0791‑7
    [Google Scholar]
  18. Dang X.T.T. Kavishka J.M. Zhang D.X. Pirisinu M. Le M.T.N. Extracellular vesicles as an efficient and versatile system for drug delivery. Cells 2020 9 10 2191 10.3390/cells9102191 33003285
    [Google Scholar]
  19. He X. Wang Y. Liu Z. Weng Y. Chen S. Pan Q. Li Y. Wang H. Lin S. Yu H. Osteoporosis treatment using stem cell-derived exosomes: A systematic review and meta-analysis of preclinical studies. Stem Cell Res. Ther. 2023 14 1 72 10.1186/s13287‑023‑03317‑4 37038180
    [Google Scholar]
  20. Zheng Y. Wang W. Cai P. Zheng F. Zhou Y. Li M. Du J. Lin S. Lin H. Stem cell-derived exosomes in the treatment of acute myocardial infarction in preclinical animal models: A meta-analysis of randomized controlled trials. Stem Cell Res. Ther. 2022 13 1 151 10.1186/s13287‑022‑02833‑z 35395872
    [Google Scholar]
  21. Cherian SG Narayan SK Arumugam M xosome therapies improve outcome in rodents with ischemic stroke: Meta-analysis. Brain. Res. 1803 148228 10.1016/j.brainres.2022.148228.
    [Google Scholar]
  22. Qiao ZH Wang XC Zhao HL Deng YW Zeng WL Yang K The effectiveness of cell-derived exosome therapy for diabetic wound: A systematic review and meta-analysis. Ageing Res Rev. 85 101858 10.1016/j.arr.2023.101858
    [Google Scholar]
  23. Zhai L. Shen H. Sheng Y. Guan Q. ADMSC Exo‐MicroRNA‐22 improve neurological function and neuroinflammation in mice with Alzheimer’s disease. J. Cell. Mol. Med. 2021 25 15 7513 7523 10.1111/jcmm.16787 34250722
    [Google Scholar]
  24. Ma X. Huang M. Zheng M. Dai C. Song Q. Zhang Q. Li Q. Gu X. Chen H. Jiang G. Yu Y. Liu X. Li S. Wang G. Chen H. Lu L. Gao X. ADSCs-derived extracellular vesicles alleviate neuronal damage, promote neurogenesis and rescue memory loss in mice with Alzheimer’s disease. J. Control. Release 2020 327 688 702 10.1016/j.jconrel.2020.09.019 32931898
    [Google Scholar]
  25. Wang X. Yang G. Bone marrow mesenchymal stem cells‐derived exosomes reduce Aβ deposition and improve cognitive function recovery in mice with Alzheimer’s disease by activating sphingosine kinase/sphingosine‐1‐phosphate signaling pathway. Cell Biol. Int. 2021 45 4 775 784 10.1002/cbin.11522 33300254
    [Google Scholar]
  26. Hou X. Jiang H. Liu T. Yan J. Zhang F. Zhang X. Zhao J. Mu X. Jiang J. Depletion of gut microbiota resistance in 5×FAD mice enhances the therapeutic effect of mesenchymal stem cell-derived exosomes. Biomed. Pharmacother. 2023 161 114455 10.1016/j.biopha.2023.114455 36905811
    [Google Scholar]
  27. Liu S. Fan M. Xu J.X. Yang L.J. Qi C.C. Xia Q.R. Ge J.F. Exosomes derived from bone-marrow mesenchymal stem cells alleviate cognitive decline in AD-like mice by improving BDNF-related neuropathology. J. Neuroinflammation 2022 19 1 35 10.1186/s12974‑022‑02393‑2 35130907
    [Google Scholar]
  28. Cui G.H. Wu J. Mou F.F. Xie W.H. Wang F.B. Wang Q.L. Fang J. Xu Y.W. Dong Y.R. Liu J.R. Guo H.D. Exosomes derived from hypoxia‐preconditioned mesenchymal stromal cells ameliorate cognitive decline by rescuing synaptic dysfunction and regulating inflammatory responses in APP/PS1 mice. FASEB J. 2018 32 2 654 668 10.1096/fj.201700600R 28970251
    [Google Scholar]
  29. Ding M. Shen Y. Wang P. Xie Z. Xu S. Zhu Z. Wang Y. Lyu Y. Wang D. Xu L. Bi J. Yang H. Exosomes isolated from human umbilical cord mesenchymal stem cells alleviate neuroinflammation and reduce amyloid-beta deposition by modulating microglial activation in Alzheimer’s Disease. Neurochem. Res. 2018 43 11 2165 2177 10.1007/s11064‑018‑2641‑5 30259257
    [Google Scholar]
  30. Markoutsa E. Mayilsamy K. Gulick D. Mohapatra S.S. Mohapatra S. Extracellular vesicles derived from inflammatory-educated stem cells reverse brain inflammation—implication of miRNAs. Mol. Ther. 2022 30 2 816 830 10.1016/j.ymthe.2021.08.008 34371179
    [Google Scholar]
  31. Micci M.A. Krishnan B. Bishop E. Zhang W.R. Guptarak J. Grant A. Zolochevska O. Tumurbaatar B. Franklin W. Marino C. Widen S.G. Luthra A. Kernie S.G. Taglialatela G. Hippocampal stem cells promotes synaptic resistance to the dysfunctional impact of amyloid beta oligomers via secreted exosomes. Mol. Neurodegener. 2019 14 1 25 10.1186/s13024‑019‑0322‑8 31200742
    [Google Scholar]
  32. Apodaca L.A. Baddour A.A.D. Garcia C. Jr Alikhani L. Giedzinski E. Ru N. Agrawal A. Acharya M.M. Baulch J.E. Human neural stem cell-derived extracellular vesicles mitigate hallmarks of Alzheimer’s disease. Alzheimers Res. Ther. 2021 13 1 57 10.1186/s13195‑021‑00791‑x 33676561
    [Google Scholar]
  33. Liu H. Jin M. Ji M. Zhang W. Liu A. Wang T. Hypoxic pretreatment of adipose-derived stem cell exosomes improved cognition by delivery of circ-Epc1 and shifting microglial M1/M2 polarization in an Alzheimer’s disease mice model. Aging (Albany NY) 2022 14 7 3070 3083 10.18632/aging.203989 35366241
    [Google Scholar]
  34. Li B. Liu J. Gu G. Han X. Zhang Q. Zhang W. Impact of neural stem cell‐derived extracellular vesicles on mitochondrial dysfunction, sirtuin 1 level, and synaptic deficits in Alzheimer’s disease. J. Neurochem. 2020 154 5 502 518 10.1111/jnc.15001 32145065
    [Google Scholar]
  35. Elia C.A. Tamborini M. Rasile M. Desiato G. Marchetti S. Swuec P. Mazzitelli S. Clemente F. Anselmo A. Matteoli M. Malosio M.L. Coco S. Intracerebral injection of extracellular vesicles from mesenchymal stem cells exerts reduced aβ plaque burden in early stages of a preclinical model of Alzheimer’s Disease. Cells 2019 8 9 1059 10.3390/cells8091059 31510042
    [Google Scholar]
  36. Chen Y.A. Lu C.H. Ke C.C. Chiu S.J. Jeng F.S. Chang C.W. Yang B.H. Liu R.S. Mesenchymal stem cell-derived exosomes ameliorate alzheimer’s disease pathology and improve cognitive deficits. Biomedicines 2021 9 6 594 10.3390/biomedicines9060594 34073900
    [Google Scholar]
  37. Canales-Aguirre A.A. Reza-Zaldivar E.E. Hernández-Sapiéns M.A. Gutiérrez-Mercado Y.K. Sandoval-Ávila S. Gomez-Pinedo U. Márquez-Aguirre A.L. Vázquez-Méndez E. Padilla-Camberos E. Mesenchymal stem cell-derived exosomes promote neurogenesis and cognitive function recovery in a mouse model of Alzheimer’s disease. Neural Regen. Res. 2019 14 9 1626 1634 10.4103/1673‑5374.255978 31089063
    [Google Scholar]
  38. Gao G. Li C. Ma Y. Liang Z. Li Y. Li X. Fu S. Wang Y. Xia X. Zheng J.C. Neural stem cell-derived extracellular vesicles mitigate Alzheimer’s disease-like phenotypes in a preclinical mouse model. Signal Transduct. Target. Ther. 2023 8 1 228 10.1038/s41392‑023‑01436‑1 37311758
    [Google Scholar]
  39. Yang L. Zhai Y. Hao Y. Zhu Z. Cheng G. The regulatory functionality of exosomes derived from hUMSCs in 3D culture for alzheimer’s disease therapy. Small 2020 16 3 1906273 10.1002/smll.201906273 31840420
    [Google Scholar]
  40. Cui G. Guo H. Li H. Zhai Y. Gong Z. Wu J. Liu J. Dong Y. Hou S. Liu J. RVG-modified exosomes derived from mesenchymal stem cells rescue memory deficits by regulating inflammatory responses in a mouse model of Alzheimer’s disease. Immun. Ageing 2019 16 1 10 10.1186/s12979‑019‑0150‑2 31114624
    [Google Scholar]
  41. Wang H. Liu Y. Li J. Wang T. Hei Y. Li H. Wang X. Wang L. Zhao R. Liu W. Long Q. Tail-vein injection of MSC-derived small extracellular vesicles facilitates the restoration of hippocampal neuronal morphology and function in APP / PS1 mice. Cell Death Discov. 2021 7 1 230 10.1038/s41420‑021‑00620‑y 34482379
    [Google Scholar]
  42. Lueptow LM Novel object recognition test for the investigation of learning and memory in mice. J. Vis Exp. 2017 30 126 55718 10.3791/55718.
    [Google Scholar]
  43. Othman M.Z. Hassan Z. Che Has A.T. Morris water maze: A versatile and pertinent tool for assessing spatial learning and memory. Exp. Anim. 2022 71 3 264 280 10.1538/expanim.21‑0120 35314563
    [Google Scholar]
  44. Bloom G.S. Amyloid-β and Tau. JAMA Neurol. 2014 71 4 505 508 10.1001/jamaneurol.2013.5847 24493463
    [Google Scholar]
  45. Castellani R.J. Perry G. Tau biology, tauopathy, traumatic brain injury, and diagnostic challenges. J. Alzheimers Dis. 2019 67 2 447 467 10.3233/JAD‑180721 30584140
    [Google Scholar]
  46. Thakur S. Dhapola R. Sarma P. Medhi B. Reddy D.H. Neuroinflammation in Alzheimer’s Disease: Current progress in molecular signaling and therapeutics. Inflammation 2023 46 1 1 17 10.1007/s10753‑022‑01721‑1 35986874
    [Google Scholar]
  47. Bettcher B.M. Olson K.E. Carlson N.E. McConnell B.V. Boyd T. Adame V. Solano D.A. Anton P. Markham N. Thaker A.A. Jensen A.M. Dallmann E.N. Potter H. Coughlan C. Astrogliosis and episodic memory in late life: Higher GFAP is related to worse memory and white matter microstructure in healthy aging and Alzheimer’s disease. Neurobiol. Aging 2021 103 68 77 10.1016/j.neurobiolaging.2021.02.012 33845398
    [Google Scholar]
  48. Garwood C.J. Ratcliffe L.E. Simpson J.E. Heath P.R. Ince P.G. Wharton S.B. Review: Astrocytes in Alzheimer’s disease and other age‐associated dementias: A supporting player with a central role. Neuropathol. Appl. Neurobiol. 2017 43 4 281 298 10.1111/nan.12338 27442752
    [Google Scholar]
  49. Khan M.I. Jeong E.S. Khan M.Z. Shin J.H. Kim J.D. Stem cells-derived exosomes alleviate neurodegeneration and Alzheimer’s pathogenesis by ameliorating neuroinflamation, and regulating the associated molecular pathways. Sci. Rep. 2023 13 1 15731 10.1038/s41598‑023‑42485‑4 37735227
    [Google Scholar]
  50. Hansen D.V. Hanson J.E. Sheng M. Microglia in Alzheimer’s disease. J. Cell Biol. 2018 217 2 459 472 10.1083/jcb.201709069 29196460
    [Google Scholar]
  51. Liddelow S.A. Guttenplan K.A. Clarke L.E. Bennett F.C. Bohlen C.J. Schirmer L. Bennett M.L. Münch A.E. Chung W.S. Peterson T.C. Wilton D.K. Frouin A. Napier B.A. Panicker N. Kumar M. Buckwalter M.S. Rowitch D.H. Dawson V.L. Dawson T.M. Stevens B. Barres B.A. Neurotoxic reactive astrocytes are induced by activated microglia. Nature 2017 541 7638 481 487 10.1038/nature21029 28099414
    [Google Scholar]
  52. Jayaraman A. Htike T.T. James R. Picon C. Reynolds R. TNF-mediated neuroinflammation is linked to neuronal necroptosis in Alzheimer’s disease hippocampus. Acta Neuropathol. Commun. 2021 9 1 159 10.1186/s40478‑021‑01264‑w 34625123
    [Google Scholar]
  53. Lopez-Rodriguez A.B. Hennessy E. Murray C.L. Nazmi A. Delaney H.J. Healy D. Fagan S.G. Rooney M. Stewart E. Lewis A. de Barra N. Scarry P. Riggs-Miller L. Boche D. Cunningham M.O. Cunningham C. Acute systemic inflammation exacerbates neuroinflammation in Alzheimer’s disease: IL‐1β drives amplified responses in primed astrocytes and neuronal network dysfunction. Alzheimers Dement. 2021 17 10 1735 1755 10.1002/alz.12341 34080771
    [Google Scholar]
  54. Hennessy E. Griffin É.W. Cunningham C. Astrocytes are primed by chronic neurodegeneration to produce exaggerated chemokine and cell infiltration responses to acute stimulation with the cytokines IL-1β and TNF-α. J. Neurosci. 2015 35 22 8411 8422 10.1523/JNEUROSCI.2745‑14.2015 26041910
    [Google Scholar]
  55. Kaur S. Sharma K. Sharma A. Sandha K.K. Ali S.M. Ahmed R. Ramajayan P. Singh P.P. Ahmed Z. Kumar A. Fluvoxamine maleate alleviates amyloid-beta load and neuroinflammation in 5XFAD mice to ameliorate Alzheimer disease pathology. Front. Immunol. 2024 15 1418422 10.3389/fimmu.2024.1418422 39136022
    [Google Scholar]
  56. Essawy A.E. Abdou H.M. Ibrahim H.M. Bouthahab N.M. Soybean isoflavone ameliorates cognitive impairment, neuroinflammation, and amyloid β accumulation in a rat model of Alzheimer’s disease. Environ. Sci. Pollut. Res. Int. 2019 26 25 26060 26070 10.1007/s11356‑019‑05862‑z 31278647
    [Google Scholar]
  57. Park J.S. Kam T.I. Lee S. Park H. Oh Y. Kwon S.H. Song J.J. Kim D. Kim H. Jhaldiyal A. Na D.H. Lee K.C. Park E.J. Pomper M.G. Pletnikova O. Troncoso J.C. Ko H.S. Dawson V.L. Dawson T.M. Lee S. Blocking microglial activation of reactive astrocytes is neuroprotective in models of Alzheimer’s disease. Acta Neuropathol. Commun. 2021 9 1 78 10.1186/s40478‑021‑01180‑z 33902708
    [Google Scholar]
  58. Madhu L.N. Kodali M. Upadhya R. Rao S. Somayaji Y. Attaluri S. Shuai B. Kirmani M. Gupta S. Maness N. Rao X. Cai J.J. Shetty A.K. Extracellular vesicles from human‐induced pluripotent stem cell‐derived neural stem cells alleviate proinflammatory cascades within disease‐associated microglia in Alzheimer’s disease. J. Extracell. Vesicles 2024 13 11 e12519 10.1002/jev2.12519 39499013
    [Google Scholar]
  59. Wu Z. Zhao L. Chen X. Cheng X. Zhang Y. Galantamine attenuates amyloid-β deposition and astrocyte activation in APP/PS1 transgenic mice. Exp. Gerontol. 2015 72 244 250 10.1016/j.exger.2015.10.015 26521029
    [Google Scholar]
  60. Zhao J. O’Connor T. Vassar R. The contribution of activated astrocytes to Aβ production: Implications for Alzheimer’s disease pathogenesis. J. Neuroinflammation 2011 8 1 150 10.1186/1742‑2094‑8‑150 22047170
    [Google Scholar]
  61. Puzzo D. Gulisano W. Palmeri A. Arancio O. Rodent models for Alzheimer’s disease drug discovery. Expert Opin. Drug Discov. 2015 10 7 703 711 10.1517/17460441.2015.1041913 25927677
    [Google Scholar]
  62. Zhong M.Z. Peng T. Duarte M.L. Wang M. Cai D. Updates on mouse models of Alzheimer’s disease. Mol. Neurodegener. 2024 19 1 23 10.1186/s13024‑024‑00712‑0 38462606
    [Google Scholar]
  63. Guo P. Zeng M. Wang S. Cao B. Liu M. Zhang Y. Jia J. Zhang Q. Zhang B. Wang R. Zheng X. Feng W. Eriodictyol and homoeriodictyol improve memory impairment in Aβ25–35-induced mice by inhibiting the NLRP3 inflammasome. Molecules 2022 27 8 2488 10.3390/molecules27082488 35458684
    [Google Scholar]
  64. Bilkei-Gorzo A. Genetic mouse models of brain ageing and Alzheimer’s disease. Pharmacol. Ther. 2014 142 2 244 257 10.1016/j.pharmthera.2013.12.009 24362083
    [Google Scholar]
  65. Oakley H. Cole S.L. Logan S. Maus E. Shao P. Craft J. Guillozet-Bongaarts A. Ohno M. Disterhoft J. Van Eldik L. Berry R. Vassar R. Intraneuronal beta-amyloid aggregates, neurodegeneration, and neuron loss in transgenic mice with five familial Alzheimer’s disease mutations: Potential factors in amyloid plaque formation. J. Neurosci. 2006 26 40 10129 10140 10.1523/JNEUROSCI.1202‑06.2006 17021169
    [Google Scholar]
  66. Salkovic-Petrisic M. Knezovic A. Hoyer S. Riederer P. What have we learned from the streptozotocin-induced animal model of sporadic Alzheimer’s disease, about the therapeutic strategies in Alzheimer’s research. J. Neural Transm. (Vienna) 2013 120 1 233 252 10.1007/s00702‑012‑0877‑9 22886150
    [Google Scholar]
  67. Lee H.J. Lim I.J. Park S.W. Kim Y.B. Ko Y. Kim S.U. Human neural stem cells genetically modified to express human nerve growth factor (NGF) gene restore cognition in the mouse with ibotenic acid-induced cognitive dysfunction. Cell Transplant. 2012 21 11 2487 2496 10.3727/096368912X638964 22526467
    [Google Scholar]
  68. Park J. Simpson C. Patel K. Lecanemab: A humanized monoclonal antibody for the treatment of early alzheimer disease. Ann. Pharmacother. 2023 58 10 1045 10600280231218253 38095619
    [Google Scholar]
  69. Cohen S. van Dyck C.H. Gee M. Doherty T. Kanekiyo M. Dhadda S. Li D. Hersch S. Irizarry M. Kramer L.D. Lecanemab clarity AD: Quality-of-life results from a randomized, double-blind phase 3 trial in early Alzheimer’s Disease. J. Prev. Alzheimers Dis. 2023 10 4 771 777 10.14283/jpad.2023.123 37874099
    [Google Scholar]
  70. Jian M. Kwan J.S.C. Bunting M. Ng R.C.L. Chan K.H. Adiponectin suppresses amyloid-β oligomer (AβO)-induced inflammatory response of microglia via AdipoR1-AMPK-NF-κB signaling pathway. J. Neuroinflammation 2019 16 1 110 10.1186/s12974‑019‑1492‑6 31128596
    [Google Scholar]
  71. Ribeiro F.C. Cozachenco D. Heimfarth L. Fortuna J.T.S. de Freitas G.B. de Sousa J.M. Alves-Leon S.V. Leite R.E.P. Suemoto C.K. Grinberg L.T. De Felice F.G. Lourenco M.V. Ferreira S.T. Synaptic proteasome is inhibited in Alzheimer’s disease models and associates with memory impairment in mice. Commun. Biol. 2023 6 1 1127 10.1038/s42003‑023‑05511‑9 37935829
    [Google Scholar]
  72. Zhao W.Q. De Felice F.G. Fernandez S. Chen H. Lambert M.P. Quon M.J. Krafft G.A. Klein W.L. Amyloid beta oligomers induce impairment of neuronal insulin receptors. FASEB J. 2008 22 1 246 260 10.1096/fj.06‑7703com 17720802
    [Google Scholar]
  73. Calvo-Rodriguez M. Hou S.S. Snyder A.C. Kharitonova E.K. Russ A.N. Das S. Fan Z. Muzikansky A. Garcia-Alloza M. Serrano-Pozo A. Hudry E. Bacskai B.J. Increased mitochondrial calcium levels associated with neuronal death in a mouse model of Alzheimer’s disease. Nat. Commun. 2020 11 1 2146 10.1038/s41467‑020‑16074‑2 32358564
    [Google Scholar]
  74. Abeti R. Abramov A.Y. Mitochondrial Ca2+ in neurodegenerative disorders. Pharmacol. Res. 2015 99 377 381 10.1016/j.phrs.2015.05.007 26013908
    [Google Scholar]
  75. Devi L. Ohno M. A combination Alzheimer’s therapy targeting BACE1 and neprilysin in 5XFAD transgenic mice. Mol. Brain 2015 8 1 19 10.1186/s13041‑015‑0110‑5 25884928
    [Google Scholar]
  76. Jash K. Gondaliya P. Sunkaria A. Kalia K. MicroRNA-29b modulates β-Secretase activity in SH-SY5Y cell line and diabetic mouse brain. Cell. Mol. Neurobiol. 2020 40 8 1367 1381 10.1007/s10571‑020‑00823‑4 32198621
    [Google Scholar]
  77. Nakano M. Fujimiya M. Potential effects of mesenchymal stem cell derived extracellular vesicles and exosomal miRNAs in neurological disorders. Neural Regen. Res. 2021 16 12 2359 2366 10.4103/1673‑5374.313026 33907007
    [Google Scholar]
  78. El-Sayed N.S. Elatrebi S. Said R. Ibrahim H.F. Omar E.M. Potential mechanisms underlying the association between type II diabetes mellitus and cognitive dysfunction in rats: A link between miRNA-21 and Resveratrol’s neuroprotective action. Metab. Brain Dis. 2022 37 7 2375 2388 10.1007/s11011‑022‑01035‑z 35781592
    [Google Scholar]
  79. Lin L. Huang L. Huang S. Chen W. Huang H. Chi L. Su F. Liu X. Yuan K. Jiang Q. Li C. Smith W.W. Fu Q. Pei Z. MSC-Derived extracellular vesicles alleviate NLRP3/GSDMD-mediated neuroinflammation in mouse model of sporadic Alzheimer’s disease. Mol. Neurobiol. 2024 61 8 5494 5509 10.1007/s12035‑024‑03914‑1 38200351
    [Google Scholar]
  80. Li B. Chen Y. Zhou Y. Feng X. Gu G. Han S. Cheng N. Sun Y. Zhang Y. Cheng J. Zhang Q. Zhang W. Liu J. Neural stem cell-derived exosomes promote mitochondrial biogenesis and restore abnormal protein distribution in a mouse model of Alzheimer’s disease. Neural Regen. Res. 2024 19 7 1593 1601 10.4103/1673‑5374.385839 38051904
    [Google Scholar]
  81. Cheng L. Zhang K. Wu S. Cui M. Xu T. Focus on mesenchymal stem cell-derived exosomes: Opportunities and challenges in cell-free therapy. Stem Cells Int. 2017 2017 1 10 10.1155/2017/6305295 29410682
    [Google Scholar]
  82. Zhao T. Sun F. Liu J. Ding T. She J. Mao F. Xu W. Qian H. Yan Y. Emerging role of mesenchymal stem cell-derived exosomes in regenerative medicine. Curr. Stem Cell Res. Ther. 2019 14 6 482 494 10.2174/1574888X14666190228103230 30819086
    [Google Scholar]
  83. Camussi G. Deregibus M.C. Cantaluppi V. Role of stem-cell-derived microvesicles in the paracrine action of stem cells. Biochem. Soc. Trans. 2013 41 1 283 287 10.1042/BST20120192 23356298
    [Google Scholar]
  84. Zou Y. Liao L. Dai J. Mazhar M. Yang G. Wang H. Dechsupa N. Wang L. Mesenchymal stem cell-derived extracellular vesicles/exosome: A promising therapeutic strategy for intracerebral hemorrhage. Regen. Ther. 2023 22 181 190 10.1016/j.reth.2023.01.006 36860266
    [Google Scholar]
  85. Liu W. Ma Z. Li J. Kang X. Mesenchymal stem cell-derived exosomes: Therapeutic opportunities and challenges for spinal cord injury. Stem Cell Res. Ther. 2021 12 1 102 10.1186/s13287‑021‑02153‑8 33536064
    [Google Scholar]
  86. Lotfy A. AboQuella N.M. Wang H. Mesenchymal stromal/stem cell (MSC)-derived exosomes in clinical trials. Stem Cell Res. Ther. 2023 14 1 66 10.1186/s13287‑023‑03287‑7 37024925
    [Google Scholar]
  87. Xie X. Song Q. Dai C. Cui S. Tang R. Li S. Chang J. Li P. Wang J. Li J. Gao C. Chen H. Chen S. Ren R. Gao X. Wang G. Clinical safety and efficacy of allogenic human adipose mesenchymal stromal cells-derived exosomes in patients with mild to moderate Alzheimer’s disease: A phase I/II clinical trial. Gen. Psychiatr. 2023 36 5 e101143 10.1136/gpsych‑2023‑101143 37859748
    [Google Scholar]
  88. Chu M. Wang H. Bian L. Huang J. Wu D. Zhang R. Fei F. Chen Y. Xia J. Nebulization therapy with umbilical cord mesenchymal stem cell-derived exosomes for COVID-19 pneumonia. Stem Cell Rev. Rep. 2022 18 6 2152 2163 10.1007/s12015‑022‑10398‑w 35665467
    [Google Scholar]
  89. Akhlaghpasand M. Tavanaei R. Hosseinpoor M. Yazdani K.O. Soleimani A. Zoshk M.Y. Soleimani M. Chamanara M. Ghorbani M. Deylami M. Zali A. Heidari R. Oraee-Yazdani S. Safety and potential effects of intrathecal injection of allogeneic human umbilical cord mesenchymal stem cell-derived exosomes in complete subacute spinal cord injury: A first-in-human, single-arm, open-label, phase I clinical trial. Stem Cell Res. Ther. 2024 15 1 264 10.1186/s13287‑024‑03868‑0 39183334
    [Google Scholar]
  90. Li P. Kaslan M. Lee S.H. Yao J. Gao Z. Progress in exosome isolation techniques. Theranostics 2017 7 3 789 804 10.7150/thno.18133 28255367
    [Google Scholar]
  91. Huang C. Luo W.F. Ye Y.F. Lin L. Wang Z. Luo M.H. Song Q.D. He X.P. Chen H.W. Kong Y. Tang Y.K. Characterization of inflammatory factor-induced changes in mesenchymal stem cell exosomes and sequencing analysis of exosomal microRNAs. World J. Stem Cells 2019 11 10 859 890 10.4252/wjsc.v11.i10.859 31692888
    [Google Scholar]
  92. Huang G. Garikipati V.N.S. Zhou Y. Benedict C. Houser S.R. Koch W.J. Kishore R. Identification and comparison of hyperglycemia-induced extracellular vesicle transcriptome in different mouse stem cells. Cells 2020 9 9 2098 10.3390/cells9092098 32942572
    [Google Scholar]
  93. Meng Q.S. Liu J. Wei L. Fan H.M. Zhou X.H. Liang X.T. Senescent mesenchymal stem/stromal cells and restoring their cellular functions. World J. Stem Cells 2020 12 9 966 985 10.4252/wjsc.v12.i9.966 33033558
    [Google Scholar]
  94. Boulestreau J. Maumus M. Rozier P. Jorgensen C. Noël D. Mesenchymal stem cell derived extracellular vesicles in aging. Front. Cell Dev. Biol. 2020 8 107 10.3389/fcell.2020.00107 32154253
    [Google Scholar]
  95. Smirnova A. Yatsenko E. Baranovskii D. Klabukov I. Mesenchymal stem cell-derived extracellular vesicles in skin wound healing: The risk of senescent drift induction in secretome-based therapeutics. Mil. Med. Res. 2023 10 1 60 10.1186/s40779‑023‑00498‑0 38031201
    [Google Scholar]
  96. Huang R. Qin C. Wang J. Hu Y. Zheng G. Qiu G. Ge M. Tao H. Shu Q. Xu J. Differential effects of extracellular vesicles from aging and young mesenchymal stem cells in acute lung injury. Aging (Albany NY) 2019 11 18 7996 8014 10.18632/aging.102314 31575829
    [Google Scholar]
  97. Su T. Xiao Y. Xiao Y. Guo Q. Li C. Huang Y. Deng Q. Wen J. Zhou F. Luo X.H. Bone marrow mesenchymal stem cells-derived exosomal MiR-29b-3p regulates aging-associated insulin resistance. ACS Nano 2019 13 2 acsnano.8b09375 10.1021/acsnano.8b09375 30715852
    [Google Scholar]
  98. Malaise O. Tachikart Y. Constantinides M. Mumme M. Ferreira-Lopez R. Noack S. Krettek C. Noël D. Wang J. Jorgensen C. Brondello J.M. Mesenchymal stem cell senescence alleviates their intrinsic and seno-suppressive paracrine properties contributing to osteoarthritis development. Aging (Albany NY) 2019 11 20 9128 9146 10.18632/aging.102379 31644429
    [Google Scholar]
  99. Bustos M.L. Huleihel L. Kapetanaki M.G. Lino-Cardenas C.L. Mroz L. Ellis B.M. McVerry B.J. Richards T.J. Kaminski N. Cerdenes N. Mora A.L. Rojas M. Aging mesenchymal stem cells fail to protect because of impaired migration and antiinflammatory response. Am. J. Respir. Crit. Care Med. 2014 189 7 787 798 10.1164/rccm.201306‑1043OC 24559482
    [Google Scholar]
  100. Feng Z.Y. Zhang Q.Y. Tan J. Xie H.Q. Techniques for increasing the yield of stem cell-derived exosomes: What factors may be involved? Sci. China Life Sci. 2022 65 7 1325 1341 10.1007/s11427‑021‑1997‑2 34637101
    [Google Scholar]
  101. Phan J. Kumar P. Hao D. Gao K. Farmer D. Wang A. Engineering mesenchymal stem cells to improve their exosome efficacy and yield for cell‐free therapy. J. Extracell. Vesicles 2018 7 1 1522236 10.1080/20013078.2018.1522236 30275938
    [Google Scholar]
/content/journals/cscr/10.2174/011574888X352270250407170235
Loading
/content/journals/cscr/10.2174/011574888X352270250407170235
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test