Skip to content
2000
Volume 20, Issue 8
  • ISSN: 1574-888X
  • E-ISSN: 2212-3946

Abstract

NASH cirrhosis is a late-stage nonalcoholic fatty liver disease (NAFLD) characterized by high morbidity, high relapse rate, and high mortality, which is clinical to treat. Presently, liver transplantation is the most effective radical treatment, but it is difficult to be widely carried out due to the problems of large surgical trauma, lack of liver donors, and strong immunological rejection. Bone marrow mesenchymal stem cells (BMSCs) are a type of stem cell with characteristics of self-replication, multidirectional differentiation, and easy accessibility. The use of BMSCs for cell transplantation therapy has the advantages of fewer complications and significant efficacy, and it has become an important option for cell transplantation therapy, especially for liver diseases. In this paper, we will review the studies related to the use of BMSCs for the treatment of NASH cirrhosis in recent years.

Loading

Article metrics loading...

/content/journals/cscr/10.2174/011574888X328447241023063825
2024-10-29
2026-02-05
Loading full text...

Full text loading...

References

  1. KisselevaT. BrennerD.A. Hepatic stellate cells and the reversal of fibrosis.J. Gastroenterol. Hepatol.200621s3Suppl. 3S84S8710.1111/j.1440‑1746.2006.04584.x16958681
    [Google Scholar]
  2. GuyotC. LepreuxS. CombeC. DoudnikoffE. Bioulac-SageP. BalabaudC. DesmoulièreA. Hepatic fibrosis and cirrhosis: the (myo)fibroblastic cell subpopulations involved.Int. J. Biochem. Cell Biol.2006382135151[J].16257564
    [Google Scholar]
  3. VidalM.A. KilroyG. LopezM.J. JohnsonJ.R. MooreR.M. GimbleJ.M. Characterization of equine adipose tissue-derived stromal cells: adipogenic and osteogenic capacity and comparison with bone marrow-derived mesenchymal stromal cells.Vet. Surg.200736761362210.1111/j.1532‑950X.2007.00313.x17894587
    [Google Scholar]
  4. LangeC. BasslerP. LioznovM.V. BrunsH. KluthD. ZanderA.R. FiegelH.C. Hepatocytic gene expression in cultured rat mesenchymal stem cells.Transplant. Proc.200537127627910.1016/j.transproceed.2004.11.08715808618
    [Google Scholar]
  5. LianG. WangC. TengC. ZhangC. DuL. ZhongQ. MiaoC. DingM. DengH. Failure of hepatocyte marker-expressing hematopoietic progenitor cells to efficiently convert into hepatocytes in vitro.Exp. Hematol.200634334835810.1016/j.exphem.2005.12.00416543069
    [Google Scholar]
  6. ChenM. WangG.J. DiaoY. XuR.A. XieH.T. LiX.Y. SunJ.G. Adeno-associated virus mediated interferon-gamma inhibits the progression of hepatic fibrosis in vitro and in vivo.World J. Gastroenterol.200511264045405110.3748/wjg.v11.i26.404515996030
    [Google Scholar]
  7. TakamiT. TeraiS. SakaidaI. Liver regeneration therapy using autologous bone marrow-derived cells for cirrhotic patients.Gene Therapy and Cell Therapy Through the Liver: Current Aspects and Future Prospects.TokyoSpringer2016
    [Google Scholar]
  8. ShiM.N. HuangY.H. ZhengW.D. ZhangL.J. ChenZ.X. WangX.Z. Relationship between transforming growth factor β1 and anti-fibrotic effect of interleukin-10.World J. Gastroenterol.200612152357236210.3748/wjg.v12.i15.235716688825
    [Google Scholar]
  9. ShiJ. LiJ. GuanH. CaiW. BaiX. FangX. HuX. WangY. WangH. ZhengZ. SuL. HuD. ZhuX. Anti-fibrotic actions of interleukin-10 against hypertrophic scarring by activation of PI3K/AKT and STAT3 signaling pathways in scar-forming fibroblasts.PLoS One201495e9822810.1371/journal.pone.009822824878845
    [Google Scholar]
  10. JangY.O. JunB.G. BaikS.K. KimM.Y. KwonS.O. Inhibition of hepatic stellate cells by bone marrow-derived mesenchymal stem cells in hepatic fibrosis.Clin. Mol. Hepatol.201521214114910.3350/cmh.2015.21.2.14126157751
    [Google Scholar]
  11. DiehlA.M. DayC. Cause, pathogenesis, and treatment of nonalcoholic steatohepatitis.N. Engl. J. Med.2017377212063207210.1056/NEJMra150351929166236
    [Google Scholar]
  12. SchwabeR.F. TabasI. PajvaniU.B. Mechanisms of fibrosis development in nonalcoholic steatohepatitis.Gastroenterology202015871913192810.1053/j.gastro.2019.11.31132044315
    [Google Scholar]
  13. AlonsoC. Fernández-RamosD. Varela-ReyM. Martínez-ArranzI. NavasaN. Van LiempdS.M. Lavín TruebaJ.L. MayoR. IlissoC.P. de JuanV.G. Iruarrizaga-LejarretaM. delaCruz-VillarL. MincholéI. RobinsonA. CrespoJ. Martín-DuceA. Romero-GómezM. SannH. PlatonJ. Van EykJ. AspichuetaP. NoureddinM. Falcón-PérezJ.M. AnguitaJ. AransayA.M. Martínez-ChantarM.L. LuS.C. MatoJ.M. Metabolomic identification of subtypes of nonalcoholic steatohepatitis.Gastroenterology2017152614491461.e710.1053/j.gastro.2017.01.01528132890
    [Google Scholar]
  14. BessoneF. RazoriM.V. RomaM.G. Molecular pathways of nonalcoholic fatty liver disease development and progression.Cell. Mol. Life Sci.20197619912810.1007/s00018‑018‑2947‑030343320
    [Google Scholar]
  15. JamesO.F.W. DayC.P. Non-alcoholic steatohepatitis (NASH): a disease of emerging identity and importance.J. Hepatol.199829349550110.1016/S0168‑8278(98)80073‑19765002
    [Google Scholar]
  16. Neuschwander-TetriB.A. Hepatic lipotoxicity and the pathogenesis of nonalcoholic steatohepatitis: The central role of nontriglyceride fatty acid metabolites.Hepatology201052277478810.1002/hep.2371920683968
    [Google Scholar]
  17. SachdevM. RielyC. MadanA. Nonalcoholic fatty liver disease of obesity.Obes. Surg.200616111412141910.1381/09608920677887001217132404
    [Google Scholar]
  18. XuP. ZhangX. LiY. YuC. XuL. XuG. Research on the protection effect of pioglitazone for non-alcoholic fatty liver disease (NAFLD) in rats.J. Zhejiang Univ. Sci. B20067862763310.1631/jzus.2006.B062716845716
    [Google Scholar]
  19. FriedmanS.L. Neuschwander-TetriB.A. RinellaM. SanyalA.J. Mechanisms of NAFLD development and therapeutic strategies.Nat. Med.201824790892210.1038/s41591‑018‑0104‑929967350
    [Google Scholar]
  20. SmithA. BaumgartnerK. BositisC. Cirrhosis: Diagnosis and Management.Am. Fam. Physician201910012759770[J].31845776
    [Google Scholar]
  21. TilgH. AdolphT.E. MoschenA.R. Multiple Parallel Hits Hypothesis in Nonalcoholic Fatty Liver Disease: Revisited After a Decade.Hepatology202173283384210.1002/hep.3151832780879
    [Google Scholar]
  22. LoombaR. AbrahamM. UnalpA. WilsonL. LavineJ. DooE. BassN.M. Association between diabetes, family history of diabetes, and risk of nonalcoholic steatohepatitis and fibrosis.Hepatology201256394395110.1002/hep.2577222505194
    [Google Scholar]
  23. HannahW.N.Jr HarrisonS.A. Lifestyle and Dietary Interventions in the Management of Nonalcoholic Fatty Liver Disease.Dig. Dis. Sci.20166151365137410.1007/s10620‑016‑4153‑y27052013
    [Google Scholar]
  24. Vilar-GomezE. Martinez-PerezY. Calzadilla-BertotL. Torres-GonzalezA. Gra-OramasB. Gonzalez-FabianL. FriedmanS.L. DiagoM. Romero-GomezM. Weight Loss Through Lifestyle Modification Significantly Reduces Features of Nonalcoholic Steatohepatitis.Gastroenterology20151492367378.e510.1053/j.gastro.2015.04.00525865049
    [Google Scholar]
  25. GastaldelliA. HarrisonS.A. Belfort-AguilarR. HardiesL.J. BalasB. SchenkerS. CusiK. Importance of changes in adipose tissue insulin resistance to histological response during thiazolidinedione treatment of patients with nonalcoholic steatohepatitis.Hepatology20095041087109310.1002/hep.2311619670459
    [Google Scholar]
  26. EkstedtM. HagströmH. NasrP. FredriksonM. StålP. KechagiasS. HultcrantzR. Fibrosis stage is the strongest predictor for disease-specific mortality in NAFLD after up to 33 years of follow-up.Hepatology20156151547155410.1002/hep.2736825125077
    [Google Scholar]
  27. BuzzettiE. PinzaniM. TsochatzisE.A. The multiple-hit pathogenesis of non-alcoholic fatty liver disease (NAFLD).Metabolism20166581038104810.1016/j.metabol.2015.12.01226823198
    [Google Scholar]
  28. Al AttarA. AntaramianA. NoureddinM. Review of galectin-3 inhibitors in the treatment of nonalcoholic steatohepatitis.Expert Rev. Clin. Pharmacol.202114445746410.1080/17512433.2021.189412733612037
    [Google Scholar]
  29. FrenetteC. KayaliZ. MenaE. MantryP.S. LucasK.J. NeffG. RodriguezM. ThuluvathP.J. WeinbergE. BhandariB.R. RobinsonJ. WedickN. ChanJ.L. HagertyD.T. KowdleyK.V. CoreyK. BernsteinD. NoureddinM. KemmerN. DeLemosA. PyrsopoulosN. LeeW. GhabrilM. ScangaA. McKenzieM. LawitzE. Figueroa-DiazV. SimonettoD. FrederickR. BrownK. TherapondosG. SheikhA. BrandmanD. SteinL. Ankoma-SeyV. BhamidimarriK. LandisC. FortuneB. VargasH. AbdelmalekM. FreilichB. RockeyD. VierlingJ. TatumH. CurryM. ShiffmanM. BambhaK. GhalibR. StrattonA. AnwarN. CaldwellS. KoteishA. SiddiquiM. SaabS. ShahN. KohliA. RinellaM. SarkarS. TorresD. VernaE. RavendhranR. ReynoldsJ. ThomasonR. KimR. MembrenoF. JakabS. GonzalezS. KeavenyA. PanJ-J. GillS. HuangJ. StrobelJ. WielandA. MorelliG. AmankonahT. RoytmanM. SchmidtW. AbramsG. PatelB. IDN-6556-17 Study Investigators Emricasan to prevent new decompensation in patients with NASH-related decompensated cirrhosis.J. Hepatol.202174227428210.1016/j.jhep.2020.09.02933038432
    [Google Scholar]
  30. BarreyroF.J. HolodS. FinocchiettoP.V. CaminoA.M. AquinoJ.B. AvagninaA. CarrerasM.C. PoderosoJ.J. GoresG.J. The pan-caspase inhibitor Emricasan ( IDN -6556) decreases liver injury and fibrosis in a murine model of non-alcoholic steatohepatitis.Liver Int.201535395396610.1111/liv.1257024750664
    [Google Scholar]
  31. MahadyS.E. WebsterA.C. WalkerS. SanyalA. GeorgeJ. The role of thiazolidinediones in non-alcoholic steatohepatitis – A systematic review and meta analysis.J. Hepatol.20115561383139010.1016/j.jhep.2011.03.01621703200
    [Google Scholar]
  32. KrishnappaM. PatilK. ParmarK. TrivediP. ModyN. ShahC. FalduK. MarooS. DesaiP. FataniaK. MurthyS. BalamuruganR. AgarwalM. SinghK.P. KalraG.S. KhandelwalV. SingwalaA. ThackerH. TulleR. RaoH. KumblaM. SinghP. KhatriA. AgrawalS. SarkarR.N. AgarwalD. BhatiaG. AgarwalR.P. KumarS. Vamsi KrishnaP.R. AjmaniA.K. AsalkarA. BasuI. ChatterjeeS. PavithranV.K. DasR. DharmadhikariA. VardhanV. Madusudhan BabuM. SenguptaN. AbkariS. HarikrishnaR. ChovatiaR. ParmarD. Effect of saroglitazar 2 mg and 4 mg on glycemic control, lipid profile and cardiovascular disease risk in patients with type 2 diabetes mellitus: a 56-week, randomized, double blind, phase 3 study (PRESS XII study).Cardiovasc. Diabetol.20201919310.1186/s12933‑020‑01073‑w32560724
    [Google Scholar]
  33. PawlakM. LefebvreP. StaelsB. Molecular mechanism of PPARα action and its impact on lipid metabolism, inflammation and fibrosis in non-alcoholic fatty liver disease.J. Hepatol.201562372073310.1016/j.jhep.2014.10.03925450203
    [Google Scholar]
  34. ZareiM. Aguilar-RecarteD. PalomerX. Vázquez-CarreraM. Revealing the role of peroxisome proliferator-activated receptor β/δ in nonalcoholic fatty liver disease.Metabolism202111415434210.1016/j.metabol.2020.15434232810487
    [Google Scholar]
  35. Sven MF. PierreB. Manal FA. Quentin MA. ElisabettaB. VladR. PhilippeH.M. BrunoS. Jean-LouisJ. PierreB. Jean-LouisA. A randomised, double-blind, placebo-controlled, multi-centre, dose-range, proof-of- concept, 24-week treatment study of lanifibranor in adult subjects with non-alcoholic steatohepatitis: Design of the NATIVE study.Contemp. Clin. Trials20209810617010.1016/j.cct.2020.10617033038502
    [Google Scholar]
  36. LoombaR. LawitzE. MantryP.S. JayakumarS. CaldwellS.H. ArnoldH. DiehlA.M. DjedjosC.S. HanL. MyersR.P. SubramanianG.M. McHutchisonJ.G. GoodmanZ.D. AfdhalN.H. CharltonM.R. GS-US-384-1497 Investigators The ASK1 inhibitor selonsertib in patients with nonalcoholic steatohepatitis: A randomized, phase 2 trial.Hepatology201867254955910.1002/hep.2951428892558
    [Google Scholar]
  37. HarrisonS.A. BedossaP. GuyC.D. SchattenbergJ.M. LoombaR. TaubR. LabriolaD. MoussaS.E. NeffG.W. RinellaM.E. AnsteeQ.M. AbdelmalekM.F. YounossiZ. BaumS.J. FrancqueS. CharltonM.R. NewsomeP.N. LanthierN. SchiefkeI. MangiaA. PericàsJ.M. PatilR. SanyalA.J. NoureddinM. BansalM.B. AlkhouriN. CasteraL. RudrarajuM. RatziuV. MAESTRO-NASH Investigators A Phase 3, Randomized, Controlled Trial of Resmetirom in NASH with Liver Fibrosis.N. Engl. J. Med.2024390649750910.1056/NEJMoa230900038324483
    [Google Scholar]
  38. SookoianS. PirolaC.J. Repurposing drugs to target nonalcoholic steatohepatitis.World J. Gastroenterol.201925151783179610.3748/wjg.v25.i15.178331057294
    [Google Scholar]
  39. AlbillosA. de GottardiA. RescignoM. The gut-liver axis in liver disease: Pathophysiological basis for therapy.J. Hepatol.202072355857710.1016/j.jhep.2019.10.00331622696
    [Google Scholar]
  40. BoursierJ. MuellerO. BarretM. MachadoM. FizanneL. Araujo-PerezF. GuyC.D. SeedP.C. RawlsJ.F. DavidL.A. HunaultG. ObertiF. CalèsP. DiehlA.M. The severity of nonalcoholic fatty liver disease is associated with gut dysbiosis and shift in the metabolic function of the gut microbiota.Hepatology201663376477510.1002/hep.2835626600078
    [Google Scholar]
  41. MudaliarS. HenryR.R. SanyalA.J. MorrowL. MarschallH.U. KipnesM. AdoriniL. SciaccaC.I. CloptonP. CastelloeE. DillonP. PruzanskiM. ShapiroD. Efficacy and safety of the farnesoid X receptor agonist obeticholic acid in patients with type 2 diabetes and nonalcoholic fatty liver disease.Gastroenterology20131453574582.e110.1053/j.gastro.2013.05.04223727264
    [Google Scholar]
  42. KongB. LuyendykJ.P. TawfikO. GuoG.L. Farnesoid X receptor deficiency induces nonalcoholic steatohepatitis in low-density lipoprotein receptor-knockout mice fed a high-fat diet.J. Pharmacol. Exp. Ther.2009328111612210.1124/jpet.108.14460018948497
    [Google Scholar]
  43. BrandlK. SchnablB. Intestinal microbiota and nonalcoholic steatohepatitis.Curr. Opin. Gastroenterol.201733312813310.1097/MOG.000000000000034928257306
    [Google Scholar]
  44. LianC.Y. ZhaiZ.Z. LiZ.F. WangL. High fat diet-triggered non-alcoholic fatty liver disease: A review of proposed mechanisms.Chem. Biol. Interact.202033010919910.1016/j.cbi.2020.10919932805210
    [Google Scholar]
  45. XieP. ZhouX.X. ZHANG Q.J. Chin. Integr. Med.201083201209[Pathogenesis and treatment of non-alcoholic fatty liver disease]. [J].10.3736/jcim20100301
    [Google Scholar]
  46. RoehlenN. CrouchetE. BaumertT.F. Liver Fibrosis: Mechanistic Concepts and Therapeutic Perspectives.Cells20209487510.3390/cells904087532260126
    [Google Scholar]
  47. KirpichI.A. MarsanoL.S. McClainC.J. Gut–liver axis, nutrition, and non-alcoholic fatty liver disease.Clin. Biochem.20154813-1492393010.1016/j.clinbiochem.2015.06.02326151226
    [Google Scholar]
  48. RazaS. RajakS. UpadhyayA. TewariA. Anthony SinhaR. Current treatment paradigms and emerging therapies for NAFLD/NASH.Front. Biosci.202126220623710.2741/489233049668
    [Google Scholar]
  49. XuX. PoulsenK.L. WuL. LiuS. MiyataT. SongQ. WeiQ. ZhaoC. LinC. YangJ. Targeted therapeutics and novel signaling pathways in non-alcohol-associated fatty liver/steatohepatitis (NAFL/NASH).Signal Transduct. Target. Ther.20227128710.1038/s41392‑022‑01119‑335963848
    [Google Scholar]
  50. FernandesP. HashiguchiT. FujiiM. YoneyamaH. 850f Anti- NASH Effects of Solithromycin in NASH-HCC Mouse Model.Gastroenterology20141465S-145S-146[J].10.1016/S0016‑5085(14)60517‑5
    [Google Scholar]
  51. YangL.Y. [The advances in surgery for cirrhotic portal hypertension in China].Zhonghua Wai Ke Za Zhi2020583183188[The advances in surgery for cirrhotic portal hypertension in China]. [J].32187922
    [Google Scholar]
  52. Ursic-BedoyaJ. Donnadieu-RigoleH. FaureS. PageauxG.P. Alcohol use and smoking after liver transplantation; complications and prevention.Best Pract. Res. Clin. Gastroenterol.201731218118510.1016/j.bpg.2017.03.00528624106
    [Google Scholar]
  53. WilliamsE.J. IredaleJ.P. Liver cirrhosis.Postgrad. Med. J.19987487019320210.1136/pgmj.74.870.1939683971
    [Google Scholar]
  54. BiancoP. RobeyP.G. SimmonsP.J. Mesenchymal stem cells: revisiting history, concepts, and assays.Cell Stem Cell20082431331910.1016/j.stem.2008.03.00218397751
    [Google Scholar]
  55. RenG. ChenX. DongF. LiW. RenX. ZhangY. ShiY. Concise review: mesenchymal stem cells and translational medicine: emerging issues.Stem Cells Transl. Med.201211515810.5966/sctm.2011‑001923197640
    [Google Scholar]
  56. LiuJ. GaoJ. LiangZ. GaoC. NiuQ. WuF. ZhangL. Mesenchymal stem cells and their microenvironment.Stem Cell Res. Ther.202213142910.1186/s13287‑022‑02985‑y35987711
    [Google Scholar]
  57. ZhouW. LinJ. ZhaoK. JinK. HeQ. HuY. FengG. CaiY. XiaC. LiuH. ShenW. HuX. OuyangH. Single-Cell Profiles and Clinically Useful Properties of Human Mesenchymal Stem Cells of Adipose and Bone Marrow Origin.Am. J. Sports Med.20194771722173310.1177/036354651984867831100005
    [Google Scholar]
  58. ChamberlainG. FoxJ. AshtonB. MiddletonJ. Concise review: mesenchymal stem cells: their phenotype, differentiation capacity, immunological features, and potential for homing.Stem Cells200725112739274910.1634/stemcells.2007‑019717656645
    [Google Scholar]
  59. HuC. LiL. In vitro culture of isolated primary hepatocytes and stem cell-derived hepatocyte-like cells for liver regeneration.Protein Cell20156856257410.1007/s13238‑015‑0180‑226088193
    [Google Scholar]
  60. SeoB.F. KimK.J. KimM.K. RhieJ.W. The effects of human keratinocyte coculture on human adipose-derived stem cells.Int. Wound J.201613563063510.1111/iwj.1233525091634
    [Google Scholar]
  61. LazarusH.M. KocO.N. DevineS.M. Cotransplantation of HLA-identical sibling culture-expanded mesenchymal stem cells and hematopoietic stem cells in hematologic malignancy patients.J. Am. Soc. Blood. Marrow Transplant.2005115389398
    [Google Scholar]
  62. TseW.T. PendletonJ.D. BeyerW.M. EgalkaM.C. GuinanE.C. Suppression of allogeneic T-cell proliferation by human marrow stromal cells: implications in transplantation.Transplantation200375338939710.1097/01.TP.0000045055.63901.A912589164
    [Google Scholar]
  63. BassiÊ.J. de AlmeidaD.C. Moraes-VieiraP.M.M. CâmaraN.O.S. Exploring the role of soluble factors associated with immune regulatory properties of mesenchymal stem cells.Stem Cell Rev.20128232934210.1007/s12015‑011‑9311‑121881832
    [Google Scholar]
  64. KeanT.J. LinP. CaplanA.I. DennisJ.E. MSCs: Delivery Routes and Engraftment, Cell-Targeting Strategies, and Immune Modulation.Stem Cells Int.2013201311310.1155/2013/73274224000286
    [Google Scholar]
  65. WangY. ChenX. CaoW. ShiY. Plasticity of mesenchymal stem cells in immunomodulation: pathological and therapeutic implications.Nat. Immunol.201415111009101610.1038/ni.300225329189
    [Google Scholar]
  66. KwonH.M. HurS.M. ParkK.Y. KimC.K. KimY.M. KimH.S. ShinH.C. WonM.H. HaK.S. KwonY.G. LeeD.H. KimY.M. Multiple paracrine factors secreted by mesenchymal stem cells contribute to angiogenesis.Vascul. Pharmacol.2014631192810.1016/j.vph.2014.06.00424998908
    [Google Scholar]
  67. MaltaisS. TremblayJ.P. PerraultL.P. LyH.Q. The paracrine effect: pivotal mechanism in cell-based cardiac repair.J. Cardiovasc. Transl. Res.20103665266210.1007/s12265‑010‑9198‑220559770
    [Google Scholar]
  68. NascimentoD.S. MosqueiraD. SousaL.M. TeixeiraM. FilipeM. ResendeT.P. AraújoA.F. ValenteM. AlmeidaJ. MartinsJ.P. SantosJ.M. BárciaR.N. CruzP. CruzH. Pinto-do-ÓP. Human umbilical cord tissue-derived mesenchymal stromal cells attenuate remodeling after myocardial infarction by proangiogenic, antiapoptotic, and endogenous cell-activation mechanisms.Stem Cell Res. Ther.201451510.1186/scrt39424411922
    [Google Scholar]
  69. KarantalisV. HareJ.M. Use of mesenchymal stem cells for therapy of cardiac disease.Circ. Res.201511681413143010.1161/CIRCRESAHA.116.30361425858066
    [Google Scholar]
  70. ShafiqM. LeeS.H. JungY. KimS. Strategies for recruitment of stem cells to treat myocardial infarction.Curr. Pharm. Des.201521121584159710.2174/138161282166615011515193825594408
    [Google Scholar]
  71. YuanL. WuM.J. SunH.Y. XiongJ. ZhangY. LiuC.Y. FuL.L. LiuD.M. LiuH.Q. MeiC.L. VEGF-modified human embryonic mesenchymal stem cell implantation enhances protection against cisplatin-induced acute kidney injury.Am. J. Physiol. Renal Physiol.20113001F207F21810.1152/ajprenal.00073.201020943766
    [Google Scholar]
  72. OhkouchiS. BlockG.J. KatshaA.M. KanehiraM. EbinaM. KikuchiT. SaijoY. NukiwaT. ProckopD.J. Mesenchymal stromal cells protect cancer cells from ROS-induced apoptosis and enhance the Warburg effect by secreting STC1.Mol. Ther.201220241742310.1038/mt.2011.25922146344
    [Google Scholar]
  73. Heirani-TabasiA. Naderi-MeshkinH. MatinM.M. MirahmadiM. ShahriyariM. AhmadiankiaN. Sanjar MoussaviN. BidkhoriH.R. RaeesolmohaddeseenM. BahramiA.R. Augmented migration of mesenchymal stem cells correlates with the subsidiary CXCR4 variant.Cell Adhes. Migr.20181221910.1080/19336918.2016.124364329466916
    [Google Scholar]
  74. YuJ. LiM. QuZ. YanD. LiD. RuanQ. SDF-1/CXCR4-mediated migration of transplanted bone marrow stromal cells toward areas of heart myocardial infarction through activation of PI3K/Akt.J. Cardiovasc. Pharmacol.201055549650510.1097/FJC.0b013e3181d7a38420179608
    [Google Scholar]
  75. LiL. ZhangS. ZhangY. YuB. XuY. GuanZ. Paracrine action mediate the antifibrotic effect of transplanted mesenchymal stem cells in a rat model of global heart failure.Mol. Biol. Rep.200936472573110.1007/s11033‑008‑9235‑218368514
    [Google Scholar]
  76. CaplanA.I. DennisJ.E. Mesenchymal stem cells as trophic mediators.J. Cell. Biochem.20069851076108410.1002/jcb.2088616619257
    [Google Scholar]
  77. HuC. ZhaoL. ZhangL. BaoQ. LiL. Mesenchymal stem cell-based cell-free strategies: safe and effective treatments for liver injury.Stem Cell Res. Ther.202011137710.1186/s13287‑020‑01895‑132883343
    [Google Scholar]
  78. ChoD.I. KimM.R. JeongH. JeongH.C. JeongM.H. YoonS.H. KimY.S. AhnY. Mesenchymal stem cells reciprocally regulate the M1/M2 balance in mouse bone marrow-derived macrophages.Exp. Mol. Med.2014461e7010.1038/emm.2013.13524406319
    [Google Scholar]
  79. LeeK.D. KuoT.K.C. Whang-PengJ. ChungY.F. LinC.T. ChouS.H. ChenJ.R. ChenY.P. LeeO.K.S. In vitro hepatic differentiation of human mesenchymal stem cells.Hepatology20044061275128410.1002/hep.2046915562440
    [Google Scholar]
  80. PradereJ.P. TroegerJ. DapitoD. MencinA. SchwabeR. Toll-like receptor 4 and hepatic fibrogenesis.Semin. Liver Dis.201030323224410.1055/s‑0030‑125535320665376
    [Google Scholar]
  81. RongX. LiuJ. YaoX. JiangT. WangY. XieF. Human bone marrow mesenchymal stem cells-derived exosomes alleviate liver fibrosis through the Wnt/β-catenin pathway.Stem Cell Res. Ther.20191019810.1186/s13287‑019‑1204‑230885249
    [Google Scholar]
  82. Di NicolaM. Carlo-StellaC. MagniM. MilanesiM. LongoniP.D. MatteucciP. GrisantiS. GianniA.M. Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli.Blood200299103838384310.1182/blood.V99.10.383811986244
    [Google Scholar]
  83. KassisI. Vaknin-DembinskyA. KarussisD. Bone marrow mesenchymal stem cells: agents of immunomodulation and neuroprotection.Curr. Stem Cell Res. Ther.201161636810.2174/15748881179448076220955154
    [Google Scholar]
  84. RoordS.T.A. de JagerW. BoonL. WulffraatN. MartensA. PrakkenB. van WijkF. Autologous bone marrow transplantation in autoimmune arthritis restores immune homeostasis through CD4+CD25+Foxp3+ regulatory T cells.Blood2008111105233524110.1182/blood‑2007‑12‑12848818256318
    [Google Scholar]
  85. VainshteinJ.M. KabarritiR. MehtaK.J. Roy-ChowdhuryJ. GuhaC. Bone marrow-derived stromal cell therapy in cirrhosis: clinical evidence, cellular mechanisms, and implications for the treatment of hepatocellular carcinoma.Int. J. Radiat. Oncol. Biol. Phys.201489478680310.1016/j.ijrobp.2014.02.01724969793
    [Google Scholar]
  86. FangX.Q. ZhangJ.F. SongH.Y. ChenZ.L. DongJ. ChenX. PanJ.J. LiuB. ChenC.X. [Effect of umbilical cord mesenchymal stem cell transplantation on immune function and prognosis of patients with decompensated hepatitis B cirrhosis].Zhonghua Gan Zang Bing Za Zhi20162412907910[Effect of umbilical cord mesenchymal stem cell transplantation on immune function and prognosis of patients with decompensated hepatitis B cirrhosis]. [J].28073411
    [Google Scholar]
  87. ShiL.J. LiS.X. SunB. WangJ.H. LiH.L. JinL.H. Effects of bone marrow mesenchymal stem cells on the proliferation of hepatocytes and cirrhotic fat-storing cells in vitro.Zhonghua Gan Zang Bing Za Zhi2007159681684Effects of bone marrow mesenchymal stem cells on the proliferation of hepatocytes and cirrhotic fat-storing cells in vitro. [J].17903371
    [Google Scholar]
  88. YuF. JiS. SuL. WanL. ZhangS. DaiC. WangY. FuJ. ZhangQ. Adipose-derived mesenchymal stem cells inhibit activation of hepatic stellate cells in vitro and ameliorate rat liver fibrosis in vivo.J. Formos. Med. Assoc.2015114213013810.1016/j.jfma.2012.12.00225678175
    [Google Scholar]
  89. CaoY. JiC. LuL. Mesenchymal stem cell therapy for liver fibrosis/cirrhosis.Ann. Transl. Med.20208856210.21037/atm.2020.02.11932775363
    [Google Scholar]
  90. ZhuC. KimK. WangX. BartolomeA. SalomaoM. DongiovanniP. MeroniM. GrahamM.J. YatesK.P. DiehlA.M. SchwabeR.F. TabasI. ValentiL. LavineJ.E. PajvaniU.B. Hepatocyte Notch activation induces liver fibrosis in nonalcoholic steatohepatitis.Sci. Transl. Med.201810468eaat034410.1126/scitranslmed.aat034430463916
    [Google Scholar]
  91. LiuP. MaoY. XieY. WeiJ. YaoJ. Stem cells for treatment of liver fibrosis/cirrhosis: clinical progress and therapeutic potential.Stem Cell Res. Ther.202213135610.1186/s13287‑022‑03041‑535883127
    [Google Scholar]
  92. ChenS XuL LinN et al. Activation of Notch1 signaling by marrow-derived mesenchymal stem cells throughcell-cell contact inhibits proliferation of hepatic stellate cells [u].Life Sci201189(25-26)975981
    [Google Scholar]
  93. Pan RL, Wang P, Xiang LX, Shao JZ. Delta-like 1 serves as a new target and contributor to liver fibrosis down-regulated by mesenchymal stem cell transplantation. J Biol Chem 2011; 286(14): 12340-8
  94. MaJ. LiY. ChenM. WangW. ZhaoQ. HeB. ZhangM. JiangY. hMSCs-derived exosome circCDK13 inhibits liver fibrosis by regulating the expression of MFGE8 through miR-17-5p/KAT2B.Cell Biol. Toxicol.202339212210.1007/s10565‑022‑09714‑435484432
    [Google Scholar]
  95. MaL. WeiJ. ZengY. LiuJ. XiaoE. KangY. KangY. Mesenchymal stem cell-originated exosomal circDIDO1 suppresses hepatic stellate cell activation by miR-141-3p/PTEN/AKT pathway in human liver fibrosis.Drug Deliv.202229144045310.1080/10717544.2022.203042835099348
    [Google Scholar]
  96. ZhengL. ChuJ. ShiY. ZhouX. TanL. LiQ. CuiL. HanZ. HanY. FanD. Bone marrow-derived stem cells ameliorate hepatic fibrosis by down-regulating interleukin-17.Cell Biosci.2013314610.1186/2045‑3701‑3‑4624314294
    [Google Scholar]
  97. LiC. KongY. WangH. WangS. YuH. LiuX. YangL. JiangX. LiL. LiL. Homing of bone marrow mesenchymal stem cells mediated by sphingosine 1-phosphate contributes to liver fibrosis.J. Hepatol.20095061174118310.1016/j.jhep.2009.01.02819398237
    [Google Scholar]
  98. CaligiuriA. GentiliniA. PastoreM. GittoS. MarraF. Cellular and Molecular Mechanisms Underlying Liver Fibrosis Regression.Cells20211010275910.3390/cells1010275934685739
    [Google Scholar]
  99. VolarevicV. MarkovicB.S. GazdicM. VolarevicA. JovicicN. ArsenijevicN. ArmstrongL. DjonovV. LakoM. StojkovicM. Ethical and Safety Issues of Stem Cell-Based Therapy.Int. J. Med. Sci.2018151364510.7150/ijms.2166629333086
    [Google Scholar]
  100. TirodeF. Laud-DuvalK. PrieurA. DelormeB. CharbordP. DelattreO. Mesenchymal stem cell features of Ewing tumors.Cancer Cell200711542142910.1016/j.ccr.2007.02.02717482132
    [Google Scholar]
  101. FengY. LiY. XuM. MengH. DaiC. YaoZ. LinN. Bone marrow mesenchymal stem cells inhibit hepatic fibrosis via the AABR07028795.2/rno-miR-667-5p axis.Stem Cell Res. Ther.202213137510.1186/s13287‑022‑03069‑735902883
    [Google Scholar]
  102. ChuD.T. PhuongT.N.T. TienN.L.B. TranD.K. ThanhV.V. QuangT.L. TruongD.T. PhamV.H. NgocV.T.N. Chu-DinhT. KushekharK. An Update on the Progress of Isolation, Culture, Storage, and Clinical Application of Human Bone Marrow Mesenchymal Stem/Stromal Cells.Int. J. Mol. Sci.202021370810.3390/ijms2103070831973182
    [Google Scholar]
  103. ZhangZ. LinH. ShiM. XuR. FuJ. LvJ. ChenL. LvS. LiY. YuS. GengH. JinL. LauG.K.K. WangF.S. Human umbilical cord mesenchymal stem cells improve liver function and ascites in decompensated liver cirrhosis patients.J. Gastroenterol. Hepatol.201227s2Suppl. 211212010.1111/j.1440‑1746.2011.07024.x22320928
    [Google Scholar]
  104. KharazihaP. HellströmP.M. NoorinayerB. FarzanehF. AghajaniK. JafariF. TelkabadiM. AtashiA. HonardoostM. ZaliM.R. SoleimaniM. Improvement of liver function in liver cirrhosis patients after autologous mesenchymal stem cell injection: a phase I–II clinical trial.Eur. J. Gastroenterol. Hepatol.200921101199120510.1097/MEG.0b013e32832a1f6c19455046
    [Google Scholar]
/content/journals/cscr/10.2174/011574888X328447241023063825
Loading

  • Article Type:
    Review Article
Keyword(s): BMSCs; Mesenchymal stem cell; NASH cirrhosis; therapeutic role, NASH, NAFLD
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test