Skip to content
2000
Volume 20, Issue 2
  • ISSN: 1574-888X
  • E-ISSN: 2212-3946

Abstract

Cellular replacement therapy and genetic transfer in injured brains provide new pathways for treating human neurological illnesses. Current progress in the field focuses on the production of neurons and glial cells from many types of stem cells, such as embryonic, induced pluripotent, mesenchymal, and neural stem cells. This has led to a significant increase in research on brain transplantation treatments. Extended neurodegeneration results in the progressive decline of certain neuronal subtypes or whole neuronal cells. An analysis of the progress made in induced pluripotent and mesenchymal stem cells reveals their significant promise in disease modeling, regeneration, and medication screening. The requirement for stem cells in neurodegenerative disease studies has been crucial in recent years. Stem cells provide the potential for replacing impaired neurons, comprehending disease needs modeling, and creating efficient treatments, but they have many challenges in culturing and acceptability to the host immune cells. The need to use their potential in discovering novel therapies for diseases such as Alzheimer's, Parkinson's, and amyotrophic lateral sclerosis leads to promising therapy. This review examines the function of stem cells in the pathogenesis and treatment of Huntington's disease, Parkinson's disease, Alzheimer's disease, and multiple sclerosis. This review further examines hurdles such as immunological reactions and delivery systems intending to overcome these problems. This article offers a detailed viewpoint on the use of stem cell-based nanotherapies as revolutionary treatments for various neurological illnesses.

Loading

Article metrics loading...

/content/journals/cscr/10.2174/011574888X313112240510160102
2024-05-20
2025-09-05
Loading full text...

Full text loading...

References

  1. BhartiyaM. KumarA. SinghR.K. RadhakrishnanD.M. RajanR. SrivastavaA.K. Mesenchymal stem cell therapy in the treatment of neurodegenerative cerebellar ataxias: A systematic review and meta-analysis.Cerebellum202222336336910.1007/s12311‑022‑01403‑635451803
    [Google Scholar]
  2. MarsiliL. SharmaJ. OuteiroT.F. ColosimoC. Stem cell therapies in movement disorders: Lessons from clinical trials.Biomedicines202311250510.3390/biomedicines1102050536831041
    [Google Scholar]
  3. UnnisaA. DuaK. KamalM.A. Mechanism of mesenchymal stem cells as a multitarget disease- modifying therapy for Parkinson’s disease.Curr. Neuropharmacol.2023214988100010.2174/1570159X2066622032721241435339180
    [Google Scholar]
  4. BhattiJ.S. KhullarN. MishraJ. KaurS. SehrawatA. SharmaE. BhattiG.K. SelmanA. ReddyP.H. Stem cells in the treatment of Alzheimer’s disease – Promises and pitfalls.Biochim. Biophys. Acta Mol. Basis Dis.20231869616671210.1016/j.bbadis.2023.16671237030521
    [Google Scholar]
  5. MandaiM. Pluripotent stem cell-derived retinal organoid/cells for retinal regeneration therapies: A review.Regen. Ther.202322596710.1016/j.reth.2022.12.00536712956
    [Google Scholar]
  6. BowlbyB. Cradle cultures: Growing stem cell-derived developmental cell models in vitro.Biotechniques202375622723010.2144/btn‑2023‑010037968924
    [Google Scholar]
  7. AbdolmohammadiK. MahmoudiT. AlimohammadiM. TahmasebiS. ZavvarM. HashemiS.M. Mesenchymal stem cell-based therapy as a new therapeutic approach for acute inflammation.Life Sci.202331212120610.1016/j.lfs.2022.12120636403645
    [Google Scholar]
  8. García-BonillaM. Ojeda-PérezB. ShumilovK. Rodríguez-PérezL.M. Domínguez-PinosD. VitoricaJ. JiménezS. Ramírez-LorcaR. EchevarríaM. Cárdenas-GarcíaC. IglesiasT. GutiérrezA. McAllisterJ.P.II LimbrickD.D.Jr Páez-GonzálezP. JiménezA.J. Generation of periventricular reactive astrocytes overexpressing aquaporin 4 is stimulated by mesenchymal stem cell therapy.Int. J. Mol. Sci.2023246564010.3390/ijms2406564036982724
    [Google Scholar]
  9. ItoD. MorimotoS. TakahashiS. OkadaK. NakaharaJ. OkanoH. Maiden voyage: Induced pluripotent stem cell-based drug screening for amyotrophic lateral sclerosis.Brain20231461131910.1093/brain/awac30636004509
    [Google Scholar]
  10. FukushimaS. MiyashitaA. KuriyamaH. KimuraT. MizuhashiS. KuboY. NakaharaS. KanemaruH. TsuchiyaN. MashimaH. ZhangR. UemuraY. Future prospects for cancer immunotherapy using induced pluripotent stem cell-derived dendritic cells or macrophages.Exp. Dermatol.202332329029610.1111/exd.1472936529534
    [Google Scholar]
  11. ChehelgerdiM. Behdarvand DehkordiF. ChehelgerdiM. KabiriH. Salehian-DehkordiH. AbdolvandM. SalmanizadehS. RashidiM. NiazmandA. AhmadiS. FeizbakhshanS. KabiriS. VatandoostN. RanjbarnejadT. Exploring the promising potential of induced pluripotent stem cells in cancer research and therapy.Mol. Cancer202322118910.1186/s12943‑023‑01873‑038017433
    [Google Scholar]
  12. YoshidaK. ChambersJ.K. NibeK. KagawaY. UchidaK. Immunohistochemical analyses of neural stem cell lineage markers in normal feline brains and glial tumors.Vet. Pathol.2024611465710.1177/0300985823118233737358305
    [Google Scholar]
  13. RadoszkiewiczK. HribljanV. IsakovicJ. MitrecicD. SarnowskaA. Critical points for optimizing long-term culture and neural differentiation capacity of rodent and human neural stem cells to facilitate translation into clinical settings.Exp. Neurol.202336311435310.1016/j.expneurol.2023.11435336841464
    [Google Scholar]
  14. BoonmuenN. SuksenK. KaewkittikhunM. RuknarongL. SilalaiP. SaeengR. ChairoungduaA. SoodvilaiS. TantikanlayapornD. Genipin analogue (G300) inhibits adipogenic differentiation of human bone marrow-derived mesenchymal stem cells through the suppression of adipogenic promoting factors.J. Nat. Prod.20238651335134410.1021/acs.jnatprod.3c0014337137165
    [Google Scholar]
  15. BiglariN. MehdizadehA. Vafaei MastanabadM. GharaeikhezriM.H. Gol Mohammad Pour AfrakotiL. PourbalaH. YousefiM. Soltani-ZangbarM.S. Application of mesenchymal stem cells (MSCs) in neurodegenerative disorders: History, findings, and prospective challenges.Pathol. Res. Pract.202324715454110.1016/j.prp.2023.15454137245265
    [Google Scholar]
  16. LitwiniukA. JuszczakG.R. StankiewiczA.M. UrbańskaK. The role of glial autophagy in Alzheimer’s disease.Mol. Psychiatry202328114528453910.1038/s41380‑023‑02242‑537679471
    [Google Scholar]
  17. CastelliV. AlfonsettiM. d’AngeloM. Neurotrophic factor-based pharmacological approaches in neurological disorders.Neural Regen. Res.20231861220122810.4103/1673‑5374.35861936453397
    [Google Scholar]
  18. KellyC.M. DunnettS.B. RosserA.E. Medium spiny neurons for transplantation in Huntington’s disease.Biochem. Soc. Trans.200937132332810.1042/BST037032319143656
    [Google Scholar]
  19. KendallA.L. RaymentF.D. TorresE.M. BakerH.F. RidleyR.M. DunnettS.B. Functional integration of striatal allografts in a primate model of Huntington’s disease.Nat. Med.19984672772910.1038/nm0698‑7279623985
    [Google Scholar]
  20. IsacsonO. DeaconT.W. PakzabanP. GalpernW.R. DinsmoreJ. BurnsL.H. Transplanted xenogeneic neural cells in neurodegenerative disease models exhibit remarkable axonal target specificity and distinct growth patterns of glial and axonal fibres.Nat. Med.19951111189119410.1038/nm1195‑11897584993
    [Google Scholar]
  21. KeeneC.D. SonnenJ.A. SwansonP.D. KopyovO. LeverenzJ.B. BirdT.D. MontineT.J. Neural transplantation in Huntington disease: Long-term grafts in two patients.Neurology200768242093209810.1212/01.wnl.0000264504.14301.f517562830
    [Google Scholar]
  22. NayeemU. Role of stem cells as a protective agent against neurological complications.Applications of Stem Cells and Derived Exosomes in Neurodegenerative Disorders. JahanS. SiddiquiA.J. BerlinSpringer202310.1007/978‑981‑99‑3848‑3_4
    [Google Scholar]
  23. BemelmansA.P. HorellouP. PradierL. BrunetI. ColinP. MalletJ. Brain-derived neurotrophic factor-mediated protection of striatal neurons in an excitotoxic rat model of Huntington’s disease, as demonstrated by adenoviral gene transfer.Hum. Gene Ther.199910182987299710.1089/1043034995001639310609659
    [Google Scholar]
  24. BrondaniM. RoginskiA.C. RibeiroR.T. de MedeirosM.P. HoffmannC.I.H. WajnerM. LeipnitzG. SeminottiB. Mitochondrial dysfunction, oxidative stress, ER stress and mitochondria-ER crosstalk alterations in a chemical rat model of Huntington’s disease: Potential benefits of bezafibrate.Toxicol. Lett.2023381485910.1016/j.toxlet.2023.04.01137116597
    [Google Scholar]
  25. KumarA. GandhiA. Alterations of brain neurotransmitters and metabolites in a rat model of Huntington’s disease.Parkinsonism Relat. Disord.202311310573510.1016/j.parkreldis.2023.105735
    [Google Scholar]
  26. McBrideJL Human neural stem cell transplants improve motor function in a rat model of Huntington's disease.J. Comp. Neurol.2004475221121910.1002/cne.20176
    [Google Scholar]
  27. RyuJ.K. KimJ. ChoS.J. HatoriK. NagaiA. ChoiH.B. LeeM.C. McLarnonJ.G. KimS.U. Proactive transplantation of human neural stem cells prevents degeneration of striatal neurons in a rat model of Huntington disease.Neurobiol. Dis.2004161687710.1016/j.nbd.2004.01.01615207263
    [Google Scholar]
  28. BantubungiK. BlumD. CuvelierL. Wislet-GendebienS. RogisterB. BrouilletE. SchiffmannS.N. Stem cell factor and mesenchymal and neural stem cell transplantation in a rat model of Huntington’s disease.Mol. Cell. Neurosci.200837345447010.1016/j.mcn.2007.11.00118083596
    [Google Scholar]
  29. ZayedM.A. SultanS. AlsaabH.O. YousofS.M. AlrefaeiG.I. AlsubhiN.H. AlkarimS. Al GhamdiK.S. BagabirS.A. JanaA. AlghamdiB.S. AttaH.M. AshrafG.M. Stem-cell-based therapy: The celestial weapon against neurological disorders.Cells20221121347610.3390/cells1121347636359871
    [Google Scholar]
  30. JohannV. SchieferJ. SassC. MeyJ. BrookG. KrüttgenA. SchlangenC. BernreutherC. SchachnerM. DihnéM. KosinskiC.M. Time of transplantation and cell preparation determine neural stem cell survival in a mouse model of Huntington’s disease.Exp. Brain Res.2007177445847010.1007/s00221‑006‑0689‑y17013619
    [Google Scholar]
  31. VazeyE.M. ChenK. HughesS.M. ConnorB. Transplanted adult neural progenitor cells survive, differentiate and reduce motor function impairment in a rodent model of Huntington’s disease.Exp. Neurol.2006199238439610.1016/j.expneurol.2006.01.03416626705
    [Google Scholar]
  32. SaberiM. WoodsN.B. de LucaC. SchenkS. LuJ.C. BandyopadhyayG. VermaI.M. OlefskyJ.M. Hematopoietic cell-specific deletion of toll-like receptor 4 ameliorates hepatic and adipose tissue insulin resistance in high-fat-fed mice.Cell Metab.200910541942910.1016/j.cmet.2009.09.00619883619
    [Google Scholar]
  33. GasteratosK. KouzounisK. GovermanJ. Autologous stem cell-derived therapies for androgenetic alopecia: A systematic review of randomized control trials on efficacy, safety, and outcomes.Plast. Reconstr. Surg. Glob. Open2024122e560610.1097/GOX.000000000000560638352219
    [Google Scholar]
  34. ZhangY. HuangP. WangX. XuQ. LiuY. JinZ. LiY. ChengZ. TangR. ChenS. HeN. YanF. HaackeE.M. Visualizing the deep cerebellar nuclei using quantitative susceptibility mapping: An application in healthy controls, Parkinson’s disease patients and essential tremor patients.Hum. Brain Mapp.20234441810182410.1002/hbm.2617836502376
    [Google Scholar]
  35. SchweitzerJ.S. SongB. HerringtonT.M. ParkT.Y. LeeN. KoS. JeonJ. ChaY. KimK. LiQ. HenchcliffeC. KaplittM. NeffC. RapalinoO. SeoH. LeeI.H. KimJ. KimT. PetskoG.A. RitzJ. CohenB.M. KongS.W. LeblancP. CarterB.S. KimK.S. Personalized iPSC-derived dopamine progenitor cells for Parkinson’s disease.N. Engl. J. Med.2020382201926193210.1056/NEJMoa191587232402162
    [Google Scholar]
  36. MahmoodR. Precision medicine: Personalizing the fight against cancer.Int. J. Tre. Onc. Sci202421101810.22376/ijtos.2023.2.1.10‑18
    [Google Scholar]
  37. MasukawaD. KitamuraS. TajikaR. UchimuraH. AraiM. TakadaY. ArisawaT. OtakiM. KanaiK. KobayashiK. MiyazakiT. GoshimaY. Coupling between GPR143 and dopamine D2 receptor is required for selective potentiation of dopamine D2 receptor function by L-3,4-dihydroxyphenylalanine in the dorsal striatum.J. Neurochem.2023165217719510.1111/jnc.1578936807226
    [Google Scholar]
  38. Mottin M, Klegeris A. Protective effects of Auranofin on the 6-hydroxydopamine model of Parkinson’s disease in rats. WJBPHS 2023; 13(3): 106-19.10.30574/wjbphs.2023.13.3.0111
  39. MaheshwariS Dopaminergic cell replacement for parkinson’s disease: Addressing the intracranial delivery hurdle.J Parkinsons Dis202412110.3233/JPD‑230328
    [Google Scholar]
  40. HamamahS. HajnalA. CovasaM. Influence of bariatric surgery on gut microbiota composition and its implication on brain and peripheral targets.Nutrients2024167107110.3390/nu1607107138613104
    [Google Scholar]
  41. BarkerR.A. BjörklundA. Restorative cell and gene therapies for Parkinson’s disease.Handb. Clin. Neurol.202319321122610.1016/B978‑0‑323‑85555‑6.00012‑636803812
    [Google Scholar]
  42. NagatsuT. Catecholamines and Parkinson’s disease: Tyrosine hydroxylase (TH) over tetrahydrobiopterin (BH4) and GTP cyclohydrolase I (GCH1) to cytokines, neuromelanin, and gene therapy: A historical overview.J. Neural Transm.2024; 131(6): 617-630.10.1007/s00702‑023‑02673‑y37638996
    [Google Scholar]
  43. ShastryS. HuJ. YingM. MaoX. Cell therapy for parkinson’s disease.Pharmaceutics20231512265610.3390/pharmaceutics1512265638139997
    [Google Scholar]
  44. KikuchiT. MorizaneA. DoiD. OnoeH. HayashiT. KawasakiT. SaikiH. MiyamotoS. TakahashiJ. Survival of human induced pluripotent stem cell-derived midbrain dopaminergic neurons in the brain of a primate model of Parkinson’s disease.J. Parkinsons Dis.20111439541210.3233/JPD‑2011‑1107023933658
    [Google Scholar]
  45. DevitoL.G. ZanjaniZ.S. EvansJ.R. ScardamagliaA. HouldenH. GandhiS. HealyL. Generation of TWO G51D SNCA missense mutation iPSC lines (CRICKi011-A, CRICKi012-A) from two individuals at risk of Parkinson’s disease.Stem Cell Res.20237110313410.1016/j.scr.2023.10313437336145
    [Google Scholar]
  46. MohamedY.T. SalamaA. RabieM.A. Abd El FattahM.A. Neuroprotective effect of secukinumab against rotenone induced Parkinson’s disease in rat model: Involvement of IL-17, HMGB-1/TLR4 axis and BDNF/TrKB cascade.Int. Immunopharmacol.202311410957110.1016/j.intimp.2022.10957136527875
    [Google Scholar]
  47. YeP. BiL. YangM. QiuY. HuangG. LiuY. HouY. LiZ. Yee TongH.H. CuiM. JinH. Activated microglia in the early stage of a rat model of parkinson’s disease: Revealed by PET-MRI imaging by [ 18 F]DPA-714 targeting TSPO.ACS Chem. Neurosci.202314112183219210.1021/acschemneuro.3c0020237134001
    [Google Scholar]
  48. ThakralS. YadavA. SinghV. KumarM. KumarP. NarangR. SudhakarK. VermaA. KhalilullahH. JaremkoM. EmwasA.H. Alzheimer’s disease: Molecular aspects and treatment opportunities using herbal drugs.Ageing Res. Rev.20238810196010.1016/j.arr.2023.10196037224884
    [Google Scholar]
  49. KantayevaG. LimaJ. PereiraA.I. Application of machine learning in dementia diagnosis: A systematic literature review.Heliyon2023911e2162610.1016/j.heliyon.2023.e2162638027622
    [Google Scholar]
  50. MielingM. GöttlichM. YousufM. BunzeckN. Basal forebrain activity predicts functional degeneration in the entorhinal cortex in Alzheimer’s disease.Brain Commun.202355fcad26210.1093/braincomms/fcad26237901036
    [Google Scholar]
  51. FideE. YerlikayaD. ÖzD. Özturaİ. YenerG. Normalized theta but increased gamma activity after acetylcholinesterase inhibitor treatment in Alzheimer’s disease: Preliminary qEEG study.Clin. EEG Neurosci.202354330531510.1177/1550059422112072335957592
    [Google Scholar]
  52. HookG. KindyM. HookV. Cathepsin B deficiency improves memory deficits and reduces amyloid-β in hAβPP rat models representing the major sporadic Alzheimer’s disease condition.J. Alzheimers Dis.2023931334610.3233/JAD‑22100536970896
    [Google Scholar]
  53. SeckerC. MotznyA.Y. KostovaS. BuntruA. HelmeckeL. ReusL. SteinfortR. BrusendorfL. BoeddrichA. NeuendorfN. DiezL. SchmiederP. SchulzA. CzekeliusC. WankerE.E. The polyphenol EGCG directly targets intracellular amyloid-β aggregates and promotes their lysosomal degradation.J. Neurochem.2023166229431710.1111/jnc.1584237165774
    [Google Scholar]
  54. MarrR.A. RockensteinE. MukherjeeA. KindyM.S. HershL.B. GageF.H. VermaI.M. MasliahE. Neprilysin gene transfer reduces human amyloid pathology in transgenic mice.J. Neurosci.20032361992199610.1523/JNEUROSCI.23‑06‑01992.200312657655
    [Google Scholar]
  55. PeplowP.V. MartinezB. Biomaterial and tissue-engineering strategies for the treatment of brain neurodegeneration.Neural Regen. Res.202217102108211610.4103/1673‑5374.33613235259816
    [Google Scholar]
  56. SindenJ.D. Functional repair with neural stem cells.Novartis Foundation Symposium2000Vol. 23127028810.1002/0470870834.ch16
    [Google Scholar]
  57. PrakashA. KumarA. MingL.C. ManiV. MajeedA.B.A. Modulation of the nitrergic pathway via activation of ppar-γ contributes to the neuroprotective effect of pioglitazone against streptozotocin-induced memory dysfunction.J. Mol. Neurosci.201556373975010.1007/s12031‑015‑0508‑725854775
    [Google Scholar]
  58. ShariatiA. NematiR. SadeghipourY. YaghoubiY. BaghbaniR. JavidiK. ZamaniM. HassanzadehA. Mesenchymal stromal cells (MSCs) for neurodegenerative disease: A promising frontier.Eur. J. Cell Biol.202099615109710.1016/j.ejcb.2020.15109732800276
    [Google Scholar]
  59. RichardsonRT DeLongMR A reappraisal of the functions of the nucleus basalis of Meynert.Trends Neurosci198811626426710.1016/0166‑2236(88)90107‑5
    [Google Scholar]
  60. Nikolac PerkovicM. BoroveckiF. FilipcicI. VuicB. MilosT. Nedic ErjavecG. KonjevodM. TudorL. MimicaN. UzunS. KozumplikO. Svob StracD. PivacN. Relationship between brain-derived neurotrophic factor and cognitive decline in patients with mild cognitive impairment and dementia.Biomolecules202313357010.3390/biom1303057036979505
    [Google Scholar]
  61. RufinoR.A. Pereira-RufinoL.S. VissotoT.C.S. KerkisI. NevesA.C. da SilvaM.C.P. The immunomodulatory potential role of mesenchymal stem cells in diseases of the central nervous system.Neurodegener. Dis.2022222688210.1159/00052803636398461
    [Google Scholar]
  62. ZhangQ. ChenZ. ZhangK. ZhuJ. JinT. FGF/FGFR system in the central nervous system demyelinating disease: Recent progress and implications for multiple sclerosis.CNS Neurosci. Ther.20232961497151110.1111/cns.1417636924298
    [Google Scholar]
  63. ChristodoulouM.V. PetkouE. AtzemoglouN. GkorlaE. KaramitrouA. SimosY.V. BellosS. BekiariC. KouklisP. KonitsiotisS. VezyrakiP. PeschosD. TsamisK.I. Cell replacement therapy with stem cells in multiple sclerosis, a systematic review.Hum. Cell202337195310.1007/s13577‑023‑01006‑137985645
    [Google Scholar]
  64. SultanaS. VietT.D. AminT. KaziE. MicolucciL. MollahA.K.M.M. AkhtarM.M. IslamM.S. Exploring inflammasome complex as a therapeutic approach in inflammatory diseases.Future Pharmacology20233478981810.3390/futurepharmacol3040048
    [Google Scholar]
  65. DieboldM. FehrenbacherL. FroschM. PrinzM. How myeloid cells shape experimental autoimmune encephalomyelitis: At the crossroads of outside-in immunity.Eur. J. Immunol.20235310225023410.1002/eji.20225023437505465
    [Google Scholar]
  66. GhasemiM. RoshandelE. MohammadianM. FarhadihosseinabadiB. AkbarzadehlalehP. ShamsasenjanK. Mesenchymal stromal cell-derived secretome-based therapy for neurodegenerative diseases: Overview of clinical trials.Stem Cell Res. Ther.202314112210.1186/s13287‑023‑03264‑037143147
    [Google Scholar]
  67. KhalidM. U. MasroorT. The promise of stem cells in amyotrophic lateral sclerosis: A review of clinical trials.J. Pak. Med. Assoc202373suppl. 1S138S142
    [Google Scholar]
  68. BelosludtsevaN.V. MatveevaL.A. BelosludtsevK.N. Mitochondrial dyshomeostasis as an early hallmark and a therapeutic target in amyotrophic lateral sclerosis.Int. J. Mol. Sci.202324231683310.3390/ijms24231683338069154
    [Google Scholar]
  69. Cecerska-HeryćE. PękałaM. SerwinN. GliźniewiczM. GrygorcewiczB. MichalczykA. HeryćR. BudkowskaM. DołęgowskaB. The use of stem cells as a potential treatment method for selected neurodegenerative diseases: Review.Cell. Mol. Neurobiol.20234362643267310.1007/s10571‑023‑01344‑637027074
    [Google Scholar]
  70. DuH. HuoZ. ChenY. ZhaoZ. MengF. WangX. LiuS. ZhangH. ZhouF. LiuJ. ZhangL. ZhouS. GuanY. WangX. Induced pluripotent stem cells and their applications in amyotrophic lateral sclerosis.Cells202312697110.3390/cells1206097136980310
    [Google Scholar]
  71. PapazoglouA. HenselerC. WeickhardtS. TeipelkeJ. PapazoglouP. DaubnerJ. SchifferT. KringsD. BroichK. HeschelerJ. SachinidisA. EhningerD. SchollC. HaenischB. WeiergräberM. Sex- and region-specific cortical and hippocampal whole genome transcriptome profiles from control and APP/PS1 Alzheimer’s disease mice.PLoS One2024192e029695910.1371/journal.pone.029695938324617
    [Google Scholar]
  72. MaJ. HouY.H. LiaoZ.Y. MaZ. ZhangX.X. WangJ.L. ZhuY.B. ShanH.L. WangP.Y. LiC.B. LvY.L. WeiY.L. DouJ.Z. Neuroprotective effects of leptin on the app/ps1 alzheimer’s disease mouse model: Role of microglial and neuroinflammation.Degener. Neurol. Neuromuscul. Dis.202313697910.2147/DNND.S42778137905186
    [Google Scholar]
  73. StatzM. SchleuterF. WeberH. KoberM. PlockstiesF. TimmermannD. StorchA. FauserM. Subthalamic nucleus deep brain stimulation does not alter growth factor expression in a rat model of stable dopaminergic deficiency.Neurosci. Lett.202381413745910.1016/j.neulet.2023.13745937625613
    [Google Scholar]
  74. AnjumR. RazaC. FaheemM. UllahA. ChaudhryM. Neuroprotective potential of Mentha piperita extract prevents motor dysfunctions in mouse model of Parkinson’s disease through anti-oxidant capacities.PLoS One2024194e030210210.1371/journal.pone.030210238625964
    [Google Scholar]
  75. RuanS. XieJ. WangL. GuoL. LiY. FanW. JiR. GongZ. XuY. MaoJ. XieJ. Nicotine alleviates MPTP-induced nigrostriatal damage through modulation of JNK and ERK signaling pathways in the mice model of Parkinson’s disease.Front. Pharmacol.202314108895710.3389/fphar.2023.108895736817162
    [Google Scholar]
  76. ChaneyA.M. CropperH.C. JainP. WilsonE. SimonettaF. JohnsonE.M. AlamI.S. PattersonI.T.J. SwarovskiM. StevensM.Y. WangQ. AzevedoC. NagyS.C. Ramos BenitezJ. DealE.M. VogelH. AndreassonK.I. JamesM.L. PET imaging of TREM1 identifies CNS-infiltrating myeloid cells in a mouse model of multiple sclerosis.Sci. Transl. Med.202315702eabm626710.1126/scitranslmed.abm626737379371
    [Google Scholar]
  77. MarikiA. BarzinZ. Fasihi HarandiM. Karbasi RavariK. DavoodiM. MousaviS.M. RezakhaniS. NazeriM. ShabaniM. Antigen B modulates anti-inflammatory cytokines in the EAE model of multiple sclerosis.Brain Behav.2023132e287410.1002/brb3.287436582052
    [Google Scholar]
  78. GilbertE.A.B. LivingstonJ. FloresE.G. KhanM. KandavelH. MorsheadC.M. Metformin treatment reduces inflammation, dysmyelination and disease severity in a mouse model of multiple sclerosis, experimental autoimmune encephalomyelitis.Brain Res.2024182214864810.1016/j.brainres.2023.14864837890574
    [Google Scholar]
  79. KhamisZ.I. SarkerD.B. XueY. Al-AkkaryN. JamesV.D. ZengC. LiY. SangQ.X.A. Modeling human brain tumors and the microenvironment using induced pluripotent stem cells.Cancers2023154125310.3390/cancers1504125336831595
    [Google Scholar]
  80. RaziS. HaghparastA. Chodari KhamenehS. Ebrahimi SadrabadiA. AziziyanF. BakhtiyariM. Nabi-AfjadiM. TarhrizV. JaliliA. ZalpoorH. The role of tumor microenvironment on cancer stem cell fate in solid tumors.Cell Commun. Signal.202321114310.1186/s12964‑023‑01129‑w37328876
    [Google Scholar]
  81. VermaP. ShuklaN. KumariS. AnsariM.S. GautamN.K. PatelG.K. Cancer stem cell in prostate cancer progression, metastasis and therapy resistance.Biochim. Biophys. Acta Rev. Cancer20231878318888710.1016/j.bbcan.2023.18888736997008
    [Google Scholar]
  82. RahmanMU BilalM ShahJA KaushikA TeissedrePL KujawskaM CRISPR-Cas9-based technology and its relevance to gene editing in parkinson's disease.Pharmaceutics2022146125210.3390/pharmaceutics14061252
    [Google Scholar]
  83. PetersonS.E. GaritaonandiaI. LoringJ.F. The tumorigenic potential of pluripotent stem cells: What can we do to minimize it?BioEssays201638S1Suppl. 1S86S9510.1002/bies.20167091527417126
    [Google Scholar]
  84. SadriM. NajafiA. RahimiA. BehranvandN. Hossein KazemiM. KhorramdelazadH. FalakR. Hypoxia effects on oncolytic virotherapy in Cancer: Friend or Foe?Int. Immunopharmacol.202312211047010.1016/j.intimp.2023.11047037433246
    [Google Scholar]
  85. de MorreeA. RandoT.A. Regulation of adult stem cell quiescence and its functions in the maintenance of tissue integrity.Nat. Rev. Mol. Cell Biol.202324533435410.1038/s41580‑022‑00568‑636922629
    [Google Scholar]
  86. BabuS. KrishnanM. PanneerselvamA. ChinnaiyanM. A comprehensive review on therapeutic application of mesenchymal stem cells in neuroregeneration.Life Sci.202332712178510.1016/j.lfs.2023.12178537196856
    [Google Scholar]
  87. StamenkovicS. LiY. WatersJ. ShihA. Deep imaging to dissect microvascular contributions to white matter degeneration in rodent models of dementia.Stroke20235451403141510.1161/STROKEAHA.122.03715637094035
    [Google Scholar]
  88. LiY. WuQ. WangY. LiL. BuH. BaoJ. Senescence of mesenchymal stem cells (Review).Int. J. Mol. Med.201739477578210.3892/ijmm.2017.291228290609
    [Google Scholar]
  89. LeeB.C. YuK.R. Impact of mesenchymal stem cell senescence on inflammaging.BMB Rep.2020532657310.5483/BMBRep.2020.53.2.29131964472
    [Google Scholar]
  90. CrambK.M.L. Beccano-KellyD. CraggS.J. Wade-MartinsR. Impaired dopamine release in Parkinson’s disease.Brain202314683117313210.1093/brain/awad06436864664
    [Google Scholar]
  91. Martinez-SerranoA. HantzopoulosP.A. BjörklundA. Ex vivo gene transfer of brain-derived neurotrophic factor to the intact rat forebrain: Neurotrophic effects on cholinergic neurons.Eur. J. Neurosci.19968472773510.1111/j.1460‑9568.1996.tb01258.x9081624
    [Google Scholar]
  92. SemenzaG.L. Mechanisms of breast cancer stem cell specification and self-renewal mediated by hypoxia-inducible factor 1.Stem Cells Transl. Med.2023121278379010.1093/stcltm/szad06137768037
    [Google Scholar]
  93. NegiS. ImanishiM. HamoriM. Kawahara-NakagawaY. NomuraW. KishiK. ShibataN. SugiuraY. The past, present, and future of artificial zinc finger proteins: Design strategies and chemical and biological applications.Eur. J. Biochem.202328324926110.1007/s00775‑023‑01991‑636749405
    [Google Scholar]
  94. PhanH.T.L. KimK. LeeH. SeongJ.K. Progress in and prospects of genome editing tools for human disease model development and therapeutic applications. Genes202314248310.3390/genes1402048336833410
    [Google Scholar]
  95. AlizadehR. AsghariA. Taghizadeh-HesaryF. MoradiS. FarhadiM. MehdizadehM. SimorghS. NourazarianA. ShademanB. SusanabadiA. KamravaK. Intranasal delivery of stem cells labeled by nanoparticles in neurodegenerative disorders: Challenges and opportunities.Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol.2023156e191510.1002/wnan.191537414546
    [Google Scholar]
  96. BeygiM. Multifunctional nanotheranostics for overcoming the blood–brain barrier.Advanced Functional MaterialsWiley Online Library2024231088110.1002/adfm.202310881
    [Google Scholar]
  97. ChasaraR.S. AjayiT.O. LeshiloD.M. PokaM.S. WitikaB.A. Exploring novel strategies to improve anti-tumour efficiency: The potential for targeting reactive oxygen species.Heliyon202399e1989610.1016/j.heliyon.2023.e1989637809420
    [Google Scholar]
  98. DoustmihanA. FathiM. MazloomiM. SalemiA. HamblinM.R. Jahanban-EsfahlanR. Molecular targets, therapeutic agents and multitasking nanoparticles to deal with cancer stem cells: A narrative review.J. Control. Release2023363578310.1016/j.jconrel.2023.09.02937739017
    [Google Scholar]
  99. HarkeS. HabibpourmoghadamA. EvlyukhinA.B. Calà LesinaA. ChichkovB.N. Low-frequency magnetic response of gold nanoparticles.Sci. Rep.20231312158810.1038/s41598‑023‑48813‑y38062118
    [Google Scholar]
  100. SeabergJ. CleggJ.R. BhattacharyaR. MukherjeeP. Self-therapeutic nanomaterials: Applications in biology and medicine.Mater. Today20236219022410.1016/j.mattod.2022.11.00736938366
    [Google Scholar]
  101. SabaleS. KandesarP. JadhavV. KomorekR. MotkuriR.K. YuX.Y. Recent developments in the synthesis, properties, and biomedical applications of core/shell superparamagnetic iron oxide nanoparticles with gold.Biomater. Sci.20175112212222510.1039/C7BM00723J28901350
    [Google Scholar]
  102. BiswasK. Microglia mediated neuroinflammation in neurodegenerative diseases: A review on the cell signaling pathways involved in microglial activation.J. Neuroimmunol.202338357818010.1016/j.jneuroim.2023.57818037672840
    [Google Scholar]
  103. LaphanuwatP. GomesD.C.O. AkbarA.N. Senescent T cells: Beneficial and detrimental roles.Immunol. Rev.2023316116017510.1111/imr.1320637098109
    [Google Scholar]
  104. DeviA. PahujaI. SinghS.P. VermaA. BhattacharyaD. BhaskarA. DwivediV.P. DasG. Revisiting the role of mesenchymal stem cells in tuberculosis and other infectious diseases.Cell. Mol. Immunol.202320660061210.1038/s41423‑023‑01028‑737173422
    [Google Scholar]
  105. HansonS. D’SouzaR.N. HemattiP. Biomaterial-mesenchymal stem cell constructs for immunomodulation in composite tissue engineering.Tissue Eng. Part A20142015-162162216810.1089/ten.tea.2013.035925140989
    [Google Scholar]
  106. Abo-ZenaR. HorwitzM.E. Immunomodulation in stem-cell transplantation.Curr. Opin. Pharmacol.20022445245710.1016/S1471‑4892(02)00174‑112127880
    [Google Scholar]
  107. PereiraI. Lopez-MartinezM.J. SamitierJ. Advances in current in vitro models on neurodegenerative diseases.Front. Bioeng. Biotechnol.202311126039710.3389/fbioe.2023.126039738026882
    [Google Scholar]
  108. RafiqM. RatherS. WaniT.U. RatherA.H. KhanR.S. KhanA.E. HamidI. KhanH.A. AlhomidaA.S. SheikhF.A. Recent progress in MXenes incorporated into electrospun nanofibers for biomedical application: Study focusing from 2017 to 2022.Chin. Chem. Lett.202334710846310.1016/j.cclet.2023.108463
    [Google Scholar]
  109. MansourH.M. MohamedA.F. KhattabM.M. El-KhatibA.S. Heat Shock Protein 90 in Parkinson’s disease: Profile of a serial killer.Neuroscience2024; 537: 32-46.10.1016/j.neuroscience.2023.11.03138040085
    [Google Scholar]
  110. ReyesC. PatarroyoM.A. Self-assembling peptides: Perspectives regarding biotechnological applications and vaccine development.Int. J. Biol. Macromol.2023; 259 (PF. 1): 12894410.1016/j.ijbiomac.2023.12894438145690
    [Google Scholar]
  111. GuidiL. CasconeM.G. RoselliniE. Light-responsive polymeric nanoparticles for retinal drug delivery: Design cues, challenges and future perspectives.Heliyon2024105e2661610.1016/j.heliyon.2024.e2661638434257
    [Google Scholar]
  112. HillsR. MossmanJ.A. Bratt-LealA.M. TranH. WilliamsR.M. StoufferD.G. SokolovaI.V. SannaP.P. LoringJ.F. LelosM.J. Neurite outgrowth and gene expression profile correlate with efficacy of human induced pluripotent stem cell-derived dopamine neuron grafts.Stem Cells Dev.20233213-1438739710.1089/scd.2023.004337166357
    [Google Scholar]
  113. Sánchez-SáezX. Ortuño-LizaránI. Sánchez-CastilloC. LaxP. CuencaN. Correction: Starburst amacrine cells, involved in visual motion perception, lose their synaptic input from dopaminergic amacrine cells and degenerate in Parkinson’s disease patients.Transl. Neurodegener.20231212210.1186/s40035‑023‑00360‑237161526
    [Google Scholar]
  114. National Library of Medicine. Specialized Information Services: Transplant Study in Parkinson's Disease.Available from: https://classic.clinicaltrials.gov/ct2/show/NCT01898390?term=NCT01898390&draw=2&rank=1 (Accessed May 25, 2023).
  115. National Library of Medicine. Specialized Information Services: STEPS Trial - Spheramine Safety and Efficacy Study Parkinson's Disease.Available from: https://classic.clinicaltrials.gov/ct2/show/NCT00206687?term=NCT00206687&draw=2&rank=1 (Accessed May 20, 2012).
  116. KampmannM. Molecular and cellular mechanisms of selective vulnerability in neurodegenerative diseases.Nat. Rev. Neurosci.202425535137110.1038/s41583‑024‑00806‑038575768
    [Google Scholar]
  117. NiJ. XieZ. QuanZ. MengJ. QingH. How brain ‘cleaners’ fail: Mechanisms and therapeutic value of microglial phagocytosis in Alzheimer’s disease.Glia202472222724410.1002/glia.2446537650384
    [Google Scholar]
  118. de LeeuwS.M. DavazS. WannerD. MilleretV. EhrbarM. GietlA. TackenbergC. Increased maturation of iPSC-derived neurons in a hydrogel-based 3D culture.J. Neurosci. Methods202136010925410.1016/j.jneumeth.2021.10925434126141
    [Google Scholar]
  119. de Rus JacquetA. Preparation and co-culture of iPSC-derived dopaminergic neurons and astrocytes.Curr. Protoc. Cell Biol.2019851e9810.1002/cpcb.9831763766
    [Google Scholar]
  120. EngleS.J. BlahaL. KleimanR.J. Best practices for translational disease modeling using human iPSC-derived neurons.Neuron2018100478379710.1016/j.neuron.2018.10.03330465765
    [Google Scholar]
  121. LohrasbiF. Ghasemi-KasmanM. SoghliN. GhazviniS. VaziriZ. AbdiS. DarbanY.M. The journey of iPSC-derived OPCs in demyelinating disorders: From in vitro generation to in vivo transplantation.Curr. Neuropharmacol.20232191980199110.2174/1570159X2166623022015001036825702
    [Google Scholar]
  122. PetersenS.I. OkolicsanyiR.K. HauptL.M. Exploring heparan sulfate proteoglycans as mediators of human mesenchymal stem cell neurogenesis.Cell. Mol. Neurobiol.20244413010.1007/s10571‑024‑01463‑838546765
    [Google Scholar]
  123. RatziuV. HarrisonS.A. HajjiY. MagnanensiJ. PetitS. MajdZ. DelecroixE. RosenquistC. HumD. StaelsB. AnsteeQ.M. SanyalA.J. NIS2+TM as a screening tool to optimize patient selection in metabolic dysfunction-associated steatohepatitis clinical trials.J. Hepatol.202480220921910.1016/j.jhep.2023.10.03838061448
    [Google Scholar]
  124. AguirreM. EscobarM. Forero AmézquitaS. CubillosD. RincónC. VanegasP. TarazonaM.P. Atuesta EscobarS. BlancoJ.C. CelisL.G. Application of the yamanaka transcription factors Oct4, Sox2, Klf4, and c-Myc from the Laboratory to the Clinic.Genes2023149169710.3390/genes1409169737761837
    [Google Scholar]
  125. VassileffN ChengL HillAF Extracellular vesicles - propagators of neuropathology and sources of potential biomarkers and therapeutics for neurodegenerative diseases.J Cell Sci202013323jcs24313910.1242/jcs.243139
    [Google Scholar]
  126. JamaliF. AldughmiM. AtianiS. Al-RadaidehA. DahbourS. AlhattabD. KhwairehH. ArafatS. JaghbeerJ.A. RahmehR. Abu MoshrefK. BawanehH. HassunehM.R. HouraniB. AbabnehO. AlghwiriA. AwidiA. Human umbilical cord–derived mesenchymal stem cells in the treatment of multiple sclerosis patients: Phase I/II dose-finding clinical study.Cell Transplant.2024330963689724123304510.1177/0963689724123304538450623
    [Google Scholar]
/content/journals/cscr/10.2174/011574888X313112240510160102
Loading
/content/journals/cscr/10.2174/011574888X313112240510160102
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test