Skip to content
2000
Volume 20, Issue 2
  • ISSN: 1574-888X
  • E-ISSN: 2212-3946

Abstract

Alzheimer's disease (AD) prevalence is a significant public health concern. Tau tangle buildup and different metabolic abnormalities are the primary neuropathological alterations that lead to this illness. Currently, there is a lack of effective treatment for patients with AD due to the complexity of the disease and the lack of a clear understanding of its aetiology. However, stem cell therapy can potentially be used to replace lost neuronal cells. Although this technology is only in its initial stages, it has the potential to transform the treatment of this condition. AD is amenable to disease-modifying treatment with stem cell therapy. Since the early 2000s, there have been more investigations on stem cells, including Mesenchymal Stem Cells (MSCs) and Neural Stem Cells (NSCs), as a result of the failure to produce new medicines for AD. Numerous animal studies have investigated issues relating to stem cells, such as their origin, ability to differentiate, how they are cultured, how they form tumours, how they are injected, and how mobile they are. Clinical trials to test the use of stem cells for AD have been underway since 2010, primarily in East Asia. Although there were no significant immediate or long-term side effects, two phase I investigations on moderate AD have been completed. Neither of these studies revealed any considerable clinical efficacy. Numerous investigations with more complex study designs, established levels, and biomarkers, such as amyloid positron emission tomography among people with mild to moderate AD, are in the works. Stem cell therapy for AD has the potential to alter the condition. The methods of action, preclinical animal studies, human clinical trials, and challenges stem cell therapy for AD faces are all covered in this article. We will also go over current advancements in stem cell research and the pathophysiology of AD, as well as challenges and solutions for employing cell-based therapeutics for AD and associated conditions.

Loading

Article metrics loading...

/content/journals/cscr/10.2174/011574888X267673231120061600
2024-04-14
2025-09-05
Loading full text...

Full text loading...

References

  1. ZhangL LiZ Alzheimer, and the discovery of Alzheimer's disease.Zhonghuayishi za zhi (Beijing, China: 1980)201444528890
    [Google Scholar]
  2. PasseriE. ElkhouryK. MorsinkM. BroersenK. LinderM. TamayolA. MalaplateC. YenF.T. Arab-TehranyE. Alzheimer’s disease: Treatment strategies and their limitations.Int. J. Mol. Sci.202223221395410.3390/ijms23221395436430432
    [Google Scholar]
  3. LindvallO. KokaiaZ. Stem cells in human neurodegenerative disorders-time for clinical translation?J. Clin. Invest.20101201294010.1172/JCI4054320051634
    [Google Scholar]
  4. AgerR.R. DavisJ.L. AgazaryanA. BenaventeF. PoonW.W. LaFerlaF.M. Blurton-JonesM. Human neural stem cells improve cognition and promote synaptic growth in two complementary transgenic models of Alzheimer’s disease and neuronal loss.Hippocampus201525781382610.1002/hipo.2240525530343
    [Google Scholar]
  5. TatulianS.A. Challenges and hopes for Alzheimer’s disease.Drug Discov. Today20222741027104310.1016/j.drudis.2022.01.01635121174
    [Google Scholar]
  6. CalsolaroV. EdisonP. Neuroinflammation in Alzheimer’s disease: Current evidence and future directions.Alzheimers Dement.201612671973210.1016/j.jalz.2016.02.01027179961
    [Google Scholar]
  7. ProbstA. LanguiD. UlrichJ. Alzheimer’s disease: A description of the structural lesions.Brain Pathol.19911422923910.1111/j.1750‑3639.1991.tb00666.x1727015
    [Google Scholar]
  8. WisniewskiH.M. WegielJ. KotulaL. Review: David Oppenheimer Memorial Lecture 1995: Some neuropathological aspects of Alzheimer’s disease and its relevance to other disciplines.Neuropathol. Appl. Neurobiol.199622131110.1111/j.1365‑2990.1996.tb00839.x8866776
    [Google Scholar]
  9. WangZ.B. WangZ.T. SunY. TanL. YuJ.T. The future of stem cell therapies of Alzheimer’s disease.Ageing Res. Rev.20228010165510.1016/j.arr.2022.10165535660003
    [Google Scholar]
  10. WengenackT.M. CurranG.L. PodusloJ.F. Targeting Alzheimer amyloid plaques in vivo.Nat. Biotechnol.200018886887210.1038/7848210932157
    [Google Scholar]
  11. RygielK. Novel strategies for Alzheimer’s disease treatment: An overview of anti-amyloid beta monoclonal antibodies.Indian J. Pharmacol.201648662963610.4103/0253‑7613.19486728066098
    [Google Scholar]
  12. GodyńJ. JończykJ. PanekD. MalawskaB. Therapeutic strategies for Alzheimer’s disease in clinical trials.Pharmacol. Rep.201668112713810.1016/j.pharep.2015.07.00626721364
    [Google Scholar]
  13. WisniewskiT. DrummondE. Developing therapeutic vaccines against Alzheimer’s disease.Expert Rev. Vaccines201615340141510.1586/14760584.2016.112181526577574
    [Google Scholar]
  14. GabrM.T. IbrahimM.M. Multitarget therapeutic strategies for Alzheimer’s disease.Neural Regen. Res.201914343744010.4103/1673‑5374.24546330539809
    [Google Scholar]
  15. KarvelasN. BennettS. PolitisG. KourisN.I. KoleC. Advances in stem cell therapy in Alzheimer’s disease: A comprehensive clinical trial review.Stem Cell Investig.20229210.21037/sci‑2021‑06335280344
    [Google Scholar]
  16. EganM.F. KojimaM. CallicottJ.H. GoldbergT.E. KolachanaB.S. BertolinoA. ZaitsevE. GoldB. GoldmanD. DeanM. LuB. WeinbergerD.R. The BDNF val66met polymorphism affects activity-dependent secretion of BDNF and human memory and hippocampal function.Cell2003112225726910.1016/S0092‑8674(03)00035‑712553913
    [Google Scholar]
  17. Salwa KumarL. Engrafted stem cell therapy for Alzheimer’s disease: A promising treatment strategy with clinical outcome.J. Control. Release202133883785710.1016/j.jconrel.2021.09.00734509587
    [Google Scholar]
  18. DoodyR.S. ThomasR.G. FarlowM. IwatsuboT. VellasB. JoffeS. KieburtzK. RamanR. SunX. AisenP.S. SiemersE. Liu-SeifertH. MohsR. Phase 3 trials of solanezumab for mild-to-moderate Alzheimer’s disease.N. Engl. J. Med.2014370431132110.1056/NEJMoa131288924450890
    [Google Scholar]
  19. RafiiM.S. Targeting tau protein in Alzheimer’s disease.Lancet2016388100622842284410.1016/S0140‑6736(16)32107‑927863808
    [Google Scholar]
  20. SevignyJ. ChiaoP. BussièreT. WeinrebP.H. WilliamsL. MaierM. DunstanR. SallowayS. ChenT. LingY. O’GormanJ. QianF. ArastuM. LiM. ChollateS. BrennanM.S. Quintero-MonzonO. ScannevinR.H. ArnoldH.M. EngberT. RhodesK. FerreroJ. HangY. MikulskisA. GrimmJ. HockC. NitschR.M. SandrockA. The antibody aducanumab reduces Aβ plaques in Alzheimer’s disease.Nature20165377618505610.1038/nature1932327582220
    [Google Scholar]
  21. YanamandraK. KfouryN. JiangH. MahanT.E. MaS. MaloneyS.E. WozniakD.F. DiamondM.I. HoltzmanD.M. Anti-tau antibodies that block tau aggregate seeding in vitro markedly decrease pathology and improve cognition in vivo.Neuron201380240241410.1016/j.neuron.2013.07.04624075978
    [Google Scholar]
  22. HenekaM.T. CarsonM.J. KhouryJ.E. LandrethG.E. BrosseronF. FeinsteinD.L. JacobsA.H. Wyss-CorayT. VitoricaJ. RansohoffR.M. HerrupK. FrautschyS.A. FinsenB. BrownG.C. VerkhratskyA. YamanakaK. KoistinahoJ. LatzE. HalleA. PetzoldG.C. TownT. MorganD. ShinoharaM.L. PerryV.H. HolmesC. BazanN.G. BrooksD.J. HunotS. JosephB. DeigendeschN. GaraschukO. BoddekeE. DinarelloC.A. BreitnerJ.C. ColeG.M. GolenbockD.T. KummerM.P. Neuroinflammation in Alzheimer’s disease.Lancet Neurol.201514438840510.1016/S1474‑4422(15)70016‑525792098
    [Google Scholar]
  23. TarkowskiE. BlennowK. WallinA. TarkowskiA. Intracerebral production of tumor necrosis factor-alpha, a local neuroprotective agent, in Alzheimer disease and vascular dementia.J. Clin. Immunol.199919422323010.1023/A:102056801395310471976
    [Google Scholar]
  24. PraticòD. ClarkC.M. LiunF. LeeV.Y-M. TrojanowskiJ.Q. TrojanowskiJ.Q. Increase of brain oxidative stress in mild cognitive impairment: a possible predictor of Alzheimer disease.Arch. Neurol.200259697297610.1001/archneur.59.6.97212056933
    [Google Scholar]
  25. SimonsM. KellerP. De StrooperB. BeyreutherK. DottiC.G. SimonsK. Cholesterol depletion inhibits the generation of β-amyloid in hippocampal neurons.Proc. Natl. Acad. Sci. USA199895116460646410.1073/pnas.95.11.64609600988
    [Google Scholar]
  26. TuszynskiM.H. ThalL. PayM. SalmonD.P. UH.S. BakayR. PatelP. BleschA. VahlsingH.L. HoG. TongG. PotkinS.G. FallonJ. HansenL. MufsonE.J. KordowerJ.H. GallC. ConnerJ. A phase 1 clinical trial of nerve growth factor gene therapy for Alzheimer disease.Nat. Med.200511555155510.1038/nm123915852017
    [Google Scholar]
  27. DeierborgT. SouletD. RoybonL. HallV. BrundinP. Emerging restorative treatments for Parkinson’s disease.Prog. Neurobiol.200885440743210.1016/j.pneurobio.2008.05.00118586376
    [Google Scholar]
  28. Bossy-WetzelE. TalantovaM.V. LeeW.D. SchölzkeM.N. HarropA. MathewsE. GötzT. HanJ. EllismanM.H. PerkinsG.A. LiptonS.A. Crosstalk between nitric oxide and zinc pathways to neuronal cell death involving mitochondrial dysfunction and p38-activated K+ channels.Neuron200441335136510.1016/S0896‑6273(04)00015‑714766175
    [Google Scholar]
  29. HuangX. AtwoodC.S. MoirR.D. HartshornM.A. VonsattelJ.P. TanziR.E. BushA.I. Zinc-induced Alzheimer’s Abeta1-40 aggregation is mediated by conformational factors.J. Biol. Chem.199727242264642647010.1074/jbc.272.42.264649334223
    [Google Scholar]
  30. AdlardP.A. ChernyR.A. FinkelsteinD.I. GautierE. RobbE. CortesM. VolitakisI. LiuX. SmithJ.P. PerezK. LaughtonK. LiQ.X. CharmanS.A. NicolazzoJ.A. WilkinsS. DelevaK. LynchT. KokG. RitchieC.W. TanziR.E. CappaiR. MastersC.L. BarnhamK.J. BushA.I. Rapid restoration of cognition in Alzheimer’s transgenic mice with 8-hydroxy quinoline analogs is associated with decreased interstitial Abeta.Neuron2008591435510.1016/j.neuron.2008.06.01818614028
    [Google Scholar]
  31. PennerM.R. RothT.L. BarnesC.A. SweattJ.D. An epigenetic hypothesis of aging-related cognitive dysfunction.Front. Aging Neurosci.20102910.3389/fnagi.2010.0000920552047
    [Google Scholar]
  32. CacabelosR. Have there been improvements in Alzheimer’s disease drug discovery over the past 5 years?Expert Opin. Drug Discov.201813652353810.1080/17460441.2018.145764529607687
    [Google Scholar]
  33. MarchantJ.A.M. WilliamsK.N. Memory matters in assisted living.Rehabil. Nurs.2011362838810.1002/j.2048‑7940.2011.tb00070.x21473565
    [Google Scholar]
  34. BirksJ.S. HarveyR.J. Donepezil for dementia due to Alzheimer’s disease.Cochrane Libr.201820186CD00119010.1002/14651858.CD001190.pub329923184
    [Google Scholar]
  35. TengE. KepeV. FrautschyS.A. LiuJ. SatyamurthyN. YangF. ChenP.P. ColeG.B. JonesM.R. HuangS.C. FloodD.G. TruskoS.P. SmallG.W. ColeG.M. BarrioJ.R. [F-18]FDDNP microPET imaging correlates with brain Aβ burden in a transgenic rat model of Alzheimer disease: Effects of aging, in vivo blockade, and anti-Aβ antibody treatment.Neurobiol. Dis.201143356557510.1016/j.nbd.2011.05.00321605674
    [Google Scholar]
  36. BirksJ. Cholinesterase inhibitors for Alzheimer’s disease.Cochrane Database Syst. Rev.200620061CD00559316437532
    [Google Scholar]
  37. CummingsJ. LeeG. RitterA. SabbaghM. ZhongK. Alzheimer’s disease drug development pipeline: 2019.Alzheimers Dement.20195127229310.1016/j.trci.2019.05.00831334330
    [Google Scholar]
  38. GoldeT.E. Disease-modifying therapies for Alzheimer’s disease: More questions than answers.Neurotherapeutics202219120922710.1007/s13311‑022‑01201‑235229269
    [Google Scholar]
  39. YangH.D. KimD.H. LeeS.B. YoungL.D. History of Alzheimer’s disease.Dement. Neurocognitive Disord.201615411512110.12779/dnd.2016.15.4.11530906352
    [Google Scholar]
  40. CastelloM.A. SorianoS. On the origin of Alzheimer’s disease. Trials and tribulations of the amyloid hypothesis.Ageing Res. Rev.201413101210.1016/j.arr.2013.10.00124252390
    [Google Scholar]
  41. KhanS.S. BloomG.S. Tau: The centre of a signalling nexus in Alzheimer’s disease.Front. Neurosci.2016103110.3389/fnins.2016.0003126903798
    [Google Scholar]
  42. HahrJ.Y. Physiology of the Alzheimer’s disease.Med. Hypotheses201585694494610.1016/j.mehy.2015.09.00526386488
    [Google Scholar]
  43. GuoT. ZhangD. ZengY. HuangT.Y. XuH. ZhaoY. Molecular and cellular mechanisms underlying the pathogenesis of Alzheimer’s disease.Mol. Neurodegener.20201514010.1186/s13024‑020‑00391‑732677986
    [Google Scholar]
  44. KadavathH. HofeleR.V. BiernatJ. KumarS. TepperK. UrlaubH. MandelkowE. ZweckstetterM. Tau stabilizes microtubules by binding at the interface between tubulin heterodimers.Proc. Natl. Acad. Sci. USA2015112247501750610.1073/pnas.150408111226034266
    [Google Scholar]
  45. BrownC. McKeeC. BakshiS. WalkerK. HakmanE. HalassyS. SvinarichD. DoddsR. GovindC.K. ChaudhryG.R. Mesenchymal stem cells: Cell therapy and regeneration potential.J. Tissue Eng. Regen. Med.20191391738175510.1002/term.291431216380
    [Google Scholar]
  46. YamazakiY. ZhaoN. CaulfieldT.R. LiuC.C. BuG. Apolipoprotein E and Alzheimer disease: pathobiology and targeting strategies.Nat. Rev. Neurol.201915950151810.1038/s41582‑019‑0228‑731367008
    [Google Scholar]
  47. ShiJ. CaiY. LiuG. GongN. LiuZ. XuT. WangZ. FeiJ. Enhanced learning and memory in GAT1 heterozygous mice.Acta Biochim. Biophys. Sin.201244435936610.1093/abbs/gms00522318715
    [Google Scholar]
  48. HuangY.W.A. ZhouB. NabetA.M. WernigM. SüdhofT.C. Differential signalling mediated by ApoE2, ApoE3, and ApoE4 in human neurons parallels Alzheimer’s disease risk.J. Neurosci.201939377408742710.1523/JNEUROSCI.2994‑18.201931331998
    [Google Scholar]
  49. TongL.M. YoonS.Y. Andrews-ZwillingY. YangA. LinV. LeiH. HuangY. Enhancing GABA signalling during middle adulthood prevents age-dependent GABAergic interneuron decline and learning and memory deficits in ApoE4 mice.J. Neurosci.20163672316232210.1523/JNEUROSCI.3815‑15.201626888940
    [Google Scholar]
  50. Bar-NurO. VerheulC. SommerA.G. BrumbaughJ. SchwarzB.A. LipchinaI. HuebnerA.J. MostoslavskyG. HochedlingerK. Lineage conversion induced by pluripotency factors involves transient passage through an iPSC stage.Nat. Biotechnol.201533776176810.1038/nbt.324726098450
    [Google Scholar]
  51. FouadG.I. Stem cells as a promising therapeutic approach for Alzheimer’s disease: A review.Bull. Natl. Res. Cent.20194315210.1186/s42269‑019‑0078‑x
    [Google Scholar]
  52. WuC.C. LienC.C. HouW.H. ChiangP.M. TsaiK.J. The gain of BDNF function in engrafted neural stem cells promotes the therapeutic potential for Alzheimer’s disease.Sci. Rep.2016612735810.1038/srep2735827264956
    [Google Scholar]
  53. ChenH. LiuO. ChenS. ZhouY. Aging and mesenchymal stem cells: Therapeutic opportunities and challenges in the older group.Gerontology202268333935210.1159/00051666834161948
    [Google Scholar]
  54. AbudE.M. RamirezR.N. MartinezE.S. HealyL.M. NguyenC.H.H. NewmanS.A. YerominA.V. ScarfoneV.M. MarshS.E. FimbresC. CarawayC.A. FoteG.M. MadanyA.M. AgrawalA. KayedR. GylysK.H. CahalanM.D. CummingsB.J. AntelJ.P. MortazaviA. CarsonM.J. PoonW.W. Blurton-JonesM. iPSC-derived human microglia-like cells to study neurological diseases.Neuron2017942278293.e910.1016/j.neuron.2017.03.04228426964
    [Google Scholar]
  55. CuligL. ChuX. BohrV.A. Neurogenesis in aging and age-related neurodegenerative diseases.Ageing Res. Rev.20227810163610.1016/j.arr.2022.10163635490966
    [Google Scholar]
  56. Salehi-pourmehrH. RahbarghaziR. MahmoudiJ. RoshangarL. ChappleC.R. HajebrahimiS. AbolhasanpourN. AzghaniM.R. Intra-bladder wall transplantation of bone marrow mesenchymal stem cells improved urinary bladder dysfunction following spinal cord injury.Life Sci.2019221202810.1016/j.lfs.2019.02.01130735734
    [Google Scholar]
  57. LiuY. WeickJ.P. LiuH. KrencikR. ZhangX. MaL. ZhouG. AyalaM. ZhangS.C. Medial ganglionic eminence–like cells derived from human embryonic stem cells correct learning and memory deficits.Nat. Biotechnol.201331544044710.1038/nbt.256523604284
    [Google Scholar]
  58. JinX. LinT. XuY. Stem celltherapy and immunologicalrejection in animalmodels.Curr. Mol. Pharmacol.20169428428810.2174/187446720866615092815351126415913
    [Google Scholar]
  59. DingD.C. ChangY.H. ShyuW.C. LinS.Z. Human umbilical cord mesenchymal stem cells: A new era for stem cell therapy.Cell Transplant.201524333934710.3727/096368915X68684125622293
    [Google Scholar]
  60. CuiY. MaS. ZhangC. CaoW. LiuM. LiD. LvP. XingQ. QuR. YaoN. YangB. GuanF. Human umbilical cord mesenchymal stem cells transplantation improves cognitive function in Alzheimer’s disease mice by decreasing oxidative stress and promoting hippocampal neurogenesis.Behav. Brain Res.201732029130110.1016/j.bbr.2016.12.02128007537
    [Google Scholar]
  61. KaragiannisP. TakahashiK. SaitoM. YoshidaY. OkitaK. WatanabeA. InoueH. YamashitaJ.K. TodaniM. NakagawaM. OsawaM. YashiroY. YamanakaS. OsafuneK. Induced pluripotent stem cells and their use in human models of disease and development.Physiol. Rev.20199917911410.1152/physrev.00039.201730328784
    [Google Scholar]
  62. CooperO. HargusG. DeleidiM. BlakA. OsbornT. MarlowE. LeeK. LevyA. Perez-TorresE. YowA. IsacsonO. Differentiation of human ES and Parkinson’s disease iPS cells into ventral midbrain dopaminergic neurons requires a high activity form of SHH, FGF8a and specific regionalization by retinoic acid.Mol. Cell. Neurosci.201045325826610.1016/j.mcn.2010.06.01720603216
    [Google Scholar]
  63. Blurton-JonesM. KitazawaM. Martinez-CoriaH. CastelloN.A. MüllerF.J. LoringJ.F. YamasakiT.R. PoonW.W. GreenK.N. LaFerlaF.M. Neural stem cells improve cognition via BDNF in a transgenic model of Alzheimer disease.Proc. Natl. Acad. Sci. USA200910632135941359910.1073/pnas.090140210619633196
    [Google Scholar]
  64. DuncanT. ValenzuelaM. Alzheimer’s disease, dementia, and stem cell therapy.Stem Cell Res. Ther.20178111110.1186/s13287‑017‑0567‑528494803
    [Google Scholar]
  65. ChoSH WooS KimC KimHJ JangH KimBC KimSE KimSJ KimJP JungYH LockhartS Disease progression modelling from preclinical Alzheimer’s disease (AD) to AD dementia.Scientific reports.20211114168
    [Google Scholar]
  66. LiuXY YangLP ZhaoL Stem cell therapy for Alzheimer's disease.WJSC202012878710.4252/wjsc.v12.i8.787
    [Google Scholar]
  67. DabrowskaS. AndrzejewskaA. JanowskiM. LukomskaB. Immunomodulatory and regenerative effects of mesenchymal stem cells and extracellular vesicles: therapeutic outlook for inflammatory and degenerative diseases.Front. Immunol.20211159106510.3389/fimmu.2020.59106533613514
    [Google Scholar]
  68. LiH. ShenS. FuH. WangZ. LiX. SuiX. YuanM. LiuS. WangG. GuoQ. Immunomodulatory functions of mesenchymal stem cells in tissue engineering.Stem Cells Int.2019201911810.1155/2019/967120630766609
    [Google Scholar]
  69. VolarevicV. GazdicM. Simovic MarkovicB. JovicicN. DjonovV. ArsenijevicN. Mesenchymal stem cell-derived factors: Immuno-modulatory effects and therapeutic potential.Biofactors201743563364410.1002/biof.137428718997
    [Google Scholar]
  70. AyobA.Z. RamasamyT.S. Cancer stem cells as key drivers of tumour progression.J. Biomed. Sci.20182512010.1186/s12929‑018‑0426‑429506506
    [Google Scholar]
  71. RehakovaD. SouralovaT. KoutnaI. Clinical-grade human pluripotent stem cells for cell therapy: characterization strategy.Int. J. Mol. Sci.2020217243510.3390/ijms2107243532244538
    [Google Scholar]
  72. LiuX. LiF. StubblefieldE.A. BlanchardB. RichardsT.L. LarsonG.A. HeY. HuangQ. TanA.C. ZhangD. BenkeT.A. SladekJ.R. ZahniserN.R. LiC.Y. Direct reprogramming of human fibroblasts into dopaminergic neuron-like cells.Cell Res.201222232133210.1038/cr.2011.18122105488
    [Google Scholar]
  73. LeeH.J. KimK.S. KimE.J. ChoiH.B. LeeK.H. ParkI.H. KoY. JeongS.W. KimS.U. Brain transplantation of immortalized human neural stem cells promotes functional recovery in mouse intracerebral hemorrhage stroke model.Stem Cells20072551204121210.1634/stemcells.2006‑040917218400
    [Google Scholar]
  74. von Bohlen Und HalbachO. Immunohistological markers for staging neurogenesis in adult hippocampus.Cell Tissue Res.2007329340920
    [Google Scholar]
  75. HoffmanL.M. CarpenterM.K. Characterization and culture of human embryonic stem cells.Nat. Biotechnol.200523669970810.1038/nbt110215940242
    [Google Scholar]
  76. EngelM. Do-HaD. MuñozS.S. OoiL. Common pitfalls of stem cell differentiation: A guide to improving protocols for neurodegenerative disease models and research.Cell. Mol. Life Sci.201673193693370910.1007/s00018‑016‑2265‑327154043
    [Google Scholar]
  77. SukhinichK.K. KosykhA.V. AleksandrovaM.A. Differentiation and cell–cell interactions of neural progenitor cells transplanted into intact adult brain.Bull. Exp. Biol. Med.2015160111512210.1007/s10517‑015‑3111‑626593411
    [Google Scholar]
  78. IronsH. LindJ.G. WakadeC.G. YuG. HadmanM. CarrollJ. HessD.C. BorlonganC.V. Intracerebral xenotransplantation of GFP mouse bone marrow stromal cells in intact and stroke rat brain: graft survival and immunologic response.Cell Transplant.200413328329410.3727/00000000478398399015191166
    [Google Scholar]
  79. LeunerB. KozorovitskiyY. GrossC.G. GouldE. Diminished adult neurogenesis in the marmoset brain precedes old age.Proc. Natl. Acad. Sci. USA200710443171691717310.1073/pnas.070822810417940008
    [Google Scholar]
  80. HeineV.M. MaslamS. JoëlsM. LucassenP.J. Prominent decline of newborn cell proliferation, differentiation, and apoptosis in the aging dentate gyrus, in absence of an age-related hypothalamus–pituitary–adrenal axis activation.Neurobiol. Aging200425336137510.1016/S0197‑4580(03)00090‑315123342
    [Google Scholar]
  81. Siwak-TappC.T. HeadE. MuggenburgB.A. MilgramN.W. CotmanC.W. Neurogenesis decreases with age in the canine hippocampus and correlates with cognitive function.Neurobiol. Learn. Mem.200788224925910.1016/j.nlm.2007.05.00117587610
    [Google Scholar]
  82. Popa-WagnerA. DincaI. YalikunS. WalkerL. KroemerH. KesslerC. Accelerated delimitation of the infarct zone by capillary-derived nestin-positive cells in aged rats.Curr. Neurovasc. Res.20063131310.2174/15672020677554173216472121
    [Google Scholar]
  83. TonchevA.B. YamashimaT. Differential neurogenic potential of progenitor cells in dentate gyrus and CA1 sector of the postischemic adult monkey hippocampus.Exp. Neurol.2006198110111310.1016/j.expneurol.2005.11.02216426604
    [Google Scholar]
  84. TodaT. GageF.H. Review: Adult neurogenesis contributes to hippocampal plasticity.Cell Tissue Res.2018373369370910.1007/s00441‑017‑2735‑429185071
    [Google Scholar]
  85. McEwenB.S. EilandL. HunterR.G. MillerM.M. Stress and anxiety: Structural plasticity and epigenetic regulation as a consequence of stress.Neuropharmacology201262131210.1016/j.neuropharm.2011.07.01421807003
    [Google Scholar]
  86. CuligL. SurgetA. BourdeyM. KhemissiW. Le GuisquetA.M. VogelE. SahayA. HenR. BelzungC. Increasing adult hippocampal neurogenesis in mice after exposure to unpredictable chronic mild stress may counteract some of the effects of stress.Neuropharmacology201712617918910.1016/j.neuropharm.2017.09.00928890366
    [Google Scholar]
  87. KempermannG. Environmental enrichment, new neurons and the neurobiology of individuality.Nat. Rev. Neurosci.201920423524510.1038/s41583‑019‑0120‑x30723309
    [Google Scholar]
  88. SongJ. OlsenR.H.J. SunJ. MingG. SongH. Neuronal circuitry mechanisms regulating adult mammalian neurogenesis.Cold Spring Harb. Perspect. Biol.201688a01893710.1101/cshperspect.a01893727143698
    [Google Scholar]
  89. KhachoM. ClarkA. SvobodaD.S. AzziJ. MacLaurinJ.G. MeghaizelC. SesakiH. LagaceD.C. GermainM. HarperM.E. ParkD.S. SlackR.S. Mitochondrial dynamics impact stem cell identity and fate decisions by regulating a nuclear transcriptional program.Cell Stem Cell201619223224710.1016/j.stem.2016.04.01527237737
    [Google Scholar]
  90. Michael-TitusA.T. PriestleyJ.V. Omega-3 fatty acids and traumatic neurological injury: From neuroprotection to neuroplasticity?Trends Neurosci.2014371303810.1016/j.tins.2013.10.00524268818
    [Google Scholar]
  91. ValenzuelaM.J. SachdevP. Brain reserve and cognitive decline: A non-parametric systematic review.Psychol. Med.20063681065107310.1017/S003329170600774416650343
    [Google Scholar]
  92. BacB. HicheriC. WeissC. BuellA. VilcekN. SpaeniC. GeulaC. SavasJ.N. DisterhoftJ.F. The TgF344-AD rat: Behavioral and proteomic changes associated with aging and protein expression in a transgenic rat model of Alzheimer’s disease.Neurobiol. Aging20231239811010.1016/j.neurobiolaging.2022.12.01536657371
    [Google Scholar]
  93. BondolfiL. CalhounM. ErminiF. KuhnH.G. WiederholdK.H. WalkerL. StaufenbielM. JuckerM. Amyloid-associated neuron loss and gliogenesis in the neocortex of amyloid precursor protein transgenic mice.J. Neurosci.200222251552210.1523/JNEUROSCI.22‑02‑00515.200211784797
    [Google Scholar]
  94. TaniuchiN. NiidomeT. GotoY. AkaikeA. KiharaT. SugimotoH. Decreased proliferation of hippocampal progenitor cells in APPswe/PS1dE9 transgenic mice.Neuroreport200718171801180510.1097/WNR.0b013e3282f1c9e918090315
    [Google Scholar]
  95. SaltaE. LazarovO. FitzsimonsC.P. TanziR. LucassenP.J. ChoiS.H. Adult hippocampal neurogenesis in Alzheimer’s disease: A roadmap to clinical relevance.Cell Stem Cell202330212013610.1016/j.stem.2023.01.00236736288
    [Google Scholar]
  96. BoekhoornK. JoelsM. LucassenP.J. Increased proliferation reflects glial and vascular-associated changes, but not neurogenesis in the presenile Alzheimer hippocampus.Neurobiol. Dis.200624111410.1016/j.nbd.2006.04.01716814555
    [Google Scholar]
  97. KotaniS. YamauchiT. TeramotoT. OguraH. Donepezil, an acetylcholinesterase inhibitor, enhances adult hippocampal neurogenesis.Chem. Biol. Interact.20081751-322723010.1016/j.cbi.2008.04.00418501884
    [Google Scholar]
  98. LaskeC. StellosK. StranskyE. SeizerP. AkcayÖ. EschweilerG.W. LeyheT. GawazM. Decreased plasma and cerebrospinal fluid levels of stem cell factor in patients with early Alzheimer’s disease.J. Alzheimers Dis.200815345146010.3233/JAD‑2008‑1531118997298
    [Google Scholar]
  99. LeyheT. HoffmannN. StranskyE. LaskeC. Increase of SCF plasma concentration during donepezil treatment of patients with early Alzheimer’s disease.Int. J. Neuropsychopharmacol.200912101319132610.1017/S146114570999021619580698
    [Google Scholar]
  100. StackmanR.W. EckensteinF. FreiB. KulhanekD. NowlinJ. QuinnJ.F. Prevention of age-related spatial memory deficits in a transgenic mouse model of Alzheimer’s disease by chronic Ginkgo biloba treatment.Exp. Neurol.2003184151052010.1016/S0014‑4886(03)00399‑614637120
    [Google Scholar]
  101. TchantchouF. XuY. WuY. ChristenY. LuoY. EGb 761 enhances adult hippocampal neurogenesis and phosphorylation of CREB in transgenic mouse model of Alzheimer’s disease.FASEB J.200721102400240810.1096/fj.06‑7649com17356006
    [Google Scholar]
  102. LeeJ. DuanW. LongJ.M. IngramD.K. MattsonM.P. Dietary restriction increases the number of newly generated neural cells, and induces BDNF expression, in the dentate gyrus of rats.J. Mol. Neurosci.20001529910810.1385/JMN:15:2:9911220789
    [Google Scholar]
  103. YamasakiT.R. Blurton-JonesM. MorrissetteD.A. KitazawaM. OddoS. LaFerlaF.M. Neural stem cells improve memory in an inducible mouse model of neuronal loss.J. Neurosci.20072744119251193310.1523/JNEUROSCI.1627‑07.200717978032
    [Google Scholar]
  104. TangJ. XuH.W. FanX.T. LiZ.F. LiD.B. YangL. ZhouG.J. Targeted migration and differentiation of engrafted neural precursor cells in amyloid β-treated hippocampus in rats.Neurosci. Bull.200723526327010.1007/s12264‑007‑0039‑517952134
    [Google Scholar]
  105. TempleS. Advancing cell therapy for neurodegenerative diseases.Cell Stem Cell202330551252910.1016/j.stem.2023.03.01737084729
    [Google Scholar]
  106. LeeH.J. LeeJ.K. LeeH. ShinJ. CarterJ.E. SakamotoT. JinH.K. BaeJ. The therapeutic potential of human umbilical cord blood-derived mesenchymal stem cells in Alzheimer’s disease.Neurosci. Lett.20104811303510.1016/j.neulet.2010.06.04520600610
    [Google Scholar]
  107. ZhouZ. ShiB. XuY. ZhangJ. liuX. ZhouX. FengB. MaJ. CuiH. Neural stem/progenitor cell therapy for Alzheimer disease in preclinical rodent models: A systematic review and meta-analysis.Stem Cell Res. Ther.2023141310.1186/s13287‑022‑03231‑136600321
    [Google Scholar]
  108. JeyaramanM. RajendranR.L. MuthuS. JeyaramanN. SharmaS. JhaS.K. MuthukanagarajP. HongC.M. Furtado da FonsecaL. Santos Duarte LanaJ.F. AhnB.C. GangadaranP. An update on stem cell and stem cell-derived extracellular vesicle-based therapy in the management of Alzheimer’s disease.Heliyon202397e1780810.1016/j.heliyon.2023.e1780837449130
    [Google Scholar]
  109. ParkD. JooS.S. KimT.K. LeeS.H. KangH. LeeH.J. LimI. MatsuoA. TooyamaI. KimY.B. KimS.U. Human neural stem cells overexpressing choline acetyltransferase restore cognitive function of kainic acid-induced learning and memory deficit animals.Cell Transplant.201221136537110.3727/096368911X58676521929870
    [Google Scholar]
  110. ParkD. LeeH.J. JooS.S. BaeD.K. YangG. YangY.H. LimI. MatsuoA. TooyamaI. KimY.B. KimS.U. Human neural stem cells over-expressing choline acetyltransferase restore cognition in rat model of cognitive dysfunction.Exp. Neurol.2012234252152610.1016/j.expneurol.2011.12.04022245157
    [Google Scholar]
  111. MilletP. Silva LagesC. HaïkS. NowakE. AllemandI. GranotierC. BoussinF.D. Amyloid-β peptide triggers Fas-independent apoptosis and differentiation of neural progenitor cells.Neurobiol. Dis.2005191-2576510.1016/j.nbd.2004.11.00615837561
    [Google Scholar]
  112. Collaborative Care Coordination Program for Alzheimer's Disease and Related Dementias (Co-CARE-AD).Available from: https://clinicaltrials.gov/ct2/show/NCT05281744
  113. Returning research results that indicate risk of alzheimer disease dementia to healthy participants in longitudinal studies (WeSHARE).Available from:https://clinicaltrials.gov/ct2/show/record/NCT04699786
  114. Reducing Behavioral and Psychological Symptoms of Dementia: Hospital Caregivers (Aim 2).Available from: https://clinicaltrials.gov/ct2/show/record/NCT04179721
  115. A study of comparing rates of dementia and Alzheimer's disease in participants initiating methotrexate versus those initiating anti- tumor necrosis factor (TNF)-alpha therapy.Available from: https://clinicaltrials.gov/ct2/show/record/NCT04571697
  116. Home-based transcranial direct current stimulation for pain management in persons with Alzheimer's Disease and related dementias.Available from: https://clinicaltrials.gov/ct2/show/record/NCT04457973
  117. Samsung Medical CenterComparative Assessment of Clinical Efficacy of Donepezil Between the Patients with Alzheimer’s Disease and Mixed Dementia.https://clinicaltrials.gov/ct2/show/record/NCT01023867
  118. Blood Gene Expression Signature in Patients Diagnosed With Probable Alzheimer's Disease Compared to Patients Suffering From Other Types of DementiaAvailable from:https://clinicaltrials.gov/ct2/show/record/NCT00880347
  119. Charsire Biotechnology CorpAvailable from: https://clinicaltrials.gov/ct2/show/record/NCT02467413
  120. Reducing Behavioral and Psychological Symptoms of Dementia: Family Caregivers (Aim 1).Available from: https://clinicaltrials.gov/ct2/show/record/NCT04481568
  121. Clinical Trial to Explore the the Amyloid Beta Draining Effect of Thiethylperazine (TEP) in Subjects With Newly Diagnosed Early- to-mild Dementia Due to Alzheimer's Disease (AD) in Comparison to Healthy Volunteers (drainAD).https://clinicaltrials.gov/ct2/show/record/NCT03417986
  122. EucherJ.N. UemuraE. SakaguchiD.S. GreenleeM.H.W. Amyloid- beta peptide affects viability but not differentiation of embryonic and adult rat hippocampal progenitor cells.Exp. Neurol.2007203248649210.1016/j.expneurol.2006.09.02117112517
    [Google Scholar]
  123. PorayetteP. GallegoM.J. KaltchevaM.M. BowenR.L. Vadakkadath MeethalS. AtwoodC.S. Differential processing of amyloid- beta precursor protein directs human embryonic stem cell proliferation and differentiation into neuronal precursor cells.J. Biol. Chem.200928435238062381710.1074/jbc.M109.02632819542221
    [Google Scholar]
  124. MarutleA. OhmitsuM. NilbrattM. GreigN.H. NordbergA. SugayaK. Modulation of human neural stem cell differentiation in Alzheimer (APP23) transgenic mice by phenserine.Proc. Natl. Acad. Sci. USA200710430125061251110.1073/pnas.070534610417640880
    [Google Scholar]
  125. DuanY. LyuL. ZhanS. Stem Cell Therapy for Alzheimer’s Disease: A scoping review for 2017–2022.Biomedicines202311112010.3390/biomedicines1101012036672626
    [Google Scholar]
  126. AlipourM. NabaviS.M. ArabL. VosoughM. PakdamanH. EhsaniE. ShahpasandK. Stem cell therapy in Alzheimer’s disease: Possible benefits and limiting drawbacks.Mol. Biol. Rep.20194611425144610.1007/s11033‑018‑4499‑730565076
    [Google Scholar]
  127. SterlingC. WebsterJ. Harnessing the immune system after allogeneic stem cell transplant in acute myeloid leukemia.Am. J. Hematol.202095552954710.1002/ajh.2575032022292
    [Google Scholar]
  128. KotM. Baj-KrzyworzekaM. SzatanekR. Musiał-WysockaA. Suda-SzczurekM. MajkaM. The importance of HLA assessment in “off-the-shelf” allogeneic mesenchymal stem cells based-therapies.Int. J. Mol. Sci.20192022568010.3390/ijms2022568031766164
    [Google Scholar]
  129. InoueK. TsudaM. Microglia in neuropathic pain: Cellular and molecular mechanisms and therapeutic potential.Nat. Rev. Neurosci.201819313815210.1038/nrn.2018.229416128
    [Google Scholar]
  130. KaranuF. OttL. WebsterD.A. Stehno-BittelL. Improved harmonization of critical characterization assays across cell therapies.Regen. Med.20201551661167810.2217/rme‑2020‑000332589107
    [Google Scholar]
  131. ColeM.A. SeabrookG.R. On the horizon—the value and promise of the global pipeline of Alzheimer’s disease therapeutics.Alzheimers Dement.202061e1200910.1002/trc2.1200932405530
    [Google Scholar]
  132. McDadeE. Llibre-GuerraJ.J. HoltzmanD.M. MorrisJ.C. BatemanR.J. The informed road map to prevention of Alzheimer Disease: A call to arms.Mol. Neurodegener.20211614910.1186/s13024‑021‑00467‑y34289882
    [Google Scholar]
  133. AbdiS. JavanmehrN. Ghasemi-KasmanM. BaliH.Y. PirzadehM. Stem cell-based therapeutic and diagnostic approaches in Alzheimer’s disease.Curr. Neuropharmacol.20222061093111510.2174/1570159X2066621123109065934970956
    [Google Scholar]
  134. YuanS.H. MartinJ. EliaJ. FlippinJ. ParambanR.I. HefferanM.P. VidalJ.G. MuY. KillianR.L. IsraelM.A. EmreN. MarsalaS. MarsalaM. GageF.H. GoldsteinL.S.B. CarsonC.T. Cell-surface marker signatures for the isolation of neural stem cells, glia and neurons derived from human pluripotent stem cells.PLoS One201163e1754010.1371/journal.pone.001754021407814
    [Google Scholar]
  135. BockC. KiskinisE. VerstappenG. GuH. BoultingG. SmithZ.D. ZillerM. CroftG.F. AmorosoM.W. OakleyD.H. GnirkeA. EgganK. MeissnerA. Reference Maps of human ES and iPS cell variation enable high-throughput characterization of pluripotent cell lines.Cell2011144343945210.1016/j.cell.2010.12.03221295703
    [Google Scholar]
  136. QuT. BrannenC.L. KimH.M. SugayaK. Human neural stem cells improve cognitive function of aged brain.Neuroreport20011261127113210.1097/00001756‑200105080‑0001611338178
    [Google Scholar]
  137. LiX. ZhuH. SunX. ZuoF. LeiJ. WangZ. BaoX. WangR. Human neural stem cell transplantation rescues cognitive defects in APP/PS1 model of Alzheimer’s disease by enhancing neuronal connectivity and metabolic activity.Front. Aging Neurosci.2016828210.3389/fnagi.2016.0028227932977
    [Google Scholar]
  138. SugayaK. MerchantS. How to approach Alzheimer’s disease therapy using stem cell technologies.J. Alzheimers Dis.200815224125410.3233/JAD‑2008‑1520918953112
    [Google Scholar]
/content/journals/cscr/10.2174/011574888X267673231120061600
Loading
/content/journals/cscr/10.2174/011574888X267673231120061600
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): Alzheimer's; embryonic; mesenchymal; neurotrophy; pluripotent; regeneration; stem cells; β-amyloid
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test