Skip to content
2000
Volume 20, Issue 6
  • ISSN: 1574-888X
  • E-ISSN: 2212-3946

Abstract

Hypoxia is a common hallmark in both physiological and pathological states. The adaptation to hypoxia is a key cellular event in the development and differentiation of stem cells, as well as in pathological conditions such as ischemia. The hypoxic microenvironment, culture conditions, and reactive oxygen species (ROS) scavengers have all been shown to enhance the proliferation, anti-aging properties, immunomodulatory capabilities, differentiation potential, and regenerative and therapeutic potential of dental pulp stem cells (DPSCs). However, severe and persistent hypoxia can be detrimental to the survival and tissue regeneration of DPSCs. Therefore, hypoxic preconditioning of DPSCs and applying oxygen-releasing materials to mitigate extreme hypoxia can enhance the regenerative and therapeutic potential in damaged organisms. This article provides a comprehensive review of the influence of the hypoxic microenvironment on the biological characteristics of DPSCs. It also presents a summary of the recent research advances in DPSCs regarding tissue regeneration, particularly focusing on the utilization of hypoxic preconditioning. Additionally, this review highlights the diverse biological effects of hypoxia on tissue regeneration and proposes promising novel therapeutic strategies.

Loading

Article metrics loading...

/content/journals/cscr/10.2174/011574888X312892240625091241
2025-07-01
2026-02-05
Loading full text...

Full text loading...

References

  1. DeFratesK.G. FrancoD. Heber-KatzE. MessersmithP.B. Unlocking mammalian regeneration through hypoxia inducible factor one alpha signaling.Biomaterials202126912064610.1016/j.biomaterials.2020.12064633493769
    [Google Scholar]
  2. RomboutsC. GiraudT. JeanneauC. AboutI. Pulp vascularization during tooth development, regeneration, and therapy.J. Dent. Res.201796213714410.1177/002203451667168828106505
    [Google Scholar]
  3. IshiuchiN. NakashimaA. DoiS. YoshidaK. MaedaS. KanaiR. YamadaY. IkeT. DoiT. KatoY. MasakiT. Hypoxia-preconditioned mesenchymal stem cells prevent renal fibrosis and inflammation in ischemia-reperfusion rats.Stem Cell Res. Ther.202011113010.1186/s13287‑020‑01642‑632197638
    [Google Scholar]
  4. YanW. DiaoS. FanZ. The role and mechanism of mitochondrial functions and energy metabolism in the function regulation of the mesenchymal stem cells.Stem Cell Res. Ther.202112114010.1186/s13287‑021‑02194‑z33597020
    [Google Scholar]
  5. XiY. KimT. BrumwellA.N. DriverI.H. WeiY. TanV. JacksonJ.R. XuJ. LeeD.K. GottsJ.E. MatthayM.A. ShannonJ.M. ChapmanH.A. VaughanA.E. Local lung hypoxia determines epithelial fate decisions during alveolar regeneration.Nat. Cell Biol.201719890491410.1038/ncb358028737769
    [Google Scholar]
  6. YuanK. ShamskhouE.A. OrcholskiM.E. NathanA. ReddyS. HondaH. ManiV. ZengY. OzenM.O. WangL. DemirciU. TianW. NicollsM.R. de Jesus PerezV.A. Loss of endothelium-derived Wnt5a is associated with reduced pericyte recruitment and small vessel loss in pulmonary arterial hypertension.Circulation2019139141710172410.1161/CIRCULATIONAHA.118.03764230586764
    [Google Scholar]
  7. ChaillouT.I LannerJ.T. Regulation of myogenesis and skeletal muscle regeneration: Effects of oxygen levels on satellite cell activity.FASEB J.201630123929394110.1096/fj.201600757R27601440
    [Google Scholar]
  8. de JongI.E.M. OveriD. CarpinoG. GouwA.S.H. van den HeuvelM.C. van KempenL.C. ManconeC. OnoriP. CardinaleV. CasadeiL. AlvaroD. PorteR.J. GaudioE. Persistent biliary hypoxia and lack of regeneration are key mechanisms in the pathogenesis of posttrans plant nonanastomotic strictures.Hepatology202275481483010.1002/hep.3216634543480
    [Google Scholar]
  9. GuanY. NiuH. LiuZ. DangY. ShenJ. ZayedM. MaL. GuanJ. Sustained oxygenation accelerates diabetic wound healing by promoting epithelialization and angiogenesis and decreasing inflammation.Sci. Adv.2021735eabj015310.1126/sciadv.abj015334452918
    [Google Scholar]
  10. LeeP. ChandelN.S. SimonM.C. Cellular adaptation to hypoxia through hypoxia inducible factors and beyond.Nat. Rev. Mol. Cell Biol.202021526828310.1038/s41580‑020‑0227‑y32144406
    [Google Scholar]
  11. SuiB.D. HuC.H. LiuA.Q. ZhengC.X. XuanK. JinY. Stem cell- based bone regeneration in diseased microenvironments: Challenges and solutions.Biomaterials2019196183010.1016/j.biomaterials.2017.10.04629122279
    [Google Scholar]
  12. ZhangS.Y. RenJ.Y. YangB. Priming strategies for controlling stem cell fate: Applications and challenges in dental tissue regeneration.World J. Stem Cells202113111625164610.4252/wjsc.v13.i11.162534909115
    [Google Scholar]
  13. YamadaY. Nakamura-YamadaS. KonokiR. BabaS. Promising advances in clinical trials of dental tissue-derived cell-based regenerative medicine.Stem Cell Res. Ther.202011117510.1186/s13287‑020‑01683‑x32398041
    [Google Scholar]
  14. YamadaY. Nakamura-YamadaS. KusanoK. BabaS. Clinical potential and current progress of dental pulp stem cells for various systemic diseases in regenerative medicine: A concise review.Int. J. Mol. Sci.2019205113210.3390/ijms2005113230845639
    [Google Scholar]
  15. MaM. Role of hypoxia in mesenchymal stem cells from dental pulp: Influence, mechanism and application.Cell Biochem. Biophys.20243710.1007/s12013‑024‑01274‑038713403
    [Google Scholar]
  16. WilsonE.M. MinjaI.K. MachibyaF.M. JonathanA. MakaniJ. RuggajoP. BalandyaE. Oxygen saturation in primary teeth of individuals with sickle cell disease and sickle cell trait.J. Blood Med.20221340741210.2147/JBM.S36504035909799
    [Google Scholar]
  17. EstrelaC. SerpaG.C. AlencarA.H.G. BrunoK.F. BarlettaF.B. FelippeW.T. EstrelaC.R.A. SouzaJ.B. Oxygen saturation in the dental pulp of maxillary premolars in different age groups - part 1.Braz. Dent. J.201728557357710.1590/0103‑644020170166029215681
    [Google Scholar]
  18. SuiB. ChenC. KouX. LiB. XuanK. ShiS. JinY. Pulp stem cell-mediated functional pulp regeneration.J. Dent. Res.2019981273510.1177/002203451880875430372659
    [Google Scholar]
  19. LuoH. LiuW. ZhangY. YangY. JiangX. WuS. ShaoL. METTL3-mediated m6A modification regulates cell cycle progression of dental pulp stem cells.Stem Cell Res. Ther.202112115910.1186/s13287‑021‑02223‑x33648590
    [Google Scholar]
  20. SakdeeJ.B. WhiteR.R. PagonisT.C. HauschkaP.V. Hypoxia-amplified proliferation of human dental pulp cells.J. Endod.200935681882310.1016/j.joen.2009.03.00119482178
    [Google Scholar]
  21. IidaK. Takeda-KawaguchiT. TezukaY. KunisadaT. ShibataT. TezukaK. Hypoxia enhances colony formation and proliferation but inhibits differentiation of human dental pulp cells.Arch. Oral Biol.201055964865410.1016/j.archoralbio.2010.06.00520630496
    [Google Scholar]
  22. ShiR. YangH. LinX. CaoY. ZhangC. FanZ. HouB. Analysis of the characteristics and expression profiles of coding and noncoding RNAs of human dental pulp stem cells in hypoxic conditions.Stem Cell Res. Ther.20191018910.1186/s13287‑019‑1192‑230867055
    [Google Scholar]
  23. GoreE. DuparcT. GenouxA. PerretB. NajibS. MartinezL.O. The multifaceted ATPase inhibitory factor 1 (IF1) in energy metabolism reprogramming and mitochondrial dysfunction: A new player in age-associated disorders?Antioxid. Redox Signal.2022374-637039310.1089/ars.2021.013734605675
    [Google Scholar]
  24. TirpeA.A. GuleiD. CiorteaS.M. CriviiC. Berindan-NeagoeI. Hypoxia: Overview on hypoxia-mediated mechanisms with a focus on the role of HIF genes.Int. J. Mol. Sci.20192024614010.3390/ijms2024614031817513
    [Google Scholar]
  25. PanZ. MaG. KongL. DuG. Hypoxia-inducible factor-1: Regulatory mechanisms and drug development in stroke.Pharmacol. Res.202117010574210.1016/j.phrs.2021.10574234182129
    [Google Scholar]
  26. YouL. WuW. WangX. FangL. AdamV. NepovimovaE. WuQ. KucaK. The role of hypoxia-inducible factor 1 in tumor immune evasion.Med. Res. Rev.20214131622164310.1002/med.2177133305856
    [Google Scholar]
  27. YangA. WangL. JiangK. LeiL. LiH. Nuclear receptor coactivator 4-mediated ferritinophagy drives proliferation of dental pulp stem cells in hypoxia.Biochem. Biophys. Res. Commun.202155412313010.1016/j.bbrc.2021.03.07533784507
    [Google Scholar]
  28. LiuY. ChenL. GongQ. JiangH. HuangY. Hypoxia-induced mitophagy regulates proliferation, migration and odontoblastic differentiation of human dental pulp cells through FUN14 domain-containing 1.Int. J. Mol. Med.20224957210.3892/ijmm.2022.512835362539
    [Google Scholar]
  29. UenoY. KitamuraC. TerashitaM. NishiharaT. Re-oxygenation improves hypoxia-induced pulp cell arrest.J. Dent. Res.200685982482810.1177/15440591060850090916931865
    [Google Scholar]
  30. XuS. TangL. LiuZ. LuoC. ChengQ. Hypoxia-related lncRNA correlates with prognosis and immune microenvironment in lower-grade glioma.Front. Immunol.20211273104810.3389/fimmu.2021.73104834659218
    [Google Scholar]
  31. ShiH.J. WangM.W. SunJ.T. WangH. LiY.F. ChenB.R. FanY. WangS.B. WangZ.M. WangQ.M. WangL.S. A novel long noncoding RNA FAF inhibits apoptosis via upregulating FGF9 through PI3K/AKT signaling pathway in ischemia–hypoxia cardiomyocytes.J. Cell. Physiol.201923412219732198710.1002/jcp.2876031093967
    [Google Scholar]
  32. HeJ. HuangY. LiuJ. GeL. TangX. LuM. HuZ. Hypoxic conditioned promotes the proliferation of human olfactory mucosa mesenchymal stem cells and relevant lncRNA and mRNA analysis.Life Sci.202126511886110.1016/j.lfs.2020.11886133301811
    [Google Scholar]
  33. HouJ. WangL. WuQ. ZhengG. LongH. WuH. ZhouC. GuoT. ZhongT. WangL. ChenX. WangT. Long noncoding RNA H19 upregulates vascular endothelial growth factor A to enhance mesenchymal stem cells survival and angiogenic capacity by inhibiting miR-199a-5p.Stem Cell Res. Ther.20189110910.1186/s13287‑018‑0861‑x29673400
    [Google Scholar]
  34. ZengJ. ChenM. YangY. WuB. A novel hypoxic lncRNA, HRL-SC, promotes the proliferation and migration of human dental pulp stem cells through the PI3K/AKT signaling pathway.Stem Cell Res. Ther.202213128610.1186/s13287‑022‑02970‑535765088
    [Google Scholar]
  35. GhensiP. BressanE. GardinC. FerroniL. RuffatoL. CaberlottoM. SoldiniC. ZavanB. Osteo Growth Induction titanium surface treatment reduces ROS production of mesenchymal stem cells increasing their osteogenic commitment.Mater. Sci. Eng. C20177438939810.1016/j.msec.2016.12.03228254309
    [Google Scholar]
  36. LiuC. HuF. JiaoG. GuoY. ZhouP. ZhangY. ZhangZ. YiJ. YouY. LiZ. WangH. ZhangX. Dental pulp stem cell-derived exosomes suppress M1 macrophage polarization through the ROS-MAPK-NFκB P65 signaling pathway after spinal cord injury.J. Nanobiotechnology20222016510.1186/s12951‑022‑01273‑435109874
    [Google Scholar]
  37. Debeljak MartacicJ. BorozanS. RadovanovicA. PopadicD. MojsilovicS. VucicV. TodorovicV. Kovacevic FilipovicM. N -Acetyl- l -cysteine enhances ex-vivo amplification of deciduous teeth dental pulp stem cells.Arch. Oral Biol.201670323810.1016/j.archoralbio.2016.06.00227318000
    [Google Scholar]
  38. KanafiM.M. RameshA. GuptaP.K. BhondeR.R. Influence of hypoxia, high glucose, and low serum on the growth kinetics of mesenchymal stem cells from deciduous and permanent teeth.Cells Tissues Organs2013198319820810.1159/00035490124192068
    [Google Scholar]
  39. SamieiM. AghazadehZ. AbdolahiniaE.D. VahdatiA. DaneshvarS. NoghaniA. The effect of electromagnetic fields on survival and proliferation rate of dental pulp stem cells.Acta Odontol. Scand.202078749450010.1080/00016357.2020.173465532191156
    [Google Scholar]
  40. LewW.Z. HuangY.C. HuangK.Y. LinC.T. TsaiM.T. HuangH.M. Static magnetic fields enhance dental pulp stem cell proliferation by activating the p38 mitogen-activated protein kinase pathway as its putative mechanism.J. Tissue Eng. Regen. Med.2018121192910.1002/term.233327688068
    [Google Scholar]
  41. ZhangX. NingT. WangH. XuS. YuH. LuoX. HaoC. WuB. MaD. Stathmin regulates the proliferation and odontoblastic/osteogenic differentiation of human dental pulp stem cells through Wnt/β-catenin signaling pathway.J. Proteomics201920210336410.1016/j.jprot.2019.04.01431009804
    [Google Scholar]
  42. BaranovaJ. BüchnerD. GötzW. SchulzeM. TobiaschE. Tooth formation: Are the hardest tissues of human body hard to regenerate?Int. J. Mol. Sci.20202111403110.3390/ijms2111403132512908
    [Google Scholar]
  43. LiL. ZhuY.Q. JiangL. PengW. RitchieH.H. Hypoxia promotes mineralization of human dental pulp cells.J. Endod.201137679980210.1016/j.joen.2011.02.02821787492
    [Google Scholar]
  44. ItoK. MatsuokaK. MatsuzakaK. MorinagaK. InoueT. Hypoxic condition promotes differentiation and mineralization of dental pulp cells in vivo.Int. Endod. J.201548211512310.1111/iej.1228824661255
    [Google Scholar]
  45. JiangL. PengW.W. LiL.F. DuR. WuT.T. ZhouZ.J. ZhaoJ.J. YangY. QuD.L. ZhuY.Q. Effects of deferoxamine on the repair ability of dental pulp cells in vitro.J. Endod.20144081100110410.1016/j.joen.2013.12.01625069915
    [Google Scholar]
  46. PasiewiczR. ValverdeY. NarayananR. KimJ.H. IrfanM. LeeN.S. GeorgeA. CooperL.F. AlapatiS.B. ChungS. C5a complement receptor modulates odontogenic dental pulp stem cell differentiation under hypoxia.Connect. Tissue Res.202263433934810.1080/03008207.2021.192469634030523
    [Google Scholar]
  47. ZhaoY. YuanX. LiuB. TuluU.S. HelmsJ.A. Wnt-responsive odontoblasts secrete new dentin after superficial tooth injury.J. Dent. Res.20189791047105410.1177/002203451876315129566345
    [Google Scholar]
  48. SteinhartZ. AngersS. Wnt signaling in development and tissue homeostasis.Development201814511dev14658910.1242/dev.14658929884654
    [Google Scholar]
  49. TokavanichN. WeinM.N. EnglishJ.D. OnoN. OnoW. The role of Wnt signaling in postnatal tooth root development.Front. Dent. Med2021276913410.3389/fdmed.2021.76913435782525
    [Google Scholar]
  50. NevesV.C.M. BabbR. ChandrasekaranD. SharpeP.T. Promotion of natural tooth repair by small molecule GSK3 antagonists.Sci. Rep.2017713965410.1038/srep3965428067250
    [Google Scholar]
  51. TanZ. HuangQ. ZangJ. TengS.F. ChenT.R. WeiH. SongD.W. LiuT.L. YangX.H. FuC.G. HuZ. ZhouW. YanW.J. XiaoJ.R. HIF-1α activates hypoxia-induced BCL-9 expression in human colorectal cancer cells.Oncotarget2017816258852589610.18632/oncotarget.883427121066
    [Google Scholar]
  52. XuW. ZhouW. ChengM. WangJ. LiuZ. HeS. LuoX. HuangW. ChenT. YanW. XiaoJ. Hypoxia activates Wnt/β-catenin signaling by regulating the expression of BCL9 in human hepatocellular carcinoma.Sci. Rep.2017714044610.1038/srep4044628074862
    [Google Scholar]
  53. AnthonyC.C. RobbinsD.J. AhmedY. LeeE. Nuclear regulation of Wnt/β-catenin signaling: It’s a complex situation.Genes202011888610.3390/genes1108088632759724
    [Google Scholar]
  54. OrikasaS. KawashimaN. TazawaK. HashimotoK. Sunada-NaraK. NodaS. FujiiM. AkiyamaT. OkijiT. Hypoxia-inducible factor 1α induces osteo/odontoblast differentiation of human dental pulp stem cells via Wnt/β-catenin transcriptional cofactor BCL9.Sci. Rep.202212168210.1038/s41598‑021‑04453‑835027586
    [Google Scholar]
  55. TangH. XuY. ZhangZ. ZengS. DongW. JiaoW. HuX. SDF-1/CXCR4 induces epithelial-mesenchymal transition through activation of the Wnt/β- catenin signaling pathway in rat chronic allograft nephropathy.Mol. Med. Rep.20191953696370610.3892/mmr.2019.1004530896799
    [Google Scholar]
  56. WuY. ZhouC. TongX. LiS. LiuJ. Histochemical localization of putative stem cells in irreversible pulpitis.Oral Dis.20222841207121410.1111/odi.1385033728761
    [Google Scholar]
  57. GongQ. QuanJ. JiangH. LingJ. Regulation of the stromal cell-derived factor-1alpha-CXCR4 axis in human dental pulp cells.J. Endod.20103691499150310.1016/j.joen.2010.05.01120728717
    [Google Scholar]
  58. SalhotraA. ShahH.N. LeviB. LongakerM.T. Mechanisms of bone development and repair.Nat. Rev. Mol. Cell Biol.2020211169671110.1038/s41580‑020‑00279‑w32901139
    [Google Scholar]
  59. KaukuaN. ShahidiM.K. KonstantinidouC. DyachukV. KauckaM. FurlanA. AnZ. WangL. HultmanI. Ährlund-RichterL. BlomH. BrismarH. LopesN.A. PachnisV. SuterU. CleversH. ThesleffI. SharpeP. ErnforsP. FriedK. AdameykoI. Glial origin of mesenchymal stem cells in a tooth model system.Nature2014513751955155410.1038/nature1353625079316
    [Google Scholar]
  60. Labedz-MaslowskaA. BryniarskaN. KubiakA. KaczmarzykT. Sekula-StryjewskaM. NogaS. BoruczkowskiD. MadejaZ. Zuba-SurmaE. Multilineage differentiation potential of human dental pulp stem cells-impact of 3d and hypoxic environment on osteogenesis in vitro.Int. J. Mol. Sci.20202117617210.3390/ijms2117617232859105
    [Google Scholar]
  61. ChenW. ZhuoY. DuanD. LuM. Effects of hypoxia on differentiation of mesenchymal stem cells.Curr. Stem Cell Res. Ther.202015433233910.2174/1574888X1466619082314492831441734
    [Google Scholar]
  62. TetiG. FocaroliS. SalvatoreV. MazzottiE. Ingra’L. MazzottiA. FalconiM. The hypoxia-mimetic agent cobalt chloride differently affects human mesenchymal stem cells in their chondrogenic potential.Stem Cells Int.201820181910.1155/2018/323725329731777
    [Google Scholar]
  63. WakiT. LeeS.Y. NiikuraT. IwakuraT. DogakiY. OkumachiE. OeK. KurodaR. KurosakaM. Profiling microRNA expression during fracture healing.BMC Musculoskelet. Disord.20161718310.1186/s12891‑016‑0931‑026879131
    [Google Scholar]
  64. FushimiS. NohnoT. NagatsukaH. KatsuyamaH. Involvement of miR-140-3p in Wnt3a and TGF β3 signaling pathways during osteoblast differentiation in MC 3T3-E1 cells.Genes Cells201823751752710.1111/gtc.1259129740905
    [Google Scholar]
  65. ZhengH. WangN. LiL. GeL. JiaH. FanZ. miR-140-3p enhanced the osteo/odontogenic differentiation of DPSCs via inhibiting KMT5B under hypoxia condition.Int. J. Oral Sci.20211314110.1038/s41368‑021‑00148‑y34876565
    [Google Scholar]
  66. WangJ. DongZ. ShengZ. CaiY. Hypoxia-induced PVT1 promotes lung cancer chemoresistance to cisplatin by autophagy via PVT1/miR-140-3p/ATG5 axis.Cell Death Discov.20228110410.1038/s41420‑022‑00886‑w35256612
    [Google Scholar]
  67. YangD. WangM. HuZ. MaY. ShiY. CaoX. GuoT. CaiH. CaiH. Extracorporeal cardiac shock wave-induced exosome derived from endothelial colony-forming cells carrying miR-140-3p alleviate cardiomyocyte hypoxia/reoxygenation injury via the PTEN/PI3K/AKT pathway.Front. Cell Dev. Biol.2022977993610.3389/fcell.2021.77993635083214
    [Google Scholar]
  68. YiM. LiY. WangD. ZhangQ. YangL. YangC. KCNQ1OT1 exacerbates ischemia-reperfusion injury through targeted inhibition of miR-140-3P.Inflammation20204351832184510.1007/s10753‑020‑01257‑232519270
    [Google Scholar]
  69. LiangS. RenK. LiB. LiF. LiangZ. HuJ. XuB. ZhangA. LncRNA SNHG1 alleviates hypoxia-reoxygenation-induced vascular endothelial cell injury as a competing endogenous RNA through the HIF-1α/VEGF signal pathway.Mol. Cell. Biochem.20204651-211110.1007/s11010‑019‑03662‑031792649
    [Google Scholar]
  70. ChenF. ChuL. LiJ. ShiY. XuB. GuJ. YaoX. TianM. YangX. SunX. Hypoxia induced changes in miRNAs and their target mRNAs in extracellular vesicles of esophageal squamous cancer cells.Thorac. Cancer202011357058010.1111/1759‑7714.1329531922357
    [Google Scholar]
  71. ZhangY. HaoZ. WangP. XiaY. WuJ. XiaD. FangS. XuS. Exosomes from human umbilical cord mesenchymal stem cells enhance fracture healing through HIF-1α-mediated promotion of angiogenesis in a rat model of stabilized fracture.Cell Prolif.2019522e1257010.1111/cpr.1257030663158
    [Google Scholar]
  72. MastrulloV. CatheryW. VelliouE. MadedduP. CampagnoloP. Angiogenesis in tissue engineering: As nature intended?Front. Bioeng. Biotechnol.2020818810.3389/fbioe.2020.0018832266227
    [Google Scholar]
  73. GrigoryanB. PaulsenS.J. CorbettD.C. SazerD.W. FortinC.L. ZaitaA.J. GreenfieldP.T. CalafatN.J. GounleyJ.P. TaA.H. JohanssonF. RandlesA. RosenkrantzJ.E. Louis-RosenbergJ.D. GalieP.A. StevensK.R. MillerJ.S. Multivascular networks and functional intravascular topologies within biocompatible hydrogels.Science2019364643945846410.1126/science.aav975031048486
    [Google Scholar]
  74. SiddiquiZ. SarkarB. KimK.K. KadincesmeN. PaulR. KumarA. KobayashiY. RoyA. ChoudhuryM. YangJ. ShimizuE. KumarV.A. Angiogenic hydrogels for dental pulp revascularization.Acta Biomater.202112610911810.1016/j.actbio.2021.03.00133689817
    [Google Scholar]
  75. NoorS.N.F.M. AzevedoM. MohamadH. AutefageH. Hypoxia-Mimicking bioactive glass regenerative effects on dental stem cells.TCC20161791102000910.1063/1.4968864
    [Google Scholar]
  76. AranhaA.M.F. ZhangZ. NeivaK.G. CostaC.A.S. HeblingJ. NörJ.E. Hypoxia enhances the angiogenic potential of human dental pulp cells.J. Endod.201036101633163710.1016/j.joen.2010.05.01320850667
    [Google Scholar]
  77. MatteiV. MartellucciS. PulciniF. SantilliF. SoriceM. Delle MonacheS. Regenerative potential of DPSCs and revascularization: Direct, paracrine or autocrine effect?Stem Cell Rev. Rep.20211751635164610.1007/s12015‑021‑10162‑633829353
    [Google Scholar]
  78. ZhouJ. SunC. SENP1/HIF-1α axis works in angiogenesis of human dental pulp stem cells.J. Biochem. Mol. Toxicol.2020343e2243610.1002/jbt.2243631953908
    [Google Scholar]
  79. MaqsoodM. KangM. WuX. ChenJ. TengL. QiuL. Adult mesenchymal stem cells and their exosomes: Sources, characteristics, and application in regenerative medicine.Life Sci.202025611800210.1016/j.lfs.2020.11800232585248
    [Google Scholar]
  80. MerckxG. HosseinkhaniB. KuypersS. DevilleS. IrobiJ. NelissenI. MichielsL. LambrichtsI. BronckaersA. Angiogenic effects of human dental pulp and bone marrow-derived mesenchymal stromal cells and their extracellular vesicles.Cells20209231210.3390/cells902031232012900
    [Google Scholar]
  81. HuangX. QiuW. PanY. LiJ. ChenZ. ZhangK. LuoY. WuB. XuW. Exosomes from LPS-stimulated hDPSCs activated the angiogenic potential of huvecs in vitro.Stem Cells Int.2021202111510.1155/2021/668530733936213
    [Google Scholar]
  82. ChenW.J. XieJ. LinX. OuM.H. ZhouJ. WeiX.L. ChenW.X. The role of small extracellular vesicles derived from lipopolysaccharide-preconditioned human dental pulp stem cells in dental pulp regeneration.J. Endod.202147696196910.1016/j.joen.2021.03.01033775732
    [Google Scholar]
  83. ZhouH. LiX. WuR.X. HeX.T. AnY. XuX.Y. SunH.H. WuL.A. ChenF.M. Periodontitis-compromised dental pulp stem cells secrete extracellular vesicles carrying miRNA-378a promote local angiogenesis by targeting Sufu to activate the Hedgehog/Gli1 signalling.Cell Prolif.2021545e1302610.1111/cpr.1302633759282
    [Google Scholar]
  84. LiB. XianX. LinX. HuangL. LiangA. JiangH. GongQ. Hypoxia alters the proteome profile and enhances the angiogenic potential of dental pulp stem cell-derived exosomes.Biomolecules202212457510.3390/biom1204057535454164
    [Google Scholar]
  85. de JongO.G. van der WaalsL.M. KoolsF.R.W. VerhaarM.C. van BalkomB.W.M. Lysyl oxidase-like 2 is a regulator of angiogenesis through modulation of endothelial-to-mesenchymal transition.J. Cell. Physiol.20192347102601026910.1002/jcp.2769530387148
    [Google Scholar]
  86. WangM. ZhaoX. ZhuD. LiuT. LiangX. LiuF. ZhangY. DongX. SunB. HIF-1α promoted vasculogenic mimicry formation in hepatocellular carcinoma through LOXL2 up-regulation in hypoxic tumor microenvironment.J. Exp. Clin. Cancer Res.20173616010.1186/s13046‑017‑0533‑128449718
    [Google Scholar]
  87. LiB. LiangA. ZhouY. HuangY. LiaoC. ZhangX. GongQ. Hypoxia preconditioned DPSC-derived exosomes regulate angiogenesis via transferring LOXL2.Exp. Cell Res.2023425211354310.1016/j.yexcr.2023.11354336894050
    [Google Scholar]
  88. Gonzalez-KingH. GarcíaN.A. Ontoria-OviedoI. CiriaM. MonteroJ.A. SepúlvedaP. Hypoxia inducible factor-1α potentiates jagged 1-mediated angiogenesis by mesenchymal stem cell- derived exosomes.Stem Cells20173571747175910.1002/stem.261828376567
    [Google Scholar]
  89. JayakumarT. LiuC.H. WuG.Y. LeeT.Y. ManuboluM. HsiehC.Y. YangC.H. SheuJ.R. Hinokitiol inhibits migration of A549 lung cancer cells via suppression of MMPs and induction of antioxidant enzymes and apoptosis.Int. J. Mol. Sci.201819493910.3390/ijms1904093929565268
    [Google Scholar]
  90. KimM.K. ParkH.J. KimY.D. RyuM.H. TakataT. BaeS.K. BaeM.K. Hinokitiol increases the angiogenic potential of dental pulp cells through ERK and p38MAPK activation and hypoxia-inducible factor-1α (HIF-1α) upregulation.Arch. Oral Biol.201459210211010.1016/j.archoralbio.2013.10.00924370180
    [Google Scholar]
  91. DissanayakaW.L. HanY. ZhangL. ZouT. ZhangC. Bcl-2 overexpression and hypoxia synergistically enhance angiogenic properties of dental pulp stem cells.Int. J. Mol. Sci.20202117615910.3390/ijms2117615932859045
    [Google Scholar]
  92. KuangR. ZhangZ. JinX. HuJ. ShiS. NiL. MaP.X. Nanofibrous spongy microspheres for the delivery of hypoxia-primed human dental pulp stem cells to regenerate vascularized dental pulp.Acta Biomater.20163322523410.1016/j.actbio.2016.01.03226826529
    [Google Scholar]
  93. ZhanC. HuangM. YangX. HouJ. Dental nerves: A neglected mediator of pulpitis.Int. Endod. J.2021541859910.1111/iej.1340032880979
    [Google Scholar]
  94. TakaokaS. UchidaF. IshikawaH. ToyomuraJ. OhyamaA. WatanabeM. MatsumuraH. MarushimaA. IizumiS. FukuzawaS. Ishibashi-KannoN. YamagataK. YanagawaT. MatsumaruY. BukawaH. Transplanted neural lineage cells derived from dental pulp stem cells promote peripheral nerve regeneration.Hum. Cell202235246247110.1007/s13577‑021‑00634‑934993901
    [Google Scholar]
  95. JanebodinK. HorstO.V. IeronimakisN. BalasundaramG. ReesukumalK. PratumvinitB. ReyesM. Isolation and characterization of neural crest-derived stem cells from dental pulp of neonatal mice.PLoS One2011611e2752610.1371/journal.pone.002752622087335
    [Google Scholar]
  96. MartellucciS. ManganelliV. SantacroceC. SantilliF. PiccoliL. SoriceM. MatteiV. Role of Prion protein-EGFR multimolecular complex during neuronal differentiation of human dental pulp-derived stem cells.Prion201812211712610.1080/19336896.2018.146379729644924
    [Google Scholar]
  97. XiaoL. IdeR. SaikiC. KumazawaY. OkamuraH. Human dental pulp cells differentiate toward neuronal cells and promote neuroregeneration in adult organotypic hippocampal slices in vitro.Int. J. Mol. Sci.2017188174510.3390/ijms1808174528800076
    [Google Scholar]
  98. LiD. ZouX.Y. El-AyachiI. RomeroL.O. YuZ. Iglesias-LinaresA. Cordero-MoralesJ.F. HuangG.T.J. Human dental pulp stem cells and gingival mesenchymal stem cells display action potential capacity in vitro after neuronogenic differentiation.Stem Cell Rev.2019151678110.1007/s12015‑018‑9854‑530324358
    [Google Scholar]
  99. Delle MonacheS. PulciniF. SantilliF. MartellucciS. SantacroceC. FabriziJ. AngelucciA. SoriceM. MatteiV. Hypoxia induces DPSC differentiation versus a neurogenic phenotype by the paracrine mechanism.Biomedicines2022105105610.3390/biomedicines1005105635625792
    [Google Scholar]
  100. HengB.C. LimL.W. WuW. ZhangC. An overview of protocols for the neural induction of dental and oral stem cells in vitro.Tissue Eng. Part B Rev.201622322025010.1089/ten.teb.2015.048826757369
    [Google Scholar]
  101. KumarS. VaidyaM. Hypoxia inhibits mesenchymal stem cell proliferation through HIF1α-dependent regulation of P27.Mol. Cell. Biochem.20164151-2293810.1007/s11010‑016‑2674‑526920732
    [Google Scholar]
  102. GuoX. MuH. YanS. WeiJ. Exploring the molecular disorder and dysfunction mechanism of human dental pulp cells under hypoxia by comprehensive multivariate analysis.Gene202073514433210.1016/j.gene.2020.14433231972310
    [Google Scholar]
  103. CalcinottoA. KohliJ. ZagatoE. PellegriniL. DemariaM. AlimontiA. Cellular senescence: Aging, cancer, and injury.Physiol. Rev.20199921047107810.1152/physrev.00020.201830648461
    [Google Scholar]
  104. HeS. SharplessN.E. Senescence in health and disease.Cell201716961000101110.1016/j.cell.2017.05.01528575665
    [Google Scholar]
  105. FraileM. EiroN. CostaL.A. MartínA. VizosoF.J. Aging and mesenchymal stem cells: Basic concepts, challenges and strategies.Biology20221111167810.3390/biology1111167836421393
    [Google Scholar]
  106. KamiyaT. CourtneyM. LaukkanenM.O. Redox-activated signal transduction pathways mediating cellular functions in inflammation, differentiation, degeneration, transformation, and death.Oxid. Med. Cell. Longev.201620161210.1155/2016/847971828101299
    [Google Scholar]
  107. ShadyabA.H. LaCroixA.Z. Genetic factors associated with longevity: A review of recent findings.Ageing Res. Rev.2015191710.1016/j.arr.2014.10.00525446805
    [Google Scholar]
  108. TurinettoV. VitaleE. GiachinoC. Senescence in human mesenchymal stem cells: Functional changes and implications in stem cell-based therapy.Int. J. Mol. Sci.2016177116410.3390/ijms1707116427447618
    [Google Scholar]
  109. LyaminaS. BaranovskiiD. KozhevnikovaE. IvanovaT. KalishS. SadekovT. KlabukovI. MaevI. GovorunV. Mesenchymal stromal cells as a driver of inflammaging.Int. J. Mol. Sci.2023247637210.3390/ijms2407637237047346
    [Google Scholar]
  110. van VlietT. Varela-EirinM. WangB. BorghesanM. BrandenburgS.M. FranzinR. EvangelouK. SeelenM. GorgoulisV. DemariaM. Physiological hypoxia restrains the senescence-associated secretory phenotype via AMPK-mediated mTOR suppression.Mol. Cell202181920412052.e610.1016/j.molcel.2021.03.01833823141
    [Google Scholar]
  111. MengH. WeiF. GeZ. JinJ. WangH. WangL. WuC. Long-term hypoxia inhibits the passage-dependent stemness decrease and senescence increase of human dental pulp stem cells.Tissue Cell20227610181910.1016/j.tice.2022.10181935594586
    [Google Scholar]
  112. YiQ. LiuO. YanF. LinX. DiaoS. WangL. JinL. WangS. LuY. FanZ. Analysis of senescence-related differentiation potentials and gene expression profiles in human dental pulp stem cells.Cells Tissues Organs2017203111110.1159/00044802627627434
    [Google Scholar]
  113. Argaez-SosaA.A. Rodas-JuncoB.A. Carrillo-CocomL.M. Rojas-HerreraR.A. Coral-SosaA. Aguilar-AyalaF.J. Aguilar-PérezD. Nic-CanG.I. Higher expression of DNA (de)methylation-related genes reduces adipogenicity in dental pulp stem cells.Front. Cell Dev. Biol.20221079166710.3389/fcell.2022.79166735281092
    [Google Scholar]
  114. WageggM. GaberT. LohanathaF.L. HahneM. StrehlC. FangradtM. TranC.L. SchönbeckK. HoffP. OdeA. PerkaC. DudaG.N. ButtgereitF. Hypoxia promotes osteogenesis but suppresses adipogenesis of human mesenchymal stromal cells in a hypoxia-inducible factor-1 dependent manner.PLoS One201279e4648310.1371/journal.pone.004648323029528
    [Google Scholar]
  115. ValoraniM.G. MontelaticiE. GermaniA. BiddleA. D’AlessandroD. StrolloR. PatriziM.P. LazzariL. NyeE. OttoW.R. PozzilliP. AlisonM.R. Pre-culturing human adipose tissue mesenchymal stem cells under hypoxia increases their adipogenic and osteogenic differentiation potentials.Cell Prolif.201245322523810.1111/j.1365‑2184.2012.00817.x22507457
    [Google Scholar]
  116. La NoceM. MeleL. TirinoV. PainoF. De RosaA. NaddeoP. PapagerakisP. PapaccioG. DesiderioV. Neural crest stem cell population in craniomaxillofacial development and tissue repair.Eur. Cell. Mater.20142834835710.22203/eCM.v028a2425350250
    [Google Scholar]
  117. ZhouY. FanW. XiaoY. The effect of hypoxia on the stemness and differentiation capacity of PDLC and DPC.BioMed Res. Int.201420141710.1155/2014/89067524701587
    [Google Scholar]
  118. TamaokiN. TakahashiK. TanakaT. IchisakaT. AokiH. Takeda-KawaguchiT. IidaK. KunisadaT. ShibataT. YamanakaS. TezukaK. Dental pulp cells for induced pluripotent stem cell banking.J. Dent. Res.201089877377810.1177/002203451036684620554890
    [Google Scholar]
  119. Y BaenaA.R. CasascoA. MontiM. Hypes and hopes of stem cell therapies in dentistry: A review.Stem Cell Rev. Rep.20221841294130810.1007/s12015‑021‑10326‑435015212
    [Google Scholar]
  120. GaoP. LiuS. WangX. IkeyaM. Dental applications of induced pluripotent stem cells and their derivatives.Jpn. Dent. Sci. Rev.20225816217110.1016/j.jdsr.2022.03.00235516907
    [Google Scholar]
  121. AndradeA.C. WolfM. BinderH.M. GomesF.G. MansteinF. Ebner-PekingP. PoupardinR. ZweigerdtR. SchallmoserK. StrunkD. Hypoxic conditions promote the angiogenic potential of human induced pluripotent stem cell-derived extracellular vesicles.Int. J. Mol. Sci.2021228389010.3390/ijms2208389033918735
    [Google Scholar]
  122. IidaK. Takeda-KawaguchiT. HadaM. YuriguchiM. AokiH. TamaokiN. HatakeyamaD. KunisadaT. ShibataT. TezukaK. Hypoxia-enhanced derivation of iPSCs from human dental pulp cells.J. Dent. Res.2013921090591010.1177/002203451350220423962749
    [Google Scholar]
  123. PodkalickaP. StępniewskiJ. MuchaO. Kachamakova-TrojanowskaN. DulakJ. ŁobodaA. Hypoxia as a driving force of pluripotent stem cell reprogramming and differentiation to endothelial cells.Biomolecules20201012161410.3390/biom1012161433260307
    [Google Scholar]
  124. SaitoS. LinY.C. TsaiM.H. LinC.S. MurayamaY. SatoR. YokoyamaK.K. Emerging roles of hypoxia-inducible factors and reactive oxygen species in cancer and pluripotent stem cells.Kaohsiung J. Med. Sci.201531627928610.1016/j.kjms.2015.03.00226043406
    [Google Scholar]
  125. YasuiT. NakashimaK. Hypoxia epigenetically bestows astrocytic differentiation potential on human pluripotent cell-derived neural stem/precursor cells.Jpn. J. Pharmacol.20191532546010.1254/fpj.153.5430745514
    [Google Scholar]
  126. HuangG.T.J. Pulp and dentin tissue engineering and regeneration: Current progress.Regen. Med.20094569770710.2217/rme.09.4519761395
    [Google Scholar]
  127. CvekM. Prognosis of luxated non-vital maxillary incisors treated with calcium hydroxide and filled with gutta-percha. A retrospective clinical study.Dent. Traumatol.199282455510.1111/j.1600‑9657.1992.tb00228.x1521505
    [Google Scholar]
  128. DammaschkeT. StevenD. KaupM. OttK. Long-term survival of root-canal-treated teeth: A retrospective study over 10 years.J. Endod.2003291063864310.1097/00004770‑200310000‑0000614606785
    [Google Scholar]
  129. JungC. KimS. SunT. ChoY.B. SongM. Pulp-dentin regeneration: Current approaches and challenges.J. Tissue Eng.20191010.1177/204173141881926330728935
    [Google Scholar]
  130. HondaM. OhshimaH. Biological characteristics of dental pulp stem cells and their potential use in regenerative medicine.J. Oral Biosci./ JAOB, Jpn. Assoc. Oral Biol.2022641263610.1016/j.job.2022.01.00235031479
    [Google Scholar]
  131. ChenH FuHC WuX Regeneration of pulpo-dentinal-like complex by a group of unique multipotent CD24a+ stem cellsSci. Adv.2020615eaay151410.1126/sciadv.aay1514
    [Google Scholar]
  132. ZayedM. IoharaK. WatanabeH. IshikawaM. TominagaM. NakashimaM. Characterization of stable hypoxia-preconditioned dental pulp stem cells compared with mobilized dental pulp stem cells for application for pulp regenerative therapy.Stem Cell Res. Ther.202112130210.1186/s13287‑021‑02240‑w34051821
    [Google Scholar]
  133. HolmesD. Non-union bone fracture: A quicker fix.Nature20175507677S19310.1038/550S193a29069072
    [Google Scholar]
  134. SeemanE. DelmasP.D. Bone quality-The material and structural basis of bone strength and fragility.N. Engl. J. Med.2006354212250226110.1056/NEJMra05307716723616
    [Google Scholar]
  135. LaneN.E. Epidemiology, etiology, and diagnosis of osteoporosis.Am. J. Obstet. Gynecol.20061942Suppl.S3S1110.1016/j.ajog.2005.08.04716448873
    [Google Scholar]
  136. DudaG.N. GeisslerS. ChecaS. TsitsilonisS. PetersenA. Schmidt-BleekK. The decisive early phase of bone regeneration.Nat. Rev. Rheumatol.2023192789510.1038/s41584‑022‑00887‑036624263
    [Google Scholar]
  137. WheatleyBM NappoKE ChristensenDL Effect of NSAIDs on bone healing rates: A meta-analysis.J. Am. Acad. Orthop. Surg.2019277e330e336
    [Google Scholar]
  138. JiaoH. XiaoE. GravesD.T. Diabetes and its effect on bone and fracture healing.Curr. Osteoporos. Rep.201513532733510.1007/s11914‑015‑0286‑826254939
    [Google Scholar]
  139. NewmanH. ShihY.V. VargheseS. Resolution of inflammation in bone regeneration: From understandings to therapeutic applications.Biomaterials202127712111410.1016/j.biomaterials.2021.12111434488119
    [Google Scholar]
  140. BahneyC.S. ZondervanR.L. AllisonP. TheologisA. AshleyJ.W. AhnJ. MiclauT. MarcucioR.S. HankensonK.D. Cellular biology of fracture healing.J. Orthop. Res.2019371355010.1002/jor.2417030370699
    [Google Scholar]
  141. ClarkD. NakamuraM. MiclauT. MarcucioR. Effects of aging on fracture healing.Curr. Osteoporos. Rep.201715660160810.1007/s11914‑017‑0413‑929143915
    [Google Scholar]
  142. WeckbachS. HohmannC. BraumuellerS. DenkS. KlohsB. StahelP.F. GebhardF. Huber-LangM.S. PerlM. Inflammatory and apoptotic alterations in serum and injured tissue after experimental polytrauma in mice.J. Trauma Acute Care Surg.201374248949810.1097/TA.0b013e31827d5f1b23354243
    [Google Scholar]
  143. BremH. Tomic-CanicM. Cellular and molecular basis of wound healing in diabetes.J. Clin. Invest.200711751219122210.1172/JCI3216917476353
    [Google Scholar]
  144. ZuraR. XiongZ. EinhornT. WatsonJ.T. OstrumR.F. PraysonM.J. Della RoccaG.J. MehtaS. McKinleyT. WangZ. SteenR.G. Epidemiology of fracture nonunion in 18 human bones.JAMA Surg.201615111e16277510.1001/jamasurg.2016.277527603155
    [Google Scholar]
  145. ImanishiY. HataM. MatsukawaR. AoyagiA. OmiM. MizutaniM. NaruseK. OzawaS. HondaM. MatsubaraT. TakebeJ. Efficacy of extracellular vesicles from dental pulp stem cells for bone regeneration in rat calvarial bone defects.Inflamm. Regen.20214111210.1186/s41232‑021‑00163‑w33853679
    [Google Scholar]
  146. LeeA.E. ChoiJ.G. ShiS.H. HeP. ZhangQ.Z. LeA.D. DPSC-derived extracellular vesicles promote rat jawbone regeneration.J. Dent. Res.2023102331332110.1177/0022034522113371636348514
    [Google Scholar]
  147. Hernández-MonjarazB. Santiago-OsorioE. Monroy-GarcíaA. Ledesma-MartínezE. Mendoza-NúñezV. Mesenchymal stem cells of dental origin for inducing tissue regeneration in periodontitis: A mini-review.Int. J. Mol. Sci.201819494410.3390/ijms1904094429565801
    [Google Scholar]
  148. LinC.Y. TsaiM.S. KuoP.J. ChinY.T. WengI.T. WuY. HuangH.M. HsiungC.N. LinH.Y. LeeS.Y. 2,3,5,4′-Tetrahydroxystilbene-2-O-β-d-glucoside promotes the effects of dental pulp stem cells on rebuilding periodontal tissues in experimental periodontal defects.J. Periodontol.202192230631610.1002/JPER.19‑056332790879
    [Google Scholar]
  149. ShenZ. KuangS. ZhangY. YangM. QinW. ShiX. LinZ. Chitosan hydrogel incorporated with dental pulp stem cell-derived exosomes alleviates periodontitis in mice via a macrophage-dependent mechanism.Bioact. Mater.2020541113112610.1016/j.bioactmat.2020.07.00232743122
    [Google Scholar]
  150. Ledesma-MartínezE. Mendoza-NúñezV.M. Santiago-OsorioE. Mesenchymal stem cells for periodontal tissue regeneration in elderly patients.J. Gerontol. A Biol. Sci. Med. Sci.20197491351135810.1093/gerona/gly22730289440
    [Google Scholar]
  151. RanR. YangH. CaoY. YanW. JinL. ZhengY. Depletion of EREG enhances the osteo/dentinogenic differentiation ability of dental pulp stem cells via the p38 MAPK and Erk pathways in an inflammatory microenvironment.BMC Oral Health202121131410.1186/s12903‑021‑01675‑034154572
    [Google Scholar]
  152. FujioM. XingZ. SharabiN. XueY. YamamotoA. HibiH. UedaM. FristadI. MustafaK. Conditioned media from hypoxic-cultured human dental pulp cells promotes bone healing during distraction osteogenesis.J. Tissue Eng. Regen. Med.20171172116212610.1002/term.210926612624
    [Google Scholar]
  153. TehS.W. KohA.E.H. TongJ.B. WuX. SamrotA.V. RampalS. MokP.L. SubbiahS.K. Hypoxia in bone and oxygen releasing biomaterials in fracture treatments using mesenchymal stem cell therapy: A review.Front. Cell Dev. Biol.2021963413110.3389/fcell.2021.63413134490233
    [Google Scholar]
  154. TaoJ. MiaoR. LiuG. QiuX. YangB. TanX. LiuL. LongJ. TangW. JingW. Spatiotemporal correlation between HIF -1α and bone regeneration.FASEB J.20223610e2252010.1096/fj.202200329RR36065633
    [Google Scholar]
  155. CollignonA.M. LesieurJ. AnizanN. AzzounaR.B. PoliardA. GorinC. LetourneurD. ChaussainC. RouzetF. RochefortG.Y. Early angiogenesis detected by PET imaging with 64Cu-NODAGA-RGD is predictive of bone critical defect repair.Acta Biomater.20188211112110.1016/j.actbio.2018.10.00830312778
    [Google Scholar]
  156. WuY. HuangF. ZhouX. YuS. TangQ. LiS. WangJ. ChenL. Hypoxic preconditioning enhances dental pulp stem cell therapy for infection-caused bone destruction.Tissue Eng. Part A20162219-201191120310.1089/ten.tea.2016.008627586636
    [Google Scholar]
  157. DuH. LiB. YuR. LuX. LiC. ZhangH. YangF. ZhaoR. BaoW. YinX. WangY. ZhouJ. XuJ. ETV2 regulating PHD2-HIF-1α axis controls metabolism reprogramming promotes vascularized bone regeneration.Bioact. Mater.20243722223810.1016/j.bioactmat.2024.02.01438549772
    [Google Scholar]
  158. KangM. HuangC.C. GajendrareddyP. LuY. ShiraziS. RavindranS. CooperL.F. Extracellular vesicles from TNFα preconditioned mscs: Effects on immunomodulation and bone regeneration.Front. Immunol.20221387819410.3389/fimmu.2022.87819435585987
    [Google Scholar]
  159. TianJ. ChenW. XiongY. LiQ. KongS. LiM. PangC. QiuY. XuZ. GongQ. WeiX. Small extracellular vesicles derived from hypoxic preconditioned dental pulp stem cells ameliorate inflammatory osteolysis by modulating macrophage polarization and osteoclastogenesis.Bioact. Mater.20232232634210.1016/j.bioactmat.2022.10.00136311048
    [Google Scholar]
  160. PeñaF. RamirezJ.M. Hypoxia-induced changes in neuronal network properties.Mol. Neurobiol.200532325128410.1385/MN:32:3:25116385141
    [Google Scholar]
  161. ZhaoM. ZhuP. FujinoM. ZhuangJ. GuoH. SheikhI. ZhaoL. LiX.K. Oxidative stress in hypoxic-ischemic encephalopathy: Molecular mechanisms and therapeutic strategies.Int. J. Mol. Sci.20161712207810.3390/ijms1712207827973415
    [Google Scholar]
  162. RanR. XuH. LuA. BernaudinM. SharpF.R. Hypoxia preconditioning in the brain.Dev. Neurosci.2005272-4879210.1159/00008597916046841
    [Google Scholar]
  163. NgM.T.L. StammersA.T. KwonB.K. Vascular disruption and the role of angiogenic proteins after spinal cord injury.Transl. Stroke Res.20112447449110.1007/s12975‑011‑0109‑x22448202
    [Google Scholar]
  164. WhetstoneW.D. HsuJ.Y.C. EisenbergM. WerbZ. Noble-HaeussleinL.J. Blood-spinal cord barrier after spinal cord injury: Relation to revascularization and wound healing.J. Neurosci. Res.200374222723910.1002/jnr.1075914515352
    [Google Scholar]
  165. XiaoF. GuoY. DengJ. YuanF. XiaoY. HuiL. LiY. HuZ. ZhouY. LiK. HanX. FangQ. JiaW. ChenY. YingH. ZhaiQ. ChenS. GuoF. Hepatic c-Jun regulates glucose metabolism via FGF21 and modulates body temperature through the neural signals.Mol. Metab.20192013814810.1016/j.molmet.2018.12.00330579932
    [Google Scholar]
  166. LiY. Lucas-OsmaA.M. BlackS. BandetM.V. StephensM.J. VavrekR. SanelliL. FenrichK.K. Di NarzoA.F. DrachevaS. WinshipI.R. FouadK. BennettD.J. Pericytes impair capillary blood flow and motor function after chronic spinal cord injury.Nat. Med.201723673374110.1038/nm.433128459438
    [Google Scholar]
  167. ZhuS. ChenM. DengL. ZhangJ. NiW. WangX. YaoF. LiX. XuH. XuJ. XiaoJ. The repair and autophagy mechanisms of hypoxia-regulated bFGF-modified primary embryonic neural stem cells in spinal cord injury.Stem Cells Transl. Med.20209560361910.1002/sctm.19‑028232027101
    [Google Scholar]
  168. LiuW. RongY. WangJ. ZhouZ. GeX. JiC. JiangD. GongF. LiL. ChenJ. ZhaoS. KongF. GuC. FanJ. CaiW. Exosome-shuttled miR-216a-5p from hypoxic preconditioned mesenchymal stem cells repair traumatic spinal cord injury by shifting microglial M1/M2 polarization.J. Neuroinflammation20201714710.1186/s12974‑020‑1726‑732019561
    [Google Scholar]
  169. ZhangH. LiD. ZhangY. LiJ. MaS. ZhangJ. XiongY. WangW. LiN. XiaL. Knockdown of lncRNA BDNF-AS suppresses neuronal cell apoptosis via downregulating miR-130b-5p target gene PRDM5 in acute spinal cord injury.RNA Biol.201815811010.1080/15476286.2018.149333329995562
    [Google Scholar]
  170. LeeH. LeeH.Y. LeeB.E. GerovskaD. ParkS.Y. ZaehresH. Araúzo-BravoM.J. KimJ.I. HaY. SchölerH.R. KimJ.B. Sequentially induced motor neurons from human fibroblasts facilitate locomotor recovery in a rodent spinal cord injury model.eLife20209e5206910.7554/eLife.5206932571478
    [Google Scholar]
  171. YangX. LiL. XiaoL. ZhangD. Recycle the dental fairy’s package: Overview of dental pulp stem cells.Stem Cell Res. Ther.20189134710.1186/s13287‑018‑1094‑830545418
    [Google Scholar]
  172. ShiX. MaoJ. LiuY. Pulp stem cells derived from human permanent and deciduous teeth: Biological characteristics and therapeutic applications.Stem Cells Transl. Med.20209444546410.1002/sctm.19‑039831943813
    [Google Scholar]
  173. WangD. WangY. TianW. PanJ. Advances of tooth-derived stem cells in neural diseases treatments and nerve tissue regeneration.Cell Prolif.2019523e1257210.1111/cpr.1257230714230
    [Google Scholar]
  174. YangC. LiX. SunL. GuoW. TianW. Potential of human dental stem cells in repairing the complete transection of rat spinal cord.J. Neural Eng.201714202600510.1088/1741‑2552/aa596b28085005
    [Google Scholar]
  175. YamamotoA. SakaiK. MatsubaraK. KanoF. UedaM. Multifaceted neuro-regenerative activities of human dental pulp stem cells for functional recovery after spinal cord injury.Neurosci. Res.201478162010.1016/j.neures.2013.10.01024252618
    [Google Scholar]
  176. KirályM. KádárK. HorváthyD.B. NardaiP. RáczG.Z. LaczaZ. VargaG. GerberG. Integration of neuronally predifferentiated human dental pulp stem cells into rat brain in vivo.Neurochem. Int.201159337138110.1016/j.neuint.2011.01.00621219952
    [Google Scholar]
  177. SongM. JueS.S. ChoY.A. KimE.C. Comparison of the effects of human dental pulp stem cells and human bone marrow-derived mesenchymal stem cells on ischemic human astrocytes in vitro.J. Neurosci. Res.201593697398310.1002/jnr.2356925663284
    [Google Scholar]
  178. YangY. LeeE.H. YangZ. Hypoxia-conditioned mesenchymal stem cells in tissue regeneration application.Tissue Eng. Part B Rev.202228596697710.1089/ten.teb.2021.014534569290
    [Google Scholar]
  179. AhmadiF. SalmasiZ. MojaradM. EslahiA. Tayarani-NajaranZ. G-CSF augments the neuroprotective effect of conditioned medium of dental pulp stem cells against hypoxic neural injury in SH-SY5Y cells.Iran. J. Basic Med. Sci.202124121743175210.22038/IJBMS.2021.60217.1334435432810
    [Google Scholar]
  180. MeadB. LoganA. BerryM. LeadbeaterW. SchevenB.A. Concise review: Dental pulp stem cells: A novel cell therapy for retinal and central nervous system repair.Stem Cells2017351616710.1002/stem.239827273755
    [Google Scholar]
  181. ZhuS. YingY. HeY. ZhongX. YeJ. HuangZ. ChenM. WuQ. ZhangY. XiangZ. TuY. YingW. XiaoJ. LiX. YeQ. WangZ. Hypoxia response element-directed expression of bFGF in dental pulp stem cells improve the hypoxic environment by targeting pericytes in SCI rats.Bioact. Mater.2021682452246610.1016/j.bioactmat.2021.01.02433553827
    [Google Scholar]
  182. FangC. YangY. WangQ. YaoY. ZhangX. HeX. Intraventricular injection of human dental pulp stem cells improves hypoxic-ischemic brain damage in neonatal rats.PLoS One201386e6674810.1371/journal.pone.006674823799131
    [Google Scholar]
  183. RathboneM.P. MiddlemissP.J. GysbersJ.W. AndrewC. HermanM.A.R. ReedJ.K. CiccarelliR. Di IorioP. CaciagliF. Trophic effects of purines in neurons and glial cells.Prog. Neurobiol.199959666369010.1016/S0301‑0082(99)00017‑910845757
    [Google Scholar]
  184. AbeK. SaitoH. Effects of basic fibroblast growth factor on central nervous system functions.Pharmacol. Res.200143430731210.1006/phrs.2000.079411352534
    [Google Scholar]
  185. SunD. WangW. WangX. WangY. XuX. PingF. DuY. JiangW. CuiD. bFGF plays a neuroprotective role by suppressing excessive autophagy and apoptosis after transient global cerebral ischemia in rats.Cell Death Dis.20189217210.1038/s41419‑017‑0229‑729416039
    [Google Scholar]
  186. LeeJ. KotliarovaS. KotliarovY. LiA. SuQ. DoninN.M. PastorinoS. PurowB.W. ChristopherN. ZhangW. ParkJ.K. FineH.A. Tumor stem cells derived from glioblastomas cultured in bFGF and EGF more closely mirror the phenotype and genotype of primary tumors than do serum- cultured cell lines.Cancer Cell20069539140310.1016/j.ccr.2006.03.03016697959
    [Google Scholar]
  187. CodriciE. EnciuA.M. PopescuI.D. MihaiS. TanaseC. Glioma stem cells and their microenvironments: Providers of challenging therapeutic targets.Stem Cells Int.2016201612010.1155/2016/572843826977157
    [Google Scholar]
  188. PuttiR. MigliaccioV. SicaR. LionettiL. Skeletal muscle mitochondrial bioenergetics and morphology in high fat diet induced obesity and insulin resistance: Focus on dietary fat source.Front. Physiol.2016642610.3389/fphys.2015.0042626834644
    [Google Scholar]
  189. FavierF.B. BrittoF.A. FreyssenetD.G. BigardX.A. BenoitH. HIF-1-driven skeletal muscle adaptations to chronic hypoxia: Molecular insights into muscle physiology.Cell. Mol. Life Sci.201572244681469610.1007/s00018‑015‑2025‑926298291
    [Google Scholar]
  190. TsaiC.F. YangS.F. LoC.H. ChuH.J. UengK.C. Role of the ROS-JNK signaling pathway in hypoxia-induced atrial fibrotic responses in hl-1 cardiomyocytes.Int. J. Mol. Sci.2021226324910.3390/ijms2206324933806765
    [Google Scholar]
  191. ÁbrigoJ. ElorzaA.A. RiedelC.A. VilosC. SimonF. CabreraD. EstradaL. Cabello-VerrugioC. Role of oxidative stress as key regulator of muscle wasting during cachexia.Oxid. Med. Cell. Longev.2018201811710.1155/2018/206317929785242
    [Google Scholar]
  192. JaitovichA. BarreiroE. Skeletal muscle dysfunction in chronic obstructive pulmonary disease. What we know and can do for our patients.Am. J. Respir. Crit. Care Med.2018198217518610.1164/rccm.201710‑2140CI29554438
    [Google Scholar]
  193. ChaudharyP. SharmaY.K. SharmaS. SinghS.N. SuryakumarG. High altitude mediated skeletal muscle atrophy: Protective role of curcumin.Biochimie201915613814710.1016/j.biochi.2018.10.01230347230
    [Google Scholar]
  194. Nitahara-KasaharaY. KuraokaM. GuillermoP.H. Hayashita-KinohH. MaruokaY. Nakamura-TakahasiA. KimuraK. TakedaS. OkadaT. Dental pulp stem cells can improve muscle dysfunction in animal models of Duchenne muscular dystrophy.Stem Cell Res. Ther.20211217810.1186/s13287‑020‑02099‑333494794
    [Google Scholar]
  195. GandiaC. ArmiñanA. García-VerdugoJ.M. LledóE. RuizA. MiñanaM.D. Sanchez-TorrijosJ. PayáR. MirabetV. Carbonell-UberosF. LlopM. MonteroJ.A. SepúlvedaP. Human dental pulp stem cells improve left ventricular function, induce angiogenesis, and reduce infarct size in rats with acute myocardial infarction.Stem Cells200826363864510.1634/stemcells.2007‑048418079433
    [Google Scholar]
  196. JiangW. WangD. AlraiesA. LiuQ. ZhuB. SloanA.J. NiL. SongB. Wnt-GSK3β/β-catenin regulates the differentiation of dental pulp stem cells into bladder smooth muscle cells.Stem Cells Int.2019201911310.1155/2019/890757030809265
    [Google Scholar]
  197. HaJ. BhartiD. KangY.H. LeeS.Y. OhS.J. KimS.B. JoC.H. SonJ.H. SungI.Y. ChoY.C. RhoG.J. ParkJ.K. Human dental pulp-derived mesenchymal stem cell potential to differentiate into smooth muscle- like cells in vitro.BioMed Res. Int.2021202111310.1155/2021/885841233553433
    [Google Scholar]
  198. LiD. DengT. LiH. LiY. MiR-143 and miR-135 inhibitors treatment induces skeletal myogenic differentiation of human adult dental pulp stem cells.Arch. Oral Biol.201560111613161710.1016/j.archoralbio.2015.08.01026351742
    [Google Scholar]
  199. ZhangW. YuL. HanX. PanJ. DengJ. ZhuL. LuY. HuangW. LiuS. LiQ. LiuY. The secretome of human dental pulp stem cells protects myoblasts from hypoxia-induced injury via the Wnt/β-catenin pathway.Int. J. Mol. Med.20204551501151310.3892/ijmm.2020.452532323739
    [Google Scholar]
  200. HaybarH. KhodadiE. ShahrabiS. Wnt/β-catenin in ischemic myocardium: Interactions and signaling pathways as a therapeutic target.Heart Fail. Rev.201924341141910.1007/s10741‑018‑9759‑z30539334
    [Google Scholar]
  201. CisternasP. HenriquezJ.P. BrandanE. InestrosaN.C. Wnt signaling in skeletal muscle dynamics: Myogenesis, neuromuscular synapse and fibrosis.Mol. Neurobiol.201449157458910.1007/s12035‑013‑8540‑524014138
    [Google Scholar]
  202. GirardiF. Le GrandF. Wnt signaling in skeletal muscle development and regeneration.Prog. Mol. Biol. Transl. Sci.201815315717910.1016/bs.pmbts.2017.11.02629389515
    [Google Scholar]
  203. LiQ. XuY. LvK. WangY. ZhongZ. XiaoC. ZhuK. NiC. WangK. KongM. LiX. FanY. ZhangF. ChenQ. LiY. LiQ. LiuC. ZhuJ. ZhongS. WangJ. ChenY. ZhaoJ. ZhuD. WuR. ChenJ. ZhuW. YuH. ArdehaliR. ZhangJ.J. WangJ. HuX. Small extracellular vesicles containing miR-486-5p promote angiogenesis after myocardial infarction in mice and nonhuman primates.Sci. Transl. Med.202113584eabb020210.1126/scitranslmed.abb020233692129
    [Google Scholar]
  204. Sánchez-SánchezR. Gómez-FerrerM. ReinalI. BuiguesM. Villanueva-BádenasE. Ontoria-OviedoI. HernándizA. González-KingH. Peiró-MolinaE. DorronsoroA. SepúlvedaP. miR-4732-3p in extracellular vesicles from mesenchymal stromal cells is cardioprotective during myocardial ischemia.Front. Cell Dev. Biol.2021973414310.3389/fcell.2021.73414334532322
    [Google Scholar]
  205. Sánchez-SánchezR. ReinalI. Peiró-MolinaE. BuiguesM. TejedorS. HernándizA. SelvaM. HervásD. CañadaA.J. DorronsoroA. SantaballaA. SalvadorC. CaimentF. KleinjansJ. Martínez-DolzL. MoscosoI. LageR. González-JuanateyJ.R. PanaderoJ. Aparicio-PuertaE. BernadA. SepúlvedaP. MicroRNA-4732-3p is dysregulated in breast cancer patients with cardiotoxicity, and its therapeutic delivery protects the heart from doxorubicin-induced oxidative stress in rats.Antioxidants20221110195510.3390/antiox1110195536290678
    [Google Scholar]
  206. EnglishK. RyanJ.M. TobinL. MurphyM.J. BarryF.P. MahonB.P. Cell contact, prostaglandin E2 and transforming growth factor beta 1 play non-redundant roles in human mesenchymal stem cell induction of CD4+CD25 high forkhead box P3+ regulatory T cells.Clin. Exp. Immunol.2009156114916010.1111/j.1365‑2249.2009.03874.x19210524
    [Google Scholar]
  207. MeiselR. ZibertA. LaryeaM. GöbelU. DäubenerW. DillooD. Human bone marrow stromal cells inhibit allogeneic T-cell responses by indoleamine 2,3-dioxygenase–mediated tryptophan degradation.Blood2004103124619462110.1182/blood‑2003‑11‑390915001472
    [Google Scholar]
  208. AggarwalS. PittengerM.F. Human mesenchymal stem cells modulate allogeneic immune cell responses.Blood200510541815182210.1182/blood‑2004‑04‑155915494428
    [Google Scholar]
  209. FigueroaF.E. CarriónF. VillanuevaS. KhouryM. Mesenchymal stem cell treatment for autoimmune diseases: A critical review.Biol. Res.201245326927710.4067/S0716‑9760201200030000823283436
    [Google Scholar]
  210. NémethK. LeelahavanichkulA. YuenP.S.T. MayerB. ParmeleeA. DoiK. RobeyP.G. LeelahavanichkulK. KollerB.H. BrownJ.M. HuX. JelinekI. StarR.A. MezeyÉ. Bone marrow stromal cells attenuate sepsis via prostaglandin E2–dependent reprogramming of host macrophages to increase their interleukin-10 production.Nat. Med.2009151424910.1038/nm.190519098906
    [Google Scholar]
  211. AbumareeM.H. Al JumahM.A. KalionisB. JawdatD. Al KhaldiA. AbomarayF.M. FataniA.S. ChamleyL.W. KnawyB.A. Human placental mesenchymal stem cells (pMSCs) play a role as immune suppressive cells by shifting macrophage differentiation from inflammatory M1 to anti-inflammatory M2 macrophages.Stem Cell Rev.20139562064110.1007/s12015‑013‑9455‑223812784
    [Google Scholar]
  212. RasmussonI. RingdénO. SundbergB. Le BlancK. Mesenchymal stem cells inhibit the formation of cytotoxic T lymphocytes, but not activated cytotoxic T lymphocytes or natural killer cells.Transplantation20037681208121310.1097/01.TP.0000082540.43730.8014578755
    [Google Scholar]
  213. SpaggiariG.M. CapobiancoA. BecchettiS. MingariM.C. MorettaL. Mesenchymal stem cell-natural killer cell interactions: Evidence that activated NK cells are capable of killing MSCs, whereas MSCs can inhibit IL-2-induced NK-cell proliferation.Blood200610741484149010.1182/blood‑2005‑07‑277516239427
    [Google Scholar]
  214. ChenL. XuY. ZhaoJ. ZhangZ. YangR. XieJ. LiuX. QiS. Conditioned medium from hypoxic bone marrow-derived mesenchymal stem cells enhances wound healing in mice.PLoS One201494e9616110.1371/journal.pone.009616124781370
    [Google Scholar]
  215. JiangC.M. LiuJ. ZhaoJ.Y. XiaoL. AnS. GouY.C. QuanH.X. ChengQ. ZhangY.L. HeW. WangY.T. YuW.J. HuangY.F. YiY.T. ChenY. WangJ. Effects of hypoxia on the immunomodulatory properties of human gingiva-derived mesenchymal stem cells.J. Dent. Res.2015941697710.1177/002203451455767125403565
    [Google Scholar]
  216. Roemeling-van RhijnM. MensahF.K.F. KorevaarS.S. LeijsM.J. van OschG.J.V.M. IJzermansJ.N.M. BetjesM.G.H. BaanC.C. WeimarW. HoogduijnM.J. Effects of hypoxia on the immunomodulatory properties of adipose tissue-derived mesenchymal stem cells.Front. Immunol.2013420310.3389/fimmu.2013.0020323882269
    [Google Scholar]
  217. LiY. DuanX. ChenY. LiuB. ChenG. Dental stem cell-derived extracellular vesicles as promising therapeutic agents in the treatment of diseases.Int. J. Oral Sci.2022141210.1038/s41368‑021‑00152‑234980877
    [Google Scholar]
  218. MartinezV.G. Ontoria-OviedoI. RicardoC.P. HardingS.E. SacedonR. VarasA. ZapataA. SepulvedaP. VicenteA. Overexpression of hypoxia-inducible factor 1 alpha improves immunomodulation by dental mesenchymal stem cells.Stem Cell Res. Ther.20178120810.1186/s13287‑017‑0659‑228962641
    [Google Scholar]
  219. Gómez-FerrerM. Villanueva-BadenasE. Sánchez-SánchezR. Sánchez-LópezC.M. BaqueroM.C. SepúlvedaP. DorronsoroA. HIF-1α and pro-inflammatory signaling improves the immunomodulatory activity of MSC-derived extracellular vesicles.Int. J. Mol. Sci.2021227341610.3390/ijms2207341633810359
    [Google Scholar]
  220. BuY. ShihK.C. TongL. The ocular surface and diabetes, the other 21st century epidemic.Exp. Eye Res.202222010909910.1016/j.exer.2022.10909935508213
    [Google Scholar]
  221. MemonB. AbdelalimE.M. Stem cell therapy for diabetes: Beta cells versus pancreatic progenitors.Cells20209228310.3390/cells902028331979403
    [Google Scholar]
  222. BourgeoisS. SawataniT. van MuldersA. De LeuN. HeremansY. HeimbergH. CnopM. StaelsW. Towards a functional cure for diabetes using stem cell-derived beta cells: Are we there yet?Cells202110119110.3390/cells1001019133477961
    [Google Scholar]
  223. SneddonJ.B. TangQ. StockP. BluestoneJ.A. RoyS. DesaiT. HebrokM. Stem cell therapies for treating diabetes: Progress and remaining challenges.Cell Stem Cell201822681082310.1016/j.stem.2018.05.01629859172
    [Google Scholar]
  224. MeltonD. The promise of stem cell-derived islet replacement therapy.Diabetologia20216451030103610.1007/s00125‑020‑05367‑233454830
    [Google Scholar]
  225. SawangmakeC. RodprasertW. OsathanonT. PavasantP. Integrative protocols for an in vitro generation of pancreatic progenitors from human dental pulp stem cells.Biochem. Biophys. Res. Commun.2020530122222910.1016/j.bbrc.2020.06.14532828290
    [Google Scholar]
  226. CozzitortoC. SpagnoliF.M. Pancreas organogenesis: The interplay between surrounding microenvironment(s) and epithelium-intrinsic factors.Curr. Top. Dev. Biol.201913222125610.1016/bs.ctdb.2018.12.00530797510
    [Google Scholar]
  227. AhmedH.H. AglanH.A. MahmoudN.S. AlyR.M. Preconditioned human dental pulp stem cells with cerium and yttrium oxide nanoparticles effectively ameliorate diabetic hyperglycemia while combatting hypoxia.Tissue Cell20217310166110.1016/j.tice.2021.10166134656024
    [Google Scholar]
  228. KozamG. Oxygen tension of rabbit incisor pulp.J. Dent. Res.196746235235810.1177/002203456704600207015228068
    [Google Scholar]
  229. YuC.Y. BoydN.M. CringleS.J. AlderV.A. YuD.Y. Oxygen distribution and consumption in rat lower incisor pulp.Arch. Oral Biol.200247752953610.1016/S0003‑9969(02)00036‑512208077
    [Google Scholar]
  230. MohyeldinA. Garzón-MuvdiT. Quiñones-HinojosaA. Oxygen in stem cell biology: A critical component of the stem cell niche.Cell Stem Cell20107215016110.1016/j.stem.2010.07.00720682444
    [Google Scholar]
  231. LiT.S. MarbánE. Physiological levels of reactive oxygen species are required to maintain genomic stability in stem cells.Stem Cells20102871178118510.1002/stem.43820506176
    [Google Scholar]
  232. ShirawachiS. TakedaK. NaruseT. TakahasiY. NakanishiJ. ShindoS. ShibaH. Oxidative stress impairs the calcification ability of human dental pulp cells.BMC Oral Health202222143710.1186/s12903‑022‑02467‑w36192671
    [Google Scholar]
  233. FuX. FengY. ShaoB. ZhangY. Taxifolin protects dental pulp stem cells under hypoxia and inflammation conditions.Cell Transplant.20213010.1177/0963689721103445234292054
    [Google Scholar]
  234. SamanipourR. FarzanehS. RanjbariJ. HashemiS. KhojastehA. HosseinzadehS. Osteogenic differentiation of pulp stem cells from human permanent teeth on an oxygen-releasing electrospun scaffold.Polym. Bull.20238021795181610.1007/s00289‑022‑04145‑x
    [Google Scholar]
  235. ShahP. AghazadehM. RajasinghS. DixonD. JainV. RajasinghJ. Stem cells in regenerative dentistry: Current understanding and future directions.J. Oral Biosci./ JAOB, Jpn. Assoc. Oral Biol.2024223S1349-0079(24)00019-710.1016/j.job.2024.02.00638403241
    [Google Scholar]
  236. KrasilnikovaO. YakimovaA. IvanovS. AtiakshinD. KostinA.A. SosinD. ShegayP. KaprinA.D. KlabukovI. Gene-activated materials in regenerative dentistry: Narrative review of technology and study results.Int. J. Mol. Sci.202324221625010.3390/ijms24221625038003439
    [Google Scholar]
/content/journals/cscr/10.2174/011574888X312892240625091241
Loading
/content/journals/cscr/10.2174/011574888X312892240625091241
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test