Skip to content
2000
Volume 20, Issue 6
  • ISSN: 1574-888X
  • E-ISSN: 2212-3946

Abstract

Stem cells play an indispensable part in bone formation, homeostasis, and regeneration. The origin of skeletal stem cells (SSCs) in long bones has been extensively discussed, and the major cell population is considered to reside in the perivascular niche of the bone marrow. Cranial bones are distinct from long bones in both the origins of their cell lineage and the manner of osteogenesis. Recently, multiple tissue-resident craniofacial stem cell populations have been identified, among which cranial suture-derived stem cells, known as suture mesenchymal stem cells (SuSCs), exhibit unique biological characteristics. Whether SuSCs have potential therapeutic uses to repair cranial bone defects and alleviate congenital skeletal diseases, represented mainly by craniosynostosis, is a question of great research value. This review focuses on craniofacial stem cells, especially SuSCs, with the goal of summarizing the latest progress as well as giving insight into their regulatory molecular mechanisms and potential therapeutic targets.

Loading

Article metrics loading...

/content/journals/cscr/10.2174/011574888X294038240723104727
2025-07-01
2026-02-05
Loading full text...

Full text loading...

References

  1. LiQ. XuR. LeiK. YuanQ. Insights into skeletal stem cells.Bone Res.20221016110.1038/s41413‑022‑00235‑836261411
    [Google Scholar]
  2. MatsushitaY. OnoW. OnoN. Skeletal stem cells for bone development and repair: Diversity matters.Curr. Osteoporos. Rep.202018318919810.1007/s11914‑020‑00572‑932172443
    [Google Scholar]
  3. JeongY. ParkD. Targeting periosteal SSCs for aged bone defects.Aging20201243124312510.18632/aging.10286932090980
    [Google Scholar]
  4. OrtinauL.C. ParkD. Do adipogenic stromal cells undergo lineage plasticity in response to bone injury?BioEssays2021431200029610.1002/bies.20200029633616991
    [Google Scholar]
  5. ZhangD. ZhangS. WangJ. LiQ. XueH. ShengR. XiongQ. QiX. WenJ. FanY. ZhouB.O. YuanQ. LepR-expressing stem cells are essential for alveolar bone regeneration.J. Dent. Res.202099111279128610.1177/002203452093283432585118
    [Google Scholar]
  6. LiuZ. LongX. LiJ. WeiL. GongZ. FangW. Differentiation of temporomandibular joint synovial mesenchymal stem cells into neuronal cells in vitro: An in vitro study.Cell Biol. Int.2011351879120946102
    [Google Scholar]
  7. GronthosS. MankaniM. BrahimJ. RobeyP.G. ShiS. Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo.Proc. Natl. Acad. Sci. USA20009725136251363010.1073/pnas.24030979711087820
    [Google Scholar]
  8. ZhaoH. FengJ. HoT.V. GrimesW. UrataM. ChaiY. The suture provides a niche for mesenchymal stem cells of craniofacial bones.Nat. Cell Biol.201517438639610.1038/ncb313925799059
    [Google Scholar]
  9. MaruyamaT. Stem cells of the suture mesenchyme in craniofacial bone development, repair and regeneration.Keio J. Med.20196824210.2302/kjm.68‑003‑ABST31243185
    [Google Scholar]
  10. WilkK. YehS.C.A. MortensenL.J. GhaffarigarakaniS. LombardoC.M. BassirS.H. AldawoodZ.A. LinC.P. IntiniG. Postnatal calvarial skeletal stem cells expressing PRX1 reside exclusively in the calvarial sutures and are required for bone regeneration.Stem Cell Reports20178493394610.1016/j.stemcr.2017.03.00228366454
    [Google Scholar]
  11. DebnathS. YallowitzA.R. McCormickJ. LalaniS. ZhangT. XuR. LiN. LiuY. YangY.S. EisemanM. ShimJ.H. HameedM. HealeyJ.H. BostromM.P. LandauD.A. GreenblattM.B. Discovery of a periosteal stem cell mediating intramembranous bone formation.Nature2018562772513313910.1038/s41586‑018‑0554‑830250253
    [Google Scholar]
  12. ParkS. ZhaoH. UrataM. ChaiY. Sutures possess strong regenerative capacity for calvarial bone injury.Stem Cells Dev.201625231801180710.1089/scd.2016.021127762665
    [Google Scholar]
  13. FriedensteinA.J. Piatetzky-ShapiroI.I. PetrakovaK.V. Osteogenesis in transplants of bone marrow cells.Development196616338139010.1242/dev.16.3.3815336210
    [Google Scholar]
  14. De MicheliA.J. LaurilliardE.J. HeinkeC.L. RavichandranH. FraczekP. Soueid-BaumgartenS. De VlaminckI. ElementoO. CosgroveB.D. Single-cell analysis of the muscle stem cell hierarchy identifies heterotypic communication signals involved in skeletal muscle regeneration.Cell Rep.2020301035833595.e510.1016/j.celrep.2020.02.06732160558
    [Google Scholar]
  15. BianD. WuY. SongG. AziziR. ZamaniA. The application of mesenchymal stromal cells (MSCs) and their derivative exosome in skin wound healing: A comprehensive review.Stem Cell Res. Ther.20221312410.1186/s13287‑021‑02697‑935073970
    [Google Scholar]
  16. ChenC.W. CorselliM. PéaultB. HuardJ. Human blood-vessel-derived stem cells for tissue repair and regeneration.J. Biomed. Biotechnol.201220121910.1155/2012/59743922500099
    [Google Scholar]
  17. BiancoP. CaoX. FrenetteP.S. MaoJ.J. RobeyP.G. SimmonsP.J. WangC.Y. The meaning, the sense and the significance: Translating the science of mesenchymal stem cells into medicine.Nat. Med.2013191354210.1038/nm.302823296015
    [Google Scholar]
  18. BiancoP. RobeyP.G. SimmonsP.J. Mesenchymal stem cells: Revisiting history, concepts, and assays.Cell Stem Cell20082431331910.1016/j.stem.2008.03.00218397751
    [Google Scholar]
  19. WorthleyD.L. ChurchillM. ComptonJ.T. TailorY. RaoM. SiY. LevinD. SchwartzM.G. UygurA. HayakawaY. GrossS. RenzB.W. SetlikW. MartinezA.N. ChenX. NizamiS. LeeH.G. KangH.P. CaldwellJ.M. AsfahaS. WestphalenC.B. GrahamT. JinG. NagarK. WangH. KheirbekM.A. KolheA. CarpenterJ. GlaireM. NairA. RendersS. ManieriN. MuthupalaniS. FoxJ.G. ReichertM. GiraudA.S. SchwabeR.F. PradereJ.P. WaltonK. PrakashA. GumucioD. RustgiA.K. StappenbeckT.S. FriedmanR.A. GershonM.D. SimsP. GrikscheitT. LeeF.Y. KarsentyG. MukherjeeS. WangT.C. Gremlin 1 identifies a skeletal stem cell with bone, cartilage, and reticular stromal potential.Cell20151601-226928410.1016/j.cell.2014.11.04225594183
    [Google Scholar]
  20. ParkD. SpencerJ.A. KohB.I. KobayashiT. FujisakiJ. ClemensT.L. LinC.P. KronenbergH.M. ScaddenD.T. Endogenous bone marrow MSCs are dynamic, fate-restricted participants in bone maintenance and regeneration.Cell Stem Cell201210325927210.1016/j.stem.2012.02.00322385654
    [Google Scholar]
  21. UeharuH. MishinaY. BMP signaling during craniofacial development: New insights into pathological mechanisms leading to craniofacial anomalies.Front. Physiol.202314117051110.3389/fphys.2023.117051137275223
    [Google Scholar]
  22. KishP. E. BohnsackB. L. GallinaD. KasprickD. S. KahanaA. The eye as an organizer of craniofacial development.Genesis2011494222230
    [Google Scholar]
  23. ChaiY. MaxsonR.E.Jr Recent advances in craniofacial morphogenesis.Dev. Dyn.200623592353237510.1002/dvdy.2083316680722
    [Google Scholar]
  24. ZhangX. JiangW. XieC. WuX. RenQ. WangF. ShenX. HongY. WuH. LiaoY. ZhangY. LiangR. SunW. GuY. ZhangT. ChenY. WeiW. ZhangS. ZouW. OuyangH. Msx1+ stem cells recruited by bioactive tissue engineering graft for bone regeneration.Nat. Commun.2022131521110.1038/s41467‑022‑32868‑y36064711
    [Google Scholar]
  25. YangM. ZhangH. GangolliR. Advances of mesenchymal stem cells derived from bone marrow and dental tissue in craniofacial tissue engineering.Curr. Stem Cell Res. Ther.20149315016110.2174/1574888X0966614021314225824524798
    [Google Scholar]
  26. AlgeD.L. ZhouD. AdamsL.L. WyssB.K. ShaddayM.D. WoodsE.J. Gabriel ChuT.M. GoebelW.S. Donor-matched comparison of dental pulp stem cells and bone marrow-derived mesenchymal stem cells in a rat model.J. Tissue Eng. Regen. Med.201041738119842108
    [Google Scholar]
  27. Hernández-MonjarazB. Santiago-OsorioE. Monroy-GarcíaA. Ledesma-MartínezE. Mendoza-NúñezV. Mesenchymal stem cells of dental origin for inducing tissue regeneration in periodontitis: A mini-review.Int. J. Mol. Sci.201819494410.3390/ijms1904094429565801
    [Google Scholar]
  28. RansomR.C. CarterA.C. SalhotraA. LeavittT. MarecicO. MurphyM.P. LopezM.L. WeiY. MarshallC.D. ShenE.Z. JonesR.E. SharirA. KleinO.D. ChanC.K.F. WanD.C. ChangH.Y. LongakerM.T. Mechanoresponsive stem cells acquire neural crest fate in jaw regeneration.Nature2018563773251452110.1038/s41586‑018‑0650‑930356216
    [Google Scholar]
  29. HallB.K. MiyakeT. All for one and one for all: Condensations and the initiation of skeletal development.BioEssays200022213814710.1002/(SICI)1521‑1878(200002)22:2<138::AID‑BIES5>3.0.CO;2‑410655033
    [Google Scholar]
  30. LongF. Building strong bones: Molecular regulation of the osteoblast lineage.Nat. Rev. Mol. Cell Biol.2012131273810.1038/nrm325422189423
    [Google Scholar]
  31. Lana-ElolaE. RiceR. GrigoriadisA.E. RiceD.P.C. Cell fate specification during calvarial bone and suture development.Dev. Biol.2007311233534610.1016/j.ydbio.2007.08.02817931618
    [Google Scholar]
  32. LuoW. YiY. JingD. ZhangS. MenY. GeW.P. ZhaoH. Investigation of postnatal craniofacial bone development with tissue clearing-based three-dimensional imaging.Stem Cells Dev.201928191310132110.1089/scd.2019.010431392933
    [Google Scholar]
  33. ZhuQ. DingL. YueR. Skeletal stem cells: A game changer of skeletal biology and regenerative medicine?Life Med.202213294306
    [Google Scholar]
  34. JinS.W. SimK.B. KimS.D. Development and growth of the normal cranial vault : An embryologic review.J. Korean Neurosurg. Soc.201659319219610.3340/jkns.2016.59.3.19227226848
    [Google Scholar]
  35. XiaoE. LiJ.M. YanY.B. AnJ.G. DuanD.H. GanY.H. ZhangY. Decreased osteogenesis in stromal cells from radiolucent zone of human TMJ ankylosis.J. Dent. Res.201392545045510.1177/002203451348347123525532
    [Google Scholar]
  36. MatsubaraT. SuarditaK. IshiiM. SugiyamaM. IgarashiA. OdaR. NishimuraM. SaitoM. NakagawaK. YamanakaK. MiyazakiK. ShimizuM. BhawalU. K. TsujiK. NakamuraK. KatoY. Alveolar bone marrow as a cell source for regenerative medicine: Differences between alveolar and iliac bone marrow stromal cells.J Bone Miner Res2005203399409
    [Google Scholar]
  37. JiangX. IsekiS. MaxsonR.E. SucovH.M. Morriss-KayG.M. Tissue origins and interactions in the mammalian skull vault.Dev. Biol.2002241110611610.1006/dbio.2001.048711784098
    [Google Scholar]
  38. DoroD. LiuA. GrigoriadisA.E. LiuK.J. The osteogenic potential of the neural crest lineage may contribute to craniosynostosis.Mol. Syndromol.2019101-2485710.1159/00049310630976279
    [Google Scholar]
  39. Di PietroL. BarbaM. PrampoliniC. CeccarigliaS. FrassanitoP. VitaA. GuadagniE. BonvissutoD. MassimiL. TamburriniG. ParoliniO. LattanziW. GLI1 and AXIN2 are distinctive markers of human calvarial mesenchymal stromal cells in nonsyndromic craniosynostosis.Int. J. Mol. Sci.20202112435610.3390/ijms2112435632575385
    [Google Scholar]
  40. ShiY. HeG. LeeW.C. McKenzieJ.A. SilvaM.J. LongF. Gli1 identifies osteogenic progenitors for bone formation and fracture repair.Nat. Commun.201781204310.1038/s41467‑017‑02171‑229230039
    [Google Scholar]
  41. KanC. ChenL. HuY. DingN. LiY. McGuireT.L. LuH. KesslerJ.A. KanL. Gli1-labeled adult mesenchymal stem/progenitor cells and hedgehog signaling contribute to endochondral heterotopic ossification.Bone2018109717910.1016/j.bone.2017.06.01428645539
    [Google Scholar]
  42. ZhaoH. FengJ. SeidelK. ShiS. KleinO. SharpeP. ChaiY. Secretion of Shh by a neurovascular bundle niche supports mesenchymal stem cell homeostasis in the adult mouse incisor.Cell Stem Cell201823114710.1016/j.stem.2018.05.02329979989
    [Google Scholar]
  43. YuH.M.I. JerchowB. SheuT.J. LiuB. CostantiniF. PuzasJ.E. BirchmeierW. HsuW. The role of Axin2 in calvarial morphogenesis and craniosynostosis.Development200513281995200510.1242/dev.0178615790973
    [Google Scholar]
  44. MaruyamaT. JiangM. AbbottA. YuH. I. HuangQ. Chrzanowska-WodnickaM. ChenE. I. HsuW. Rap1b is an effector of Axin2 regulating crosstalk of signaling pathways during skeletal development.J Bone Miner Res.201732918161828
    [Google Scholar]
  45. LuX. BeckG. R.Jr GilbertL. C. CamalierC. E. BatemanN. W. HoodB. L. ConradsT. P. KernM. J. YouS. ChenH. NanesM. S. Identification of the homeobox protein Prx1 (MHox, Prrx-1) as a regulator of osterix expression and mediator of tumor necrosis factor α action in osteoblast differentiation.J Bone Miner Res.201126120919
    [Google Scholar]
  46. ten BergeD. BrouwerA. KorvingJ. MartinJ.F. MeijlinkF. Prx1 and Prx2 in skeletogenesis: Roles in the craniofacial region, inner ear and limbs.Development1998125193831384210.1242/dev.125.19.38319729491
    [Google Scholar]
  47. YangW. WangJ. MooreD.C. LiangH. DoonerM. WuQ. TerekR. ChenQ. EhrlichM.G. QuesenberryP.J. NeelB.G. Ptpn11 deletion in a novel progenitor causes metachondromatosis by inducing hedgehog signalling.Nature2013499745949149510.1038/nature1239623863940
    [Google Scholar]
  48. HolmesG. Gonzalez-ReicheA.S. SaturneM. Motch PerrineS.M. ZhouX. BorgesA.C. ShewaleB. RichtsmeierJ.T. ZhangB. van BakelH. JabsE.W. Single-cell analysis identifies a key role for Hhip in murine coronal suture development.Nat. Commun.2021121713210.1038/s41467‑021‑27402‑534880220
    [Google Scholar]
  49. FarmerD.J.T. MlcochovaH. ZhouY. KoellingN. WangG. AshleyN. BugacovH. ChenH.J. ParvezR. TsengK.C. MerrillA.E. MaxsonR.E.Jr WilkieA.O.M. CrumpJ.G. TwiggS.R.F. The developing mouse coronal suture at single-cell resolution.Nat. Commun.2021121479710.1038/s41467‑021‑24917‑934376651
    [Google Scholar]
  50. MenonS. SalhotraA. ShailendraS. TevlinR. RansomR.C. JanuszykM. ChanC.K.F. BehrB. WanD.C. LongakerM.T. QuartoN. Skeletal stem and progenitor cells maintain cranial suture patency and prevent craniosynostosis.Nat. Commun.2021121464010.1038/s41467‑021‑24801‑634330896
    [Google Scholar]
  51. MaruyamaT. MirandoA.J. DengC.X. HsuW. The balance of WNT and FGF signaling influences mesenchymal stem cell fate during skeletal development.Sci. Signal.20103123ra4010.1126/scisignal.200072720501936
    [Google Scholar]
  52. XieX. XuC. ZhaoL. WuY. FengJ.Q. WangJ. Axin2-expressing cells in the periodontal ligament are regulated by bone morphogenetic protein signalling and play a pivotal role in periodontium development.J. Clin. Periodontol.202249994595610.1111/jcpe.1366635634660
    [Google Scholar]
  53. TanS.H. Senarath-YapaK. ChungM.T. LongakerM.T. WuJ.Y. NusseR. Wnts produced by Osterix-expressing osteolineage cells regulate their proliferation and differentiation.Proc. Natl. Acad. Sci. USA201411149E5262E527110.1073/pnas.142046311125422448
    [Google Scholar]
  54. DingY. MoC. GengJ. LiJ. SunY. Identification of periosteal osteogenic progenitors in jawbone.J. Dent. Res.202210191101110910.1177/0022034522108420035319300
    [Google Scholar]
  55. DominiciM. Le BlancK. MuellerI. Slaper-CortenbachI. MariniF.C. KrauseD.S. DeansR.J. KeatingA. ProckopD.J. HorwitzE.M. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement.Cytotherapy20068431531710.1080/1465324060085590516923606
    [Google Scholar]
  56. OuyangZ. ChenZ. IshikawaM. YueX. KawanamiA. LeahyP. GreenfieldE.M. MurakamiS. Prx1 and 3.2kb Col1a1 promoters target distinct bone cell populations in transgenic mice.Bone20145813614510.1016/j.bone.2013.10.01624513582
    [Google Scholar]
  57. KozhemyakinaE. IonescuA. LassarA.B. GATA6 is a crucial regulator of Shh in the limb bud.PLoS Genet.2014101e100407210.1371/journal.pgen.100407224415953
    [Google Scholar]
  58. ZhangZ.Q. YangJ.L. Biomechanical dynamics of cranial sutures during simulated impulsive loading.Appl. Bionics Biomech.2015201511110.1155/2015/59684327019589
    [Google Scholar]
  59. ZhangZ.Q. YangJ.L. Sutural development: Structure and its response to rapid expansion.American J Orthod19777166226361
    [Google Scholar]
  60. AldawoodZ.A. MancinelliL. GengX. YehS.A. Di CarloR. C LeiteT. GustafsonJ. WilkK. YozgatianJ. GarakaniS. BassirS.H. CunninghamM.L. LinC.P. IntiniG. Expansion of the sagittal suture induces proliferation of skeletal stem cells and sustains endogenous calvarial bone regeneration.Proc. Natl. Acad. Sci. USA202312016e212082612010.1073/pnas.212082612037040407
    [Google Scholar]
  61. JingD. ChenZ. MenY. YiY. WangY. WangJ. YiJ. WanL. ShenB. FengJ. Q. ZhaoZ. ZhaoH. LiC. Response of Gli1+ suture stem cells to mechanical force upon suture expansion.J Bone Miner Res202237713071320
    [Google Scholar]
  62. LiW. ZhaoJ. WangJ. SunL. XuH. SunW. PanY. WangH. ZhangW.B. ROCK-TAZ signaling axis regulates mechanical tension-induced osteogenic differentiation of rat cranial sagittal suture mesenchymal stem cells.J. Cell. Physiol.202023595972598410.1002/jcp.2952231970784
    [Google Scholar]
  63. LiangW. ZhaoE. LiG. BiH. ZhaoZ. Suture Cells in a mechanical stretching niche: Critical contributors to trans-sutural distraction osteogenesis.Calcif. Tissue Int.2022110328529310.1007/s00223‑021‑00927‑z34802070
    [Google Scholar]
  64. LiangW. DingP. QianJ. LiG. LuE. ZhaoZ. Polarized M2 macrophages induced by mechanical stretching modulate bone regeneration of the craniofacial suture for midfacial hypoplasia treatment.Cell Tissue Res.2021386358560310.1007/s00441‑021‑03533‑534568957
    [Google Scholar]
  65. WangD. GilbertJ.R. ZhangX. ZhaoB. KerD.F.E. CooperG.M. Calvarial versus long bone: Implications for tailoring skeletal tissue engineering.Tissue Eng. Part B Rev.2020261466310.1089/ten.teb.2018.035331588853
    [Google Scholar]
  66. ArtasG. GulM. AcikanI. KirtayM. BozoglanA. SimsekS. YamanF. DundarS. A comparison of different bone graft materials in peri-implant guided bone regeneration.Braz. Oral Res.2018320e5910.1590/1807‑3107bor‑2018.vol32.005929995064
    [Google Scholar]
  67. Duchamp de LagenesteO. JulienA. Abou-KhalilR. FrangiG. CarvalhoC. CagnardN. CordierC. ConwayS.J. ColnotC. Periosteum contains skeletal stem cells with high bone regenerative potential controlled by Periostin.Nat. Commun.20189177310.1038/s41467‑018‑03124‑z29472541
    [Google Scholar]
  68. OtaifyG. A. Abdel-HamidM. S. MehrezM. I. Aboul-EzzE. ZakiM. S. AglanM. S. TemtamyS. A. Genetic study of eight Egyptian patients with pycnodysostosis: Identification of novel CTSK mutations and founder effect.Osteoporos Int201829888331841
    [Google Scholar]
  69. BoyadjievS.A. Genetic analysis of non-syndromic craniosynostosis.Orthod. Craniofac. Res.200710312913710.1111/j.1601‑6343.2007.00393.x17651129
    [Google Scholar]
  70. WilkieA.O.M. JohnsonD. WallS.A. Clinical genetics of craniosynostosis.Curr. Opin. Pediatr.201729662262810.1097/MOP.000000000000054228914635
    [Google Scholar]
  71. YuM. MaL. YuanY. YeX. MontagneA. HeJ. HoT.V. WuY. ZhaoZ. Sta MariaN. JacobsR. UrataM. WangH. ZlokovicB.V. ChenJ.F. ChaiY. Cranial suture regeneration mitigates skull and neurocognitive defects in craniosynostosis.Cell20211841243256.e1810.1016/j.cell.2020.11.03733417861
    [Google Scholar]
  72. SpeltzM.L. CollettB.R. WallaceE.R. StarrJ.R. CradockM.M. BuonoL. CunninghamM. Kapp-SimonK. Intellectual and academic functioning of school-age children with single-suture craniosynostosis.Pediatrics20151353e615e62310.1542/peds.2014‑163425713274
    [Google Scholar]
  73. HolmesG. Gonzalez-ReicheA.S. LuN. ZhouX. RiveraJ. KritiD. SebraR. WilliamsA.A. DonovanM.J. PotterS.S. PintoD. ZhangB. van BakelH. JabsE.W. Integrated transcriptome and network analysis reveals spatiotemporal dynamics of calvarial suturogenesis.Cell Rep.202032110787110.1016/j.celrep.2020.10787132640236
    [Google Scholar]
  74. TwiggS.R.F. WilkieA.O.M. A genetic-pathophysiological framework for craniosynostosis.Am. J. Hum. Genet.201597335937710.1016/j.ajhg.2015.07.00626340332
    [Google Scholar]
  75. IshiiM. SunJ. TingM.C. MaxsonR.E. The development of the calvarial bones and sutures and the pathophysiology of craniosynostosis.Curr. Top. Dev. Biol.201511513115610.1016/bs.ctdb.2015.07.00426589924
    [Google Scholar]
  76. DurhamE. L. HowieR. N. CrayJ. J. Gene/environment interactions in craniosynostosis: A brief review.Orthod Craniofac Res2017Suppl 1Suppl 1811
    [Google Scholar]
  77. SergesketterA.R. ElsamadicyA.A. LubkinD.T. KrucoffK.B. KrucoffM.O. MuhC.R. Characterization of perinatal risk factors and complications associated with nonsyndromic craniosynostosis.J. Craniofac. Surg.201930233433810.1097/SCS.000000000000499730358747
    [Google Scholar]
  78. YenH.Y. TingM.C. MaxsonR.E. Jagged1 functions downstream of Twist1 in the specification of the coronal suture and the formation of a boundary between osteogenic and non-osteogenic cells.Dev. Biol.2010347225827010.1016/j.ydbio.2010.08.01020727876
    [Google Scholar]
  79. MaenoT. MoriishiT. YoshidaC.A. KomoriH. KanataniN. IzumiS. TakaokaK. KomoriT. Early onset of Runx2 expression caused craniosynostosis, ectopic bone formation, and limb defects.Bone201149467368210.1016/j.bone.2011.07.02321807129
    [Google Scholar]
  80. BialekP. KernB. YangX. SchrockM. SosicD. HongN. WuH. YuK. OrnitzD.M. OlsonE.N. JusticeM.J. KarsentyG. A twist code determines the onset of osteoblast differentiation.Dev. Cell20046342343510.1016/S1534‑5807(04)00058‑915030764
    [Google Scholar]
  81. TingM.C. WuN.L. RoybalP.G. SunJ. LiuL. YenY. MaxsonR.E.Jr EphA4 as an effector of Twist1 in the guidance of osteogenic precursor cells during calvarial bone growth and in craniosynostosis.Development2009136585586410.1242/dev.02860519201948
    [Google Scholar]
  82. GuoY. YuanY. WuL. HoT.V. JingJ. SugiiH. LiJ. HanX. FengJ. GuoC. ChaiY. BMP-IHH-mediated interplay between mesenchymal stem cells and osteoclasts supports calvarial bone homeostasis and repair.Bone Res.2018613010.1038/s41413‑018‑0031‑x30345151
    [Google Scholar]
  83. XuR. LiuY. ZhouY. LinW. YuanQ. ZhouX. YangY. Gnas loss causes chondrocyte fate conversion in cranial suture formation.J. Dent. Res.2022101893194110.1177/0022034522107521535220829
    [Google Scholar]
  84. McGee-LawrenceM.E. CarpioL.R. BradleyE.W. DudakovicA. LianJ.B. van WijnenA.J. KakarS. HsuW. WestendorfJ.J. Runx2 is required for early stages of endochondral bone formation but delays final stages of bone repair in Axin2-deficient mice.Bone20146627728610.1016/j.bone.2014.06.02224973690
    [Google Scholar]
  85. LimJ. ShiY. KarnerC.M. LeeS.Y. LeeW.C. HeG. LongF. Dual function of Bmpr1a signaling in restricting preosteoblast proliferation and stimulating osteoblast activity in mouse.Development2016143233934726657771
    [Google Scholar]
  86. ZhangJ. NiuC. YeL. HuangH. HeX. TongW.G. RossJ. HaugJ. JohnsonT. FengJ.Q. HarrisS. WiedemannL.M. MishinaY. LiL. Identification of the haematopoietic stem cell niche and control of the niche size.Nature2003425696083684110.1038/nature0204114574412
    [Google Scholar]
  87. BertolaD. AmaralC. KimC. AlbanoL. AguenaM. Passos-BuenoM.R. Craniosynostosis in pycnodysostosis: Broadening the spectrum of the cranial flat bone abnormalities.Am. J. Med. Genet. A.2010152A102599260310.1002/ajmg.a.3360920814951
    [Google Scholar]
  88. WolfswinkelE.M. Sanchez-LaraP.A. JacobL. UrataM.M. Postoperative helmet therapy following fronto-orbital advancement and cranial vault remodeling in patients with unilateral coronal synostosis.Am. J. Med. Genet. A.202118592670267510.1002/ajmg.a.6225634008890
    [Google Scholar]
  89. LingL. NurcombeV. CoolS.M. Wnt signaling controls the fate of mesenchymal stem cells.Gene20094331-21710.1016/j.gene.2008.12.00819135507
    [Google Scholar]
  90. KimJ.A. ChoiH.K. KimT.M. LeemS.H. OhI.H. Regulation of mesenchymal stromal cells through fine tuning of canonical Wnt signaling.Stem Cell Res.201514335636810.1016/j.scr.2015.02.00725863444
    [Google Scholar]
  91. DengQ. LiP. CheM. LiuJ. BiswasS. MaG. HeL. WeiZ. ZhangZ. YangY. LiuH. LiB. Activation of hedgehog signaling in mesenchymal stem cells induces cartilage and bone tumor formation via Wnt/β-Catenin.eLife20198e5020810.7554/eLife.5020831482846
    [Google Scholar]
  92. RodriguesM. GriffithL.G. WellsA. Growth factor regulation of proliferation and survival of multipotential stromal cells.Stem Cell Res. Ther.2010143210.1186/scrt3220977782
    [Google Scholar]
  93. TsutsumiS. ShimazuA. MiyazakiK. PanH. KoikeC. YoshidaE. TakagishiK. KatoY. Retention of multilineage differentiation potential of mesenchymal cells during proliferation in response to FGF.Biochem. Biophys. Res. Commun.2001288241341910.1006/bbrc.2001.577711606058
    [Google Scholar]
  94. SacchettiB. FunariA. MichienziS. Di CesareS. PiersantiS. SaggioI. TagliaficoE. FerrariS. RobeyP.G. RiminucciM. BiancoP. Self-renewing osteoprogenitors in bone marrow sinusoids can organize a hematopoietic microenvironment.Cell2007131232433610.1016/j.cell.2007.08.02517956733
    [Google Scholar]
  95. KuznetsovS.A. RiminucciM. ZiranN. TsutsuiT.W. CorsiA. CalviL. KronenbergH.M. SchipaniE. RobeyP.G. BiancoP. The interplay of osteogenesis and hematopoiesis.J. Cell Biol.200416761113112210.1083/jcb.20040807915611335
    [Google Scholar]
  96. ChenG. XuH. YaoY. XuT. YuanM. ZhangX. LvZ. WuM. BMP signaling in the development and regeneration of cranium bones and maintenance of calvarial stem cells.Front. Cell Dev. Biol.2020813510.3389/fcell.2020.0013532211409
    [Google Scholar]
  97. CraneJ.L. CaoX. Bone marrow mesenchymal stem cells and TGF-β signaling in bone remodeling.J. Clin. Invest.2014124246647210.1172/JCI7005024487640
    [Google Scholar]
  98. HojoH. OhbaS. YanoF. SaitoT. IkedaT. NakajimaK. KomiyamaY. NakagataN. SuzukiK. TakatoT. KawaguchiH. ChungU. Gli1 protein participates in Hedgehog-mediated specification of osteoblast lineage during endochondral ossification.J. Biol. Chem.201228721178601786910.1074/jbc.M112.34771622493482
    [Google Scholar]
  99. KimE.J. ChoS.W. ShinJ.O. LeeM.J. KimK.S. JungH.S. Ihh and Runx2/Runx3 signaling interact to coordinate early chondrogenesis: A mouse model.PLoS One201382e5529610.1371/journal.pone.005529623383321
    [Google Scholar]
  100. LentonK. JamesA. W. ManuA. BrugmannS. A. BirkerD. NelsonE. R. LeuchtP. HelmsJ. A. LongakerM. T. Indian hedgehog positively regulates calvarial ossification and modulates bone morphogenetic protein signaling.Genesis2011491078496
    [Google Scholar]
  101. KimH.J. RiceD.P.C. KettunenP.J. ThesleffI. FGF-, BMP- and Shh-mediated signalling pathways in the regulation of cranial suture morphogenesis and calvarial bone development.Development199812571241125110.1242/dev.125.7.12419477322
    [Google Scholar]
  102. AlappatS. ZhangZ.Y. ChenY.P. Msx homeobox gene family and craniofacial development.Cell Res.200313642944210.1038/sj.cr.729018514728799
    [Google Scholar]
  103. PanA. ChangL. NguyenA. JamesA.W. A review of hedgehog signaling in cranial bone development.Front. Physiol.201346110.3389/fphys.2013.0006123565096
    [Google Scholar]
  104. CohenM.M.Jr KreiborgS. New indirect method for estimating the birth prevalence of the Apert syndrome.Int. J. Oral Maxillofac. Surg.199221210710910.1016/S0901‑5027(05)80544‑21602157
    [Google Scholar]
  105. LiuB. YuH.M.I. HsuW. Craniosynostosis caused by Axin2 deficiency is mediated through distinct functions of β-catenin in proliferation and differentiation.Dev. Biol.2007301129830810.1016/j.ydbio.2006.10.01817113065
    [Google Scholar]
  106. KanzlerB. ForemanR.K. LaboskyP.A. MalloM. BMP signaling is essential for development of skeletogenic and neurogenic cranial neural crest.Development200012751095110410.1242/dev.127.5.109510662648
    [Google Scholar]
  107. OppermanL.A. Cranial sutures as intramembranous bone growth sites.Dev. Dyn.2000219447248510.1002/1097‑0177(2000)9999:9999<::AID‑DVDY1073>3.0.CO;2‑F11084647
    [Google Scholar]
  108. MaruyamaT. StevensR. BokaA. DiRienzoL. ChangC. YuH.M.I. NishimoriK. MorrisonC. HsuW. BMPR1A maintains skeletal stem cell properties in craniofacial development and craniosynostosis.Sci. Transl. Med.202113583eabb441610.1126/scitranslmed.abb441633658353
    [Google Scholar]
  109. SongD. HuangS. ZhangL. LiuW. HuangB. FengY. LiuB. HeT.C. HuangD. ReidR.R. Differential responsiveness to BMP9 between patent and fused suture progenitor cells from craniosynostosis patients.Plast. Reconstr. Surg.20201453552e562e10.1097/PRS.000000000000659732097313
    [Google Scholar]
  110. VuralA.C. OdabasS. KorkusuzP. Yar SağlamA.S. BilgiçE. ÇavuşoğluT. PiskinE. Vargelİ. Cranial bone regeneration via BMP-2 encoding mesenchymal stem cells.Artif. Cells Nanomed. Biotechnol.201745354455010.3109/21691401.2016.116091827002739
    [Google Scholar]
  111. MoosaS. WollnikB. Altered FGF signalling in congenital craniofacial and skeletal disorders.Semin. Cell Dev. Biol.20165311512510.1016/j.semcdb.2015.12.00526686047
    [Google Scholar]
  112. MehraraB.J. MackoolR.J. McCarthyJ.G. GittesG.K. LongakerM.T. Immunolocalization of basic fibroblast growth factor and fibroblast growth factor receptor-1 and receptor-2 in rat cranial sutures.Plast. Reconstr. Surg.199810261805181710.1097/00006534‑199811000‑000019810974
    [Google Scholar]
  113. OrnitzD.M. MarieP.J. FGF signaling pathways in endochondral and intramembranous bone development and human genetic disease.Genes Dev.200216121446146510.1101/gad.99070212080084
    [Google Scholar]
  114. IsekiS. WilkieA.O.M. Morriss-KayG.M. Fgfr1 and Fgfr2 have distinct differentiation- and proliferation-related roles in the developing mouse skull vault.Development1999126245611562010.1242/dev.126.24.561110572038
    [Google Scholar]
  115. WangY. XiaoR. YangF. KarimB.O. IacovelliA.J. CaiJ. LernerC.P. RichtsmeierJ.T. LeszlJ.M. HillC.A. YuK. OrnitzD.M. ElisseeffJ. HusoD.L. JabsE.W. Abnormalities in cartilage and bone development in the Apert syndrome FGFR2+/S252W mouse.Development2005132153537354810.1242/dev.0191415975938
    [Google Scholar]
  116. SchliermannA. NickelJ. Unraveling the connection between fibroblast growth factor and bone morphogenetic protein signaling.Int. J. Mol. Sci.20181910322010.3390/ijms1910322030340367
    [Google Scholar]
  117. Min SweN.M. KobayashiY. KamimotoH. MoriyamaK. Aberrantly activated Wnt/β-catenin pathway co-receptors LRP5 and LRP6 regulate osteoblast differentiation in the developing coronal sutures of an Apert syndrome (FGFR2-S252W+) mouse model.Dev. Dyn.2021250346547610.1002/dvdy.23932822074
    [Google Scholar]
  118. AmariglioN. HirshbergA. ScheithauerB.W. CohenY. LoewenthalR. TrakhtenbrotL. PazN. Koren-MichowitzM. WaldmanD. Leider-TrejoL. TorenA. ConstantiniS. RechaviG. Donor-derived brain tumor following neural stem cell transplantation in an ataxia telangiectasia patient.PLoS Med.200962e100002910.1371/journal.pmed.100002919226183
    [Google Scholar]
/content/journals/cscr/10.2174/011574888X294038240723104727
Loading
/content/journals/cscr/10.2174/011574888X294038240723104727
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test