Skip to content
2000
Volume 20, Issue 4
  • ISSN: 1574-888X
  • E-ISSN: 2212-3946

Abstract

Alzheimer's disease (AD), an inexorable neurodegenerative ailment marked by cognitive impairment and neuropsychiatric manifestations, stands as the foremost prevailing form of dementia in the geriatric population. Its pathological signs include the aggregation of amyloid proteins, hyperphosphorylation of tau proteins, and the consequential loss of neural cells. The etiology of AD has prompted the formulation of numerous conjectures, each endeavoring to elucidate its pathogenesis. While a subset of therapeutic agents has displayed clinical efficacy in AD patients, a significant proportion has encountered disappointment. Notably, the extent of neural cell depletion bears a direct correlation with the disease's progressive severity. However, the absence of efficacious therapeutic remedies for neurodegenerative afflictions engenders a substantial societal burden and exerts a notable economic toll. In the past two decades, the realm of regenerative cell therapy, referred to as stem cell therapy, has unfolded as an avenue for the exploration of profoundly innovative approaches to treat neurodegenerative conditions. This promise is underpinned by the remarkable capacity of stem cells to remediate compromised neural tissue by means of cell replacement, to cultivate an environment conducive to regeneration, and to shield extant healthy neuronal and glial components from further degradation. Thus, this review aims to delve into the current knowledge of stem cell-based therapies and future possibilities in this domain.

Loading

Article metrics loading...

/content/journals/cscr/10.2174/011574888X308941240507050855
2024-05-13
2025-09-05
Loading full text...

Full text loading...

References

  1. FerriC.P. PrinceM. BrayneC. BrodatyH. FratiglioniL. GanguliM. HallK. HasegawaK. HendrieH. HuangY. JormA. MathersC. MenezesP.R. RimmerE. ScazufcaM. Global prevalence of dementia: A Delphi consensus study.Lancet200536695032112211710.1016/S0140‑6736(05)67889‑016360788
    [Google Scholar]
  2. Alzheimer's Association Alzheimer’s Disease Facts and Figures.Alzheimer’s & Dementia202319410.1002/alz.13016
    [Google Scholar]
  3. BriggsR. KennellyS.P. O’NeillD. Drug treatments in Alzheimer’s disease.Clin. Med.201616324725310.7861/clinmedicine.16‑3‑24727251914
    [Google Scholar]
  4. KumarV. JahanS. SinghS. KhannaV.K. PantA.B. Progress toward the development of in vitro model system for chemical-induced developmental neurotoxicity: Potential applicability of stem cells.Arch. Toxicol.201589226526710.1007/s00204‑014‑1442‑025537189
    [Google Scholar]
  5. HuangY. MuckeL. Alzheimer mechanisms and therapeutic strategies.Cell201214861204122210.1016/j.cell.2012.02.04022424230
    [Google Scholar]
  6. BertramL. LillC.M. TanziR.E. The genetics of Alzheimer disease: Back to the future.Neuron201068227028110.1016/j.neuron.2010.10.01320955934
    [Google Scholar]
  7. MuckeL. SelkoeD.J. Neurotoxicity of amyloid β-protein: Synaptic and network dysfunction.Cold Spring Harb. Perspect. Med.201227a006338a00633810.1101/cshperspect.a00633822762015
    [Google Scholar]
  8. HuangY. Apolipoprotein E and Alzheimer Disease.Neurology2005661S79S8510.1212/01.wnl.0000192102.41141.9e
    [Google Scholar]
  9. KnoferleJ. YoonS.Y. WalkerD. LeungL. GillespieA.K. TongL.M. LyB.N. HuangY. Apolipoprotein E4 produced in GABAergic interneurons causes learning and memory deficits in mice.J. Neurosci.20143442140691407810.1523/JNEUROSCI.2281‑14.201425319703
    [Google Scholar]
  10. SantosR.M. WillenbringH. On the origin of the term “stem cell”.Cell Stem Cell200711353810.1016/j.stem.2007.05.01318371332
    [Google Scholar]
  11. KonstantinovI.E. In search of Alexander A. Maximow: The man behind the unitarian theory of hematopoiesis.Perspect. Biol. Med.200043226927610.1353/pbm.2000.000610804590
    [Google Scholar]
  12. JansenJ. The first successful allogeneic bone-marrow transplant: Georges Mathé.Transfus. Med. Rev.200519324624810.1016/j.tmrv.2005.02.00616010655
    [Google Scholar]
  13. BlumeK.G. WeissmanI.L. Donnall Thomas.Proc. Natl. Acad. Sci.201210951207772077810.1073/pnas.121891310923197829
    [Google Scholar]
  14. FriedensteinA.J. ChailakhyanR.K. GerasimovU.V. Bone marrow osteogenic stem cells: In vitro cultivation and transplantation in diffusion chambers.Cell Prolif.198720326327210.1111/j.1365‑2184.1987.tb01309.x3690622
    [Google Scholar]
  15. Haeckel, Ernst, - Biodiversity Heritage Library.Available from: https://www.biodiversitylibrary.org/creator/36663#/titles [accessed 2023-12-09].
  16. EvansM.J. KaufmanM.H. Establishment in culture of pluripotential cells from mouse embryos.Nature1981292581915415610.1038/292154a07242681
    [Google Scholar]
  17. SimmonsD. The Use of Animal Models in Studying Genetic Disease | Learn Science at Scitable. Nature.com.Available from: https://www.nature.com/scitable/topicpage/the-use-of-animal-models-in-studying-855/
  18. BiancoP. RobeyP.G. SimmonsP.J. Mesenchymal stem cells: Revisiting history, concepts, and assays.Cell Stem Cell20082431331910.1016/j.stem.2008.03.00218397751
    [Google Scholar]
  19. LiuX.Y. YangL.P. ZhaoL. Stem cell therapy for Alzheimer’s disease.World J. Stem Cells202012878780210.4252/wjsc.v12.i8.78732952859
    [Google Scholar]
  20. KangJ.M. YeonB.K. ChoS.J. SuhY.H. Stem cell therapy for alzheimer’s disease: A review of recent clinical trials.J. Alzheimers Dis.201654387988910.3233/JAD‑16040627567851
    [Google Scholar]
  21. MartelloG. SmithA. The nature of embryonic stem cells.Annu. Rev. Cell Dev. Biol.201430164767510.1146/annurev‑cellbio‑100913‑01311625288119
    [Google Scholar]
  22. AhmadF. SachdevaP. A consolidated review on stem cell therapy for treatment and management of Alzheimer’s disease.Aging Med.20225318219010.1002/agm2.1221636247342
    [Google Scholar]
  23. FleifelD. RahmoonM.A. AlOkdaA. NasrM. ElserafyM. El-KhamisyS.F. Recent advances in stem cells therapy: A focus on cancer, Parkinson’s and Alzheimer’s.J. Genet. Eng. Biotechnol.201816242743210.1016/j.jgeb.2018.09.00230733756
    [Google Scholar]
  24. TangJ. XuH. FanX. LiD. RancourtD. ZhouG. LiZ. YangL. Embryonic stem cell-derived neural precursor cells improve memory dysfunction in Aβ(1–40) injured rats.Neurosci. Res.2008622869610.1016/j.neures.2008.06.00518634835
    [Google Scholar]
  25. SalehiA. DelcroixJ.D. SwaabD.F. Alzheimer?s disease and NGF signaling.J. Neural Transm.2004111332334510.1007/s00702‑003‑0091‑x14991458
    [Google Scholar]
  26. MoghadamF.H. AlaieH. KarbalaieK. TanhaeiS. EsfahaniN.M.H. BaharvandH. Transplantation of primed or unprimed mouse embryonic stem cell-derived neural precursor cells improves cognitive function in Alzheimerian rats.Differentiation2009782-3596810.1016/j.diff.2009.06.00519616885
    [Google Scholar]
  27. LiD. WuQ. HanX. Application of medial ganglionic eminence cell transplantation in diseases associated with interneuron disorders.Front. Cell. Neurosci.20221693929410.3389/fncel.2022.93929435865112
    [Google Scholar]
  28. SchwartzS.D. HubschmanJ.P. HeilwellG. CardenasF.V. PanC.K. OstrickR.M. MickunasE. GayR. KlimanskayaI. LanzaR. Embryonic stem cell trials for macular degeneration: A preliminary report.Lancet2012379981771372010.1016/S0140‑6736(12)60028‑222281388
    [Google Scholar]
  29. ChuangJ.H. YangW.C. LinY. Glutamatergic neurons differentiated from embryonic stem cells: An investigation of differentiation and associated diseases.Int. J. Mol. Sci.2021229459210.3390/ijms2209459233925600
    [Google Scholar]
  30. VasicV. BarthK. SchmidtM.H.H. Neurodegeneration and neuro-regeneration—alzheimer’s disease and stem cell therapy.Int. J. Mol. Sci.20192017427210.3390/ijms2017427231480448
    [Google Scholar]
  31. LeeJ.H. OhI.H. LimH.K. Stem cell therapy: A prospective treatment for alzheimer’s disease.Psychiatry Investig.201613658358910.4306/pi.2016.13.6.58327909447
    [Google Scholar]
  32. DingD.C. ChangY.H. ShyuW.C. LinS.Z. Human umbilical cord mesenchymal stem cells: A new era for stem cell therapy.Cell Transplant.201524333934710.3727/096368915X68684125622293
    [Google Scholar]
  33. HassR. KasperC. BöhmS. JacobsR. Different populations and sources of human mesenchymal stem cells (MSC): A comparison of adult and neonatal tissue-derived MSC.Cell Commun. Signal.2011911210.1186/1478‑811X‑9‑1221569606
    [Google Scholar]
  34. LeeH.J. LeeJ.K. LeeH. CarterJ.E. ChangJ.W. OhW. YangY.S. SuhJ.G. LeeB.H. JinH.K. BaeJ.   Human   umbilical   cord   blood- derived mesenchymal stem cells improve neuropathology and cognitive impairment in an Alzheimer’s disease mouse model through modulation of neuroinflammation.Neurobiol. Aging201233358860210.1016/j.neurobiolaging.2010.03.02420471717
    [Google Scholar]
  35. TongL.M. FongH. HuangY. Stem cell therapy for Alzheimer’s disease and related disorders: Current status and future perspectives.Exp. Mol. Med.2015473e151e15110.1038/emm.2014.12425766620
    [Google Scholar]
  36. ErvitiA.L. SeowY. YinH. BettsC. LakhalS. WoodM.J.A. Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes.Nat. Biotechnol.201129434134510.1038/nbt.180721423189
    [Google Scholar]
  37. KatsudaT. TsuchiyaR. KosakaN. YoshiokaY. TakagakiK. OkiK. TakeshitaF. SakaiY. KurodaM. OchiyaT. Human adipose tissue-derived mesenchymal stem cells secrete functional neprilysin-bound exosomes.Sci. Rep.201331119710.1038/srep0119723378928
    [Google Scholar]
  38. YangH. YangH. XieZ. WeiL. BiJ. Systemic transplantation of human umbilical cord derived mesenchymal stem cells-educated T regulatory cells improved the impaired cognition in AβPPswe/PS1dE9 transgenic mice.PLoS One201387e6912910.1371/journal.pone.006912923935936
    [Google Scholar]
  39. GarciaK.O. OrnellasF.L.M. MartinP.K.M. PattiC.L. MelloL.E. FilhoF.R. HanS.W. LongoB.M. Therapeutic effects of the transplantation of VEGF overexpressing bone marrow mesenchymal stem cells in the hippocampus of murine model of Alzheimer’s disease.Front. Aging Neurosci.201463010.3389/fnagi.2014.0003024639647
    [Google Scholar]
  40. ConeA.S. YuanX. SunL. DukeL.C. VreonesM.P. CarrierA.N. KenyonS.M. CarverS.R. BenthemS.D. StimmellA.C. MoseleyS.C. HikeD. GrantS.C. WilberA.A. OlceseJ.M. MeckesD.G.Jr Mesenchymal stem cell-derived extracellular vesicles ameliorate Alzheimer’s disease-like phenotypes in a preclinical mouse model.Theranostics202111178129814210.7150/thno.6206934373732
    [Google Scholar]
  41. HernándezA.E. GarcíaE. Mesenchymal Stem Cell Therapy for Alzheimer’s Disease.Stem Cells Int.2021202111210.1155/2021/783442134512767
    [Google Scholar]
  42. BoeseA.C. HamblinM.H. LeeJ.P. Neural stem cell therapy for neurovascular injury in Alzheimer’s disease.Exp. Neurol.202032411311210.1016/j.expneurol.2019.11311231730762
    [Google Scholar]
  43. LiuS.P. FuR.H. HuangS.J. HuangY.C. ChenS.Y. ChangC.H. LiuC.H. TsaiC.H. ShyuW.C. LinS.Z. Stem cell applications in regenerative medicine for neurological disorders.Cell Transplant.201322463163710.3727/096368912X65514523127757
    [Google Scholar]
  44. ShimadaI.S. LeComteM.D. GrangerJ.C. QuinlanN.J. SpeesJ.L. Self-renewal and differentiation of reactive astrocyte-derived neural stem/progenitor cells isolated from the cortical peri-infarct area after stroke.J. Neurosci.201232237926794010.1523/JNEUROSCI.4303‑11.201222674268
    [Google Scholar]
  45. ZhangQ. WuH. WangY. GuG. ZhangW. XiaR. Neural stem cell transplantation decreases neuroinflammation in a transgenic mouse model of Alzheimer’s disease.J. Neurochem.2016136481582510.1111/jnc.1341326525612
    [Google Scholar]
  46. SerranoM.A. HantzopoulosP.A. BjörklundA. Ex vivo gene transfer of brain-derived neurotrophic factor to the intact rat forebrain: Neurotrophic effects on cholinergic neurons.Eur. J. Neurosci.19968472773510.1111/j.1460‑9568.1996.tb01258.x9081624
    [Google Scholar]
  47. QuT. BrannenC.L. KimH.M. SugayaK. Human neural stem cells improve cognitive function of aged brain.Neuroreport20011261127113210.1097/00001756‑200105080‑0001611338178
    [Google Scholar]
  48. WangQ. MatsumotoY. ShindoT. MiyakeK. ShindoA. KawanishiM. KawaiN. TamiyaT. NagaoS. Neural stem cells transplantation in cortex in a mouse model of Alzheimer’s disease.J. Med. Invest.2006531,2616910.2152/jmi.53.6116537997
    [Google Scholar]
  49. PrakashA. KumarA. Role of nuclear receptor on regulation of BDNF and neuroinflammation in hippocampus of β-amyloid animal model of Alzheimer’s disease.Neurotox. Res.201425433534710.1007/s12640‑013‑9437‑924277156
    [Google Scholar]
  50. JonesB.M. KitazawaM. CoriaM.H. CastelloN.A. MüllerF.J. LoringJ.F. YamasakiT.R. PoonW.W. GreenK.N. LaFerlaF.M. Neural stem cells improve cognition via BDNF in a transgenic model of Alzheimer disease.Proc. Natl. Acad. Sci.200910632135941359910.1073/pnas.090140210619633196
    [Google Scholar]
  51. SindenJ.D. StroemerP. GrigoryanG. PatelS. FrenchS.J. HodgesH. Functional Repair with Neural Stem Cells.Novartis Foundation Symposium200023127028310.1002/0470870834.ch16
    [Google Scholar]
  52. JonesB.M. SpencerB. MichaelS. CastelloN.A. AgazaryanA.A. DavisJ.L. MüllerF.J. LoringJ.F. MasliahE. LaFerlaF.M. Neural stem cells genetically-modified to express neprilysin reduce pathology in Alzheimer transgenic models.Stem Cell Res. Ther.2014524610.1186/scrt44025022790
    [Google Scholar]
  53. LeeH.J. LimI.J. ParkS.W. KimY.B. KoY. KimS.U. Human neural stem cells genetically modified to express human nerve growth factor (NGF) gene restore cognition in the mouse with ibotenic acid-induced cognitive dysfunction.Cell Transplant.201221112487249610.3727/096368912X63896422526467
    [Google Scholar]
  54. GomezA.E. de GroofA. BonillaE. MontesinosJ. TanjiK. BoldoghI. PonL. SchonE.A. A key role for MAM in mediating mitochondrial dysfunction in Alzheimer disease.Cell Death Dis.20189333510.1038/s41419‑017‑0215‑029491396
    [Google Scholar]
  55. FujiokaK. HanadaS. InoueY. SatoK. HirakuriK. ShiraishiK. KanayaF. IkedaK. UsuiR. YamamotoK. KimS. ManomeY. Effects of silica and titanium oxide particles on a human neural stem cell line: Morphology, mitochondrial activity, and gene expression of differentiation markers.Int. J. Mol. Sci.2014157117421175910.3390/ijms15071174224992594
    [Google Scholar]
  56. TakamatsuK. IkedaT. HarutaM. MatsumuraK. OgiY. NakagataN. UchinoM. AndoY. NishimuraY. SenjuS. Degradation of amyloid beta by human induced pluripotent stem cell-derived macrophages expressing Neprilysin-2.Stem Cell Res.201413344245310.1016/j.scr.2014.10.00125460605
    [Google Scholar]
  57. EckertA. HuangL. GonzalezR. KimH.S. HamblinM.H. LeeJ.P. Bystander effect fuels human induced pluripotent stem cell-derived neural stem cells to quickly attenuate early stage neurological deficits after stroke.Stem Cells Transl. Med.20154784185110.5966/sctm.2014‑018426025980
    [Google Scholar]
  58. ChaM.Y. KwonY.W. AhnH.S. JeongH. LeeY.Y. MoonM. BaikS.H. KimD.K. SongH. YiE.C. HwangD. KimH.S. Mook-JungI. Protein-induced pluripotent stem cells ameliorate cognitive dysfunction and reduce Aβ deposition in a mouse model of alzheimer’s disease.Stem Cells Transl. Med.20176129330510.5966/sctm.2016‑008128170178
    [Google Scholar]
  59. MuratoreC.R. RiceH.C. SrikanthP. CallahanD.G. ShinT. BenjaminL.N.P. WalshD.M. SelkoeD.J. PearseY.T.L. The familial Alzheimer’s disease APPV717I mutation alters APP processing and Tau expression in iPSC-derived neurons.Hum. Mol. Genet.201423133523353610.1093/hmg/ddu06424524897
    [Google Scholar]
  60. TolosaL. ParejaE. LechónG.M.J. Clinical application of pluripotent stem cells.Transplantation2016100122548255710.1097/TP.000000000000142627495745
    [Google Scholar]
  61. BalezR. SteinerN. EngelM. MuñozS.S. LumJ.S. WuY. WangD. VallottonP. SachdevP. O’ConnorM. SidhuK. MünchG. OoiL. Neuroprotective effects of apigenin against inflammation, neuronal excitability and apoptosis in an induced pluripotent stem cell model of Alzheimer’s disease.Sci. Rep.2016613145010.1038/srep3145027514990
    [Google Scholar]
  62. BrookhouserN. RamanS. PottsC. BrafmanD. May i cut in? gene editing approaches in human induced pluripotent stem cells.Cells201761510.3390/cells601000528178187
    [Google Scholar]
  63. PaullD. SevillaA. ZhouH. HahnA.K. KimH. NapolitanoC. TsankovA. ShangL. KrumholzK. JagadeesanP. WoodardC.M. SunB. VilbouxT. ZimmerM. ForeroE. MoroziewiczD.N. MartinezH. MalicdanM.C.V. WeissK.A. VensandL.B. DusenberryC.R. PolusH. SyK.T.L. KahlerD.J. GahlW.A. SolomonS.L. ChangS. MeissnerA. EgganK. NoggleS.A. Automated, high-throughput derivation, characterization and differentiation of induced pluripotent stem cells.Nat. Methods201512988589210.1038/nmeth.350726237226
    [Google Scholar]
  64. HeinekenF.G. SkalakR. Tissue engineering: A brief overview.J. Biomech. Eng.1991113211111210.1115/1.28912231875683
    [Google Scholar]
  65. NSF: Abt Report on “The Emergence of Tissue Engineering as a Research Field.”Available from: https://www.nsf.gov/pubs/2004/nsf0450/start.htm [accessed 2023-11-11].
  66. GurdonJ.B. ByrneJ.A. SimonssonS. Nuclear reprogramming and stem cell creation.Proc. Natl. Acad. Sci.2003100S1118191182210.1073/pnas.183420710012920185
    [Google Scholar]
  67. VranckxJ.J. HondtM.D. Tissue engineering and surgery: From translational studies to human trials.Innov. Surg. Sci.20172418920210.1515/iss‑2017‑001131579752
    [Google Scholar]
  68. PengY. LiJ. LinH. TianS. LiuS. PuF. ZhaoL. MaK. QingX. ShaoZ. Endogenous repair theory enriches construction strategies for orthopaedic biomaterials: A narrative review.Biomater. Transl.20212434336010.12336/biomatertransl.2021.04.00835837417
    [Google Scholar]
  69. OdelbergS.J. Inducing cellular dedifferentiation: A potential method for enhancing endogenous regeneration in mammals.Semin. Cell Dev. Biol.200213533534310.1016/S108495210200089712324215
    [Google Scholar]
  70. YanY. WangX. ZhuG. Endometrium derived stem cells as potential candidates in nervous system repair.Ann. Biomed. Eng.202250548549810.1007/s10439‑022‑02909‑035235077
    [Google Scholar]
  71. HenchcliffeC. ParmarM. Repairing the brain: Cell replacement using stem cell-based technologies.J. Parkinsons Dis.20188s1S131S13710.3233/JPD‑18148830584166
    [Google Scholar]
  72. TheotokisA.A. RuegerM.A. MkhikianH. KorbE. McKayR.D.G. Signaling pathways controlling neural stem cells slow progressive brain disease.Cold Spring Harb. Symp. Quant. Biol.200873040341010.1101/sqb.2008.73.01819022746
    [Google Scholar]
  73. SchweitzerJ.S. SongB. HerringtonT.M. ParkT.Y. LeeN. KoS. JeonJ. ChaY. KimK. LiQ. HenchcliffeC. KaplittM. NeffC. RapalinoO. SeoH. LeeI.H. KimJ. KimT. PetskoG.A. RitzJ. CohenB.M. KongS.W. LeblancP. CarterB.S. KimK.S. Personalized iPSC-derived dopamine progenitor cells for parkinson’s disease.N. Engl. J. Med.2020382201926193210.1056/NEJMoa191587232402162
    [Google Scholar]
  74. LiL. JiangQ. DingG. ZhangL. ZhangZ.G. LiQ. PandaS. LuM. EwingJ.R. ChoppM. Effects of administration route on migration and distribution of neural progenitor cells transplanted into rats with focal cerebral ischemia, an MRI study.J. Cereb. Blood Flow Metab.201030365366210.1038/jcbfm.2009.23819888287
    [Google Scholar]
  75. ZhangQ. LiJ. AnW. FanY. CaoQ. Neural stem cell secretome and its role in the treatment of neurodegenerative disorders.J. Integr. Neurosci.202019117918510.31083/j.jin.2020.01.114232259896
    [Google Scholar]
  76. BarberiT. BradburyM. DincerZ. PanagiotakosG. SocciN.D. StuderL. Derivation of engraftable skeletal myoblasts from human embryonic stem cells.Nat. Med.200713564264810.1038/nm153317417652
    [Google Scholar]
  77. ArberC. LovejoyC. WrayS. Stem cell models of Alzheimer’s disease: Progress and challenges.Alzheimers Res. Ther.2017914210.1186/s13195‑017‑0268‑428610595
    [Google Scholar]
  78. KhiaviC.F. DolatiS. KhiaviC.A. AbbaszadehH. MalekiA.L. PourlakT. MehdizadehA. YousefiM. Prospects for the application of mesenchymal stem cells in alzheimer’s disease treatment.Life Sciences201923111656410.1016/j.lfs.2019.116564
    [Google Scholar]
  79. ThéryC. OstrowskiM. SeguraE. Membrane vesicles as conveyors of immune responses.Nat. Rev. Immunol.20099858159310.1038/nri256719498381
    [Google Scholar]
  80. KatsudaT. KosakaN. TakeshitaF. OchiyaT. The therapeutic potential of mesenchymal stem cell-derived extracellular vesicles.Proteomics20131310-111637165310.1002/pmic.20120037323335344
    [Google Scholar]
  81. ValadiH. EkströmK. BossiosA. SjöstrandM. LeeJ.J. LötvallJ.O. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells.Nat. Cell Biol.20079665465910.1038/ncb159617486113
    [Google Scholar]
  82. YlÖstaloJ.H. BartoshT.J. CobleK. ProckopD.J. Human mesenchymal stem/stromal cells cultured as spheroids are self-activated to produce prostaglandin E2 that directs stimulated macrophages into an anti-inflammatory phenotype.Stem Cells201230102283229610.1002/stem.119122865689
    [Google Scholar]
  83. KaurD. SharmaV. DeshmukhR. Activation of microglia and astrocytes: A roadway to neuroinflammation and Alzheimer’s disease.Inflammopharmacology201927466367710.1007/s10787‑019‑00580‑x30874945
    [Google Scholar]
  84. GiuntiD. ParodiB. UsaiC. VerganiL. CasazzaS. BruzzoneS. MancardiG. UccelliA. Mesenchymal stem cells shape microglia effector functions through the release of CX3CL1.Stem Cells20123092044205310.1002/stem.117422821677
    [Google Scholar]
  85. LeeJ.K. SchuchmanE.H. JinH.K. BaeJ.S. Soluble CCL5 derived from bone marrow-derived mesenchymal stem cells and activated by amyloid β ameliorates Alzheimer’s disease in mice by recruiting bone marrow-induced microglia immune responses.Stem Cells20123071544155510.1002/stem.112522570192
    [Google Scholar]
  86. LiuH-Y. TangR-H. QiR-Q. Interleukin-4 affects microglial autophagic flux.Neural Regen. Res.20191491594160210.4103/1673‑5374.25597531089059
    [Google Scholar]
  87. HeM. ShiX. YangM. YangT. LiT. ChenJ. Mesenchymal stem cells-derived IL-6 activates AMPK/MTOR signaling to inhibit the proliferation of reactive astrocytes induced by hypoxic-ischemic brain damage.Exp Neurol.2019311153210.1016/j.expneurol.2018.09.006
    [Google Scholar]
  88. FengM.G. LiuC.F. ChenL. FengW.B. LiuM. HaiH. LuJ.M. MiR-21 attenuates apoptosis-triggered by amyloid-β via modulating PDCD4/ PI3K/AKT/GSK-3β pathway in SH-SY5Y cells.Biomed. Pharmacother.20181011003100710.1016/j.biopha.2018.02.04329635890
    [Google Scholar]
  89. KanamaruT. KamimuraN. YokotaT. IuchiK. NishimakiK. TakamiS. AkashibaH. ShitakaY. KatsuraK. KimuraK. OhtaS. Oxidative stress accelerates amyloid deposition and memory impairment in a double- transgenic mouse model of Alzheimer’s disease.Neurosci. Lett.201558712613110.1016/j.neulet.2014.12.03325529196
    [Google Scholar]
  90. GhasemiM. Mesenchymal stromal cell-derived secretome-based therapy for neurodegenerative diseases: Overview of clinical trials.Stem Cell Res Ther202314112210.1186/s13287‑023‑03264‑037143147
    [Google Scholar]
  91. DansokhoC. HenekaM.T. Neuroinflammatory responses in Alzheimer’s disease.J. Neural Transm.2018125577177910.1007/s00702‑017‑1831‑729273951
    [Google Scholar]
  92. MehrabadiS. MotevaseliE. SadrS.S. MoradbeygiK. Hypoxic- conditioned medium from adipose tissue mesenchymal stem cells improved neuroinflammation through alternation of toll like receptor [TLR] 2 and TLR4 expression in model of alzheimer’s disease rats.Behav. Brain Res.201937911236210.1016/j.bbr.2019.11236231739000
    [Google Scholar]
  93. LuarteA. BátizL.F. WynekenU. LafourcadeC. Potential therapies by stem cell-derived exosomes in CNS diseases: Focusing on the neurogenic niche.Stem Cells Int.2016201611610.1155/2016/573605927195011
    [Google Scholar]
  94. FangY. GaoT. ZhangB. PuJ. Recent advances: Decoding alzheimer’s disease with stem cells.Front. Aging Neurosci.2018107710.3389/fnagi.2018.0007729623038
    [Google Scholar]
  95. MandaiM. WatanabeA. KurimotoY. HiramiY. MorinagaC. DaimonT. FujiharaM. AkimaruH. SakaiN. ShibataY. TeradaM. NomiyaY. TanishimaS. NakamuraM. KamaoH. SugitaS. OnishiA. ItoT. FujitaK. KawamataS. GoM.J. ShinoharaC. HataK. SawadaM. YamamotoM. OhtaS. OharaY. YoshidaK. KuwaharaJ. KitanoY. AmanoN. UmekageM. KitaokaF. TanakaA. OkadaC. TakasuN. OgawaS. YamanakaS. TakahashiM. Autologous induced stem-cell–derived retinal cells for macular degeneration.N. Engl. J. Med.2017376111038104610.1056/NEJMoa160836828296613
    [Google Scholar]
  96. LiuK. JiK. GuoL. WuW. LuH. ShanP. YanC. Mesenchymal stem cells rescue injured endothelial cells in an in vitro ischemia–reperfusion model via tunneling nanotube like structure-mediated mitochondrial transfer.Microvasc. Res.201492101810.1016/j.mvr.2014.01.00824486322
    [Google Scholar]
  97. AkiyamaH. BargerS. BarnumS. BradtB. BauerJ. ColeG.M. CooperN.R. EikelenboomP. EmmerlingM. FiebichB.L. FinchC.E. FrautschyS. GriffinW.S. HampelH. HullM. LandrethG. LueL. MrakR. MackenzieI.R. McGeerP.L. O’BanionM.K. PachterJ. PasinettiG. SalamanP.C. RogersJ. RydelR. ShenY. StreitW. StrohmeyerR. TooyomaI. MuiswinkelV.F.L. VeerhuisR. WalkerD. WebsterS. WegrzyniakB. WenkG. Wyss-CorayT. Inflammation and Alzheimer’s disease.Neurobiol. Aging200021338342110.1016/S0197‑4580(00)00124‑X10858586
    [Google Scholar]
  98. ZhouY. YuanJ. ZhouB. LeeA.J. LeeA.J. GhawjiM.Jr YooT.J. The therapeutic efficacy of human adipose tissue-derived mesenchymal stem cells on experimental autoimmune hearing loss in mice.Immunology2011133113314010.1111/j.1365‑2567.2011.03421.x21366561
    [Google Scholar]
  99. FerreiraL.M.R. RadjiM.M.A. How induced pluripotent stem cells are redefining personalized medicine.Gene201352011610.1016/j.gene.2013.02.03723470844
    [Google Scholar]
  100. SapkotaA. Stem Cells- Sources, Characteristics, Types, Uses | Developmental Biology. Online Microbiology Notes.Available from: https://microbenotes.com/stem-cells/
  101. ZhangK. DuX. GaoY. LiuS. XuY. Mesenchymal stem cells for treating alzheimer’s disease: Cell therapy and chemical reagent pretreatment.J. Alzheimers Dis.202393386387810.3233/JAD‑22125337125553
    [Google Scholar]
  102. SaltaE. LazarovO. FitzsimonsC.P. TanziR. LucassenP.J. ChoiS.H. Adult hippocampal neurogenesis in Alzheimer’s disease: A roadmap to clinical relevance.Cell Stem Cell202330212013610.1016/j.stem.2023.01.00236736288
    [Google Scholar]
  103. MareiH.E. KhanM.U.A. HasanA. Potential use of iPSCs for disease modeling, drug screening, and cell-based therapy for Alzheimer’s disease.Cell. Mol. Biol. Lett.20232819810.1186/s11658‑023‑00504‑238031028
    [Google Scholar]
  104. WangH. HuberC.C. LiX.P. Mesenchymal and neural stem cell-derived exosomes in treating alzheimer’s disease.Bioengineering202310225325310.3390/bioengineering1002025336829747
    [Google Scholar]
  105. GiovannelliL. BariE. JommiC. TartaraF. ArmocidaD. GarbossaD. CofanoF. TorreM.L. SegaleL. Mesenchymal stem cell secretome and extracellular vesicles for neurodegenerative diseases: Risk-benefit profile and next steps for the market access.Bioact. Mater.202329163510.1016/j.bioactmat.2023.06.01337456581
    [Google Scholar]
  106. YinT. LiuY. JiW. ZhuangJ. ChenX. GongB. ChuJ. LiangW. GaoJ. YinY. Engineered mesenchymal stem cell-derived extracellular vesicles: A state-of-the-art multifunctional weapon against Alzheimer’s disease.Theranostics20231341264128510.7150/thno.8186036923533
    [Google Scholar]
/content/journals/cscr/10.2174/011574888X308941240507050855
Loading
/content/journals/cscr/10.2174/011574888X308941240507050855
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test