Skip to content
2000
Volume 20, Issue 4
  • ISSN: 1574-888X
  • E-ISSN: 2212-3946

Abstract

Induced Pluripotent Stem Cells (iPSCs) are among the top versatile implements of biomedical research. Stem cell science has made strides over the past few years, emerging as a new opportunity to treat cancer, and many such continuous initiatives have been made into clinical trials. As the global mortality rate is too high despite the effectiveness of prevalent cancer therapies, this review explores the potential of iPSC in different aspects of cancer-related areas. The preparation of iPSCs, including their derivation from cancer stem cells, was covered after establishing the intricacy of current cancer treatments. This article highlights the potential of iPSC-based NK cells and dendritic cells for immunotherapy and delves into the role of iPSC-based mesenchymal cells in targeted therapy. The potential of iPSC-derived organoids as a vital tool for disease modeling and drug discovery has been showcased, and the importance of iPSC-based cancer vaccines is also emphasized. The ongoing clinical trials of iPSC-based cancer treatment have also been highlighted. Though much work remains to be done to implicate these iPSC-based therapeutic options from research labs to clinics and hospitals, ongoing studies and clinical/translational follow-ups raise hope for novel cancer therapies employing iPSC technology.

Loading

Article metrics loading...

/content/journals/cscr/10.2174/011574888X294791240408055222
2024-04-15
2025-12-08
Loading full text...

Full text loading...

References

  1. WeissmanI.L. Stem cells.Cell2000100115716810.1016/S0092‑8674(00)81692‑X10647940
    [Google Scholar]
  2. EvansM.J. KaufmanM.H. Establishment in culture of pluripotential cells from mouse embryos.Nature1981292581915415610.1038/292154a07242681
    [Google Scholar]
  3. ThomsonJ.A. Itskovitz-EldorJ. ShapiroS.S. WaknitzM.A. SwiergielJ.J. MarshallV.S. JonesJ.M. Embryonic stem cell lines derived from human blastocysts.Science199828253911145114710.1126/science.282.5391.11459804556
    [Google Scholar]
  4. ZhangY. LiZ. LiuN. The stemness of perinatal stem cells: Biology.Manufacturing and Translational Medicine2019273710.1007/978‑981‑13‑2703‑2_3
    [Google Scholar]
  5. TorreP. FloresA.I. Current status and future prospects of perinatal stem cells.Genes2020121610.3390/genes1201000633374593
    [Google Scholar]
  6. BondA.M. MingG. SongH. Adult mammalian neural stem cells and neurogenesis: Five decades later.Cell Stem Cell201517438539510.1016/j.stem.2015.09.00326431181
    [Google Scholar]
  7. BeltramiA.P. BarlucchiL. TorellaD. BakerM. LimanaF. ChimentiS. KasaharaH. RotaM. MussoE. UrbanekK. LeriA. KajsturaJ. Nadal-GinardB. AnversaP. Adult cardiac stem cells are multipotent and support myocardial regeneration.Cell2003114676377610.1016/S0092‑8674(03)00687‑114505575
    [Google Scholar]
  8. LoB. ParhamL. Ethical issues in stem cell research.Endocr. Rev.200930320421310.1210/er.2008‑003119366754
    [Google Scholar]
  9. TakahashiK. TanabeK. OhnukiM. NaritaM. IchisakaT. TomodaK. YamanakaS. Induction of pluripotent stem cells from adult human fibroblasts by defined factors.Cell2007131586187210.1016/j.cell.2007.11.01918035408
    [Google Scholar]
  10. YuJ. VodyanikM.A. Smuga-OttoK. Antosiewicz-BourgetJ. FraneJ.L. TianS. NieJ. JonsdottirG.A. RuottiV. StewartR. SlukvinI.I. ThomsonJ.A. Induced pluripotent stem cell lines derived from human somatic cells.Science200731858581917192010.1126/science.115152618029452
    [Google Scholar]
  11. KimC. Disease modeling and cell based therapy with iPSC: Future therapeutic option with fast and safe application.Blood Res.201449171410.5045/br.2014.49.1.724724061
    [Google Scholar]
  12. KumariA. ChaudharyA. HaqueR. Induced pluripotent stem cells for the treatment of neurodegenerative disease: Current and future prospects.Regenerative Therapies in Ischemic Stroke Recovery. RazaS.S. SingaporeSpringer Nature Singapore202210713610.1007/978‑981‑16‑8562‑0_5
    [Google Scholar]
  13. LeiF. HaqueR. XiongX. SongJ. Modulation of Autoimmune Diseases by IPS Cells.Animal Models for Stem Cell Therapy. ChristB. OerleckeJ. StockP. New York, NYSpringer New York201436537710.1007/978‑1‑4939‑1453‑1_30
    [Google Scholar]
  14. LeiF. HaqueR. WeilerL. VranaK.E. SongJ. T lineage differentiation from induced pluripotent stem cells.Cell. Immunol.200926011510.1016/j.cellimm.2009.09.00519811778
    [Google Scholar]
  15. LeiF. HaqueR. XiongX. SongJ. Directed differentiation of induced pluripotent stem cells towards T lymphocytes.J Vis Exp201263e3986
    [Google Scholar]
  16. PaulC.D. MistriotisP. KonstantopoulosK. Cancer cell motility: Lessons from migration in confined spaces.Nat. Rev. Cancer201717213114010.1038/nrc.2016.12327909339
    [Google Scholar]
  17. DrukerB.J. TamuraS. BuchdungerE. OhnoS. SegalG.M. FanningS. ZimmermannJ. LydonN.B. Effects of a selective inhibitor of the Abl tyrosine kinase on the growth of Bcr–Abl positive cells.Nat. Med.19962556156610.1038/nm0596‑5618616716
    [Google Scholar]
  18. HarriesM. SmithI. The development and clinical use of trastuzumab (Herceptin).Endocr. Relat. Cancer200292758510.1677/erc.0.009007512121832
    [Google Scholar]
  19. ShiravandY. KhodadadiF. KashaniS.M.A. Hosseini-FardS.R. HosseiniS. SadeghiradH. LadwaR. O’ByrneK. KulasingheA. Immune checkpoint inhibitors in cancer therapy.Curr. Oncol.20222953044306010.3390/curroncol2905024735621637
    [Google Scholar]
  20. WangZ. WuZ. LiuY. HanW. New development in CAR-T cell therapy.J. Hematol. Oncol.20171015310.1186/s13045‑017‑0423‑128222796
    [Google Scholar]
  21. GovermanJ. GomezS.M. SegesmanK.D. HunkapillerT. LaugW.E. HoodL. Chimeric immunoglobulin-T cell receptor proteins form functional receptors: Implications for T cell receptor complex formation and activation.Cell199060692993910.1016/0092‑8674(90)90341‑B2138514
    [Google Scholar]
  22. NoaksE. PeticoneC. KotsopoulouE. BracewellD.G. Enriching leukapheresis improves T cell activation and transduction efficiency during CAR T processing.Mol. Ther. Methods Clin. Dev.20212067568710.1016/j.omtm.2021.02.00233718517
    [Google Scholar]
  23. MiliotouA.N. PapadopoulouL.C. CAR T-cell therapy: A new era in cancer immunotherapy.Curr. Pharm. Biotechnol.201819151810.2174/138920101966618041809552629667553
    [Google Scholar]
  24. Völker-AlbertM. BronkhorstA. HoldenriederS. ImhofA. Histone modifications in stem cell development and their clinical implications.Stem Cell Reports20201561196120510.1016/j.stemcr.2020.11.00233296672
    [Google Scholar]
  25. LeeD.S. ShinJ.Y. TongeP.D. PuriM.C. LeeS. ParkH. LeeW.C. HusseinS.M.I. BleazardT. YunJ.Y. KimJ. LiM. CloonanN. WoodD. ClancyJ.L. MosbergenR. YiJ.H. YangK.S. KimH. RheeH. WellsC.A. PreissT. GrimmondS.M. RogersI.M. NagyA. SeoJ.S. An epigenomic roadmap to induced pluripotency reveals DNA methylation as a reprogramming modulator.Nat. Commun.201451561910.1038/ncomms661925493341
    [Google Scholar]
  26. ApostolouE. HochedlingerK. Chromatin dynamics during cellular reprogramming.Nature2013502747246247110.1038/nature1274924153299
    [Google Scholar]
  27. BuganimY. FaddahD.A. JaenischR. Mechanisms and models of somatic cell reprogramming.Nat. Rev. Genet.201314642743910.1038/nrg347323681063
    [Google Scholar]
  28. TakahashiK. YamanakaS. A decade of transcription factor-mediated reprogramming to pluripotency.Nat. Rev. Mol. Cell Biol.201617318319310.1038/nrm.2016.826883003
    [Google Scholar]
  29. AasenT. RayaA. BarreroM.J. GarretaE. ConsiglioA. GonzalezF. VassenaR. BilićJ. PekarikV. TiscorniaG. EdelM. BouéS. BelmonteJ.C.I. Efficient and rapid generation of induced pluripotent stem cells from human keratinocytes.Nat. Biotechnol.200826111276128410.1038/nbt.150318931654
    [Google Scholar]
  30. KimJ.B. ZaehresH. WuG. GentileL. KoK. SebastianoV. Araúzo-BravoM.J. RuauD. HanD.W. ZenkeM. SchölerH.R. Pluripotent stem cells induced from adult neural stem cells by reprogramming with two factors.Nature2008454720464665010.1038/nature0706118594515
    [Google Scholar]
  31. EminliS. UtikalJ. ArnoldK. JaenischR. HochedlingerK. Reprogramming of neural progenitor cells into induced pluripotent stem cells in the absence of exogenous Sox2 expression.Stem Cells200826102467247410.1634/stemcells.2008‑031718635867
    [Google Scholar]
  32. HannaJ. SahaK. PandoB. van ZonJ. LengnerC.J. CreyghtonM.P. van OudenaardenA. JaenischR. Direct cell reprogramming is a stochastic process amenable to acceleration.Nature2009462727359560110.1038/nature0859219898493
    [Google Scholar]
  33. TsubookaN. IchisakaT. OkitaK. TakahashiK. NakagawaM. YamanakaS. Roles of Sall4 in the generation of pluripotent stem cells from blastocysts and fibroblasts.Genes Cells200914668369410.1111/j.1365‑2443.2009.01301.x19476507
    [Google Scholar]
  34. ParkI.H. ZhaoR. WestJ.A. YabuuchiA. HuoH. InceT.A. LerouP.H. LenschM.W. DaleyG.Q. Reprogramming of human somatic cells to pluripotency with defined factors.Nature2008451717514114610.1038/nature0653418157115
    [Google Scholar]
  35. HongH. TakahashiK. IchisakaT. AoiT. KanagawaO. NakagawaM. OkitaK. YamanakaS. Suppression of induced pluripotent stem cell generation by the p53–p21 pathway.Nature200946072591132113510.1038/nature0823519668191
    [Google Scholar]
  36. MaekawaM. YamanakaS. Glis1, a unique pro-reprogramming factor, may facilitate clinical applications of IPSC technology. Cell cycle 201136133614
    [Google Scholar]
  37. JungL. TropelP. MoalY. TeletinM. JeandidierE. GayonR. HimmelspachC. BelloF. AndréC. ToschA. MansouriA. Bruant-RodierC. BouilléP. VivilleS. ONSL and OSKM cocktails act synergistically in reprogramming human somatic cells into induced pluripotent stem cells.Mol. Hum. Reprod.201420653854910.1093/molehr/gau01224501429
    [Google Scholar]
  38. BlellochR. VenereM. YenJ. Ramalho-SantosM. Generation of induced pluripotent stem cells in the absence of drug selection.Cell Stem Cell20071324524710.1016/j.stem.2007.08.00818371358
    [Google Scholar]
  39. WernigM. MeissnerA. ForemanR. BrambrinkT. KuM. HochedlingerK. BernsteinB.E. JaenischR. In vitro reprogramming of fibroblasts into a pluripotent ES-cell-like state.Nature2007448715131832410.1038/nature0594417554336
    [Google Scholar]
  40. HawleyR.G. LieuF.H. FongA.Z. HawleyT.S. Versatile retroviral vectors for potential use in gene therapy.Gene Ther.1994121361387584069
    [Google Scholar]
  41. TakahashiK. OkitaK. NakagawaM. YamanakaS. Induction of pluripotent stem cells from fibroblast cultures.Nat. Protoc.20072123081308910.1038/nprot.2007.41818079707
    [Google Scholar]
  42. OkitaK. IchisakaT. YamanakaS. Generation of germline-competent induced pluripotent stem cells.Nature2007448715131331710.1038/nature0593417554338
    [Google Scholar]
  43. VarasF. StadtfeldM. de Andres-AguayoL. MaheraliN. di TullioA. PantanoL. NotredameC. HochedlingerK. GrafT. Fibroblast-derived induced pluripotent stem cells show no common retroviral vector insertions.Stem Cells200927230030610.1634/stemcells.2008‑069619008347
    [Google Scholar]
  44. StadtfeldM. NagayaM. UtikalJ. WeirG. HochedlingerK. Induced pluripotent stem cells generated without viral integration.Science 20083225903945949
    [Google Scholar]
  45. MedvedevS.P. ShevchenkoA.I. ZakianS.M. Induced pluripotent stem cells: Problems and advantages when applying them in regenerative medicine.Acta Nat.201022182710.32607/20758251‑2010‑2‑2‑18‑2722649638
    [Google Scholar]
  46. FusakiN. BanH. NishiyamaA. SaekiK. HasegawaM. Efficient induction of transgene-free human pluripotent stem cells using a vector based on Sendai virus, an RNA virus that does not integrate into the host genome.Proc. Jpn. Acad., Ser. B, Phys. Biol. Sci.200985834836210.2183/pjab.85.34819838014
    [Google Scholar]
  47. YuJ. HuK. Smuga-OttoK. TianS. StewartR. SlukvinI. I. ThomsonJ. A. Human induced pluripotent stem cells free of vector and transgene sequences.Science 20093045928797801
    [Google Scholar]
  48. YamanakaS. Induced pluripotent stem cells: Past, present, and future.Cell Stem Cell201210667868410.1016/j.stem.2012.05.00522704507
    [Google Scholar]
  49. WarrenL. ManosP.D. AhfeldtT. LohY.H. LiH. LauF. EbinaW. MandalP.K. SmithZ.D. MeissnerA. DaleyG.Q. BrackA.S. CollinsJ.J. CowanC. SchlaegerT.M. RossiD.J. Highly efficient reprogramming to pluripotency and directed differentiation of human cells with synthetic modified mRNA.Cell Stem Cell20107561863010.1016/j.stem.2010.08.01220888316
    [Google Scholar]
  50. OngS.G. LeeW.H. KodoK. WuJ.C. MicroRNA-mediated regulation of differentiation and trans-differentiation in stem cells.Adv. Drug Deliv. Rev.20158831510.1016/j.addr.2015.04.00425887992
    [Google Scholar]
  51. MeltonC. JudsonR.L. BlellochR. Opposing microRNA families regulate self-renewal in mouse embryonic stem cells.Nature2010463728162162610.1038/nature0872520054295
    [Google Scholar]
  52. Anokye-DansoF. TrivediC.M. JuhrD. GuptaM. CuiZ. TianY. ZhangY. YangW. GruberP.J. EpsteinJ.A. MorriseyE.E. Highly efficient miRNA-mediated reprogramming of mouse and human somatic cells to pluripotency.Cell Stem Cell20118437638810.1016/j.stem.2011.03.00121474102
    [Google Scholar]
  53. HouP. LiY. ZhangX. LiuC. GuanJ. LiH. ZhaoT. YeJ. YangW. LiuK. GeJ. XuJ. ZhangQ. ZhaoY. DengH. Pluripotent stem cells induced from mouse somatic cells by small-molecule compounds.Science 20133416146651654
    [Google Scholar]
  54. KnyazerA. BunuG. TorenD. MracicaT.B. SegevY. WolfsonM. MuradianK.K. TacutuR. FraifeldV.E. Small molecules for cell reprogramming: A systems biology analysis.Aging20211324257392576210.18632/aging.20379134919532
    [Google Scholar]
  55. BiswasD. JiangP. Chemically induced reprogramming of somatic cells to pluripotent stem cells and neural cells.Int. J. Mol. Sci.201617222610.3390/ijms1702022626861316
    [Google Scholar]
  56. LangeL. EstebanM.A. SchambachA. Back to pluripotency: Fully chemically induced reboot of human somatic cells.Signal Transduct. Target. Ther.20227124410.1038/s41392‑022‑01109‑535853857
    [Google Scholar]
  57. ZhangP. ZhangG. WanX. Challenges and new technologies in adoptive cell therapy.J. Hematol. Oncol.20231619710.1186/s13045‑023‑01492‑837596653
    [Google Scholar]
  58. ChenY. HuangP. NiuM. TianC. ZhangT. PengZ. Regeneration of T cells from human-induced pluripotent stem cells for CAR-T cell medicated immunotherapy.Front. Bioeng. Biotechnol.202311115950710.3389/fbioe.2023.115950737274170
    [Google Scholar]
  59. UedaT. ShiinaS. IriguchiS. TerakuraS. KawaiY. KabaiR. SakamotoS. WatanabeA. OharaK. WangB. XuH. MinagawaA. HottaA. WoltjenK. UemuraY. KodamaY. SenoH. NakatsuraT. TamadaK. KanekoS. Optimization of the proliferation and persistency of CAR T cells derived from human induced pluripotent stem cells.Nat. Biomed. Eng.202271243710.1038/s41551‑022‑00969‑036509913
    [Google Scholar]
  60. CichockiF. BjordahlR. GaidarovaS. MahmoodS. AbujarourR. WangH. TuiningaK. FelicesM. DavisZ.B. BendzickL. ClarkeR. StokelyL. RogersP. GeM. RobinsonM. ReznerB. RobbinsD.L. LeeT.T. KaufmanD.S. BlazarB.R. ValamehrB. MillerJ.S. iPSC-derived NK cells maintain high cytotoxicity and enhance in vivo tumor control in concert with T cells and anti–PD-1 therapy.Sci. Transl. Med.202012568eaaz561810.1126/scitranslmed.aaz561833148626
    [Google Scholar]
  61. CichockiF. GoodridgeJ.P. BjordahlR. MahmoodS. DavisZ.B. GaidarovaS. AbujarourR. GroffB. WittyA. WangH. TuiningaK. KodalB. FelicesM. BonelloG. HuffmanJ. DaileyT. LeeT.T. WalcheckB. ValamehrB. MillerJ.S. Dual antigen–targeted off-the-shelf NK cells show durable response and prevent antigen escape in lymphoma and leukemia.Blood2022140232451246210.1182/blood.202101518435917442
    [Google Scholar]
  62. XueD. LuS. ZhangH. ZhangL. DaiZ. KaufmanD.S. ZhangJ. Induced pluripotent stem cell-derived engineered T cells, natural killer cells, macrophages, and dendritic cells in immunotherapy.Trends Biotechnol.202341790792210.1016/j.tibtech.2023.02.00336858941
    [Google Scholar]
  63. JiS. XiongM. ChenH. LiuY. ZhouL. HongY. WangM. WangC. FuX. SunX. Cellular rejuvenation: Molecular mechanisms and potential therapeutic interventions for diseases.Signal Transduct. Target. Ther.20238111610.1038/s41392‑023‑01343‑536918530
    [Google Scholar]
  64. JiangZ. HanY. CaoX. Induced pluripotent stem cell (iPSCs) and their application in immunotherapy.Cell. Mol. Immunol.2014111172410.1038/cmi.2013.6224336163
    [Google Scholar]
  65. HannaJ. WernigM. MarkoulakiS. SunC.-W. MeissnerA. CassadyJ. P. BeardC. BrambrinkT. WuL.-C. TownesT. M. JaenischR. Treatment of sickle cell anemia mouse model with ips cells generated from autologous skin.Science 2007318585819201923
    [Google Scholar]
  66. MaehrR. ChenS. SnitowM. LudwigT. YagasakiL. GolandR. LeibelR.L. MeltonD.A. Generation of pluripotent stem cells from patients with type 1 diabetes.Proc. Natl. Acad. Sci. USA200910637157681577310.1073/pnas.090689410619720998
    [Google Scholar]
  67. HaqueR. LeiF. XiongX. BianY. ZhaoB. WuY. SongJ. Programming of regulatory T cells from pluripotent stem cells and prevention of autoimmunity.J. Immunol.201218931228123610.4049/jimmunol.120063322732595
    [Google Scholar]
  68. LeiF. ZhaoB. HaqueR. XiongX. BudgeonL. ChristensenN.D. WuY. SongJ. In vivo programming of tumor antigen-specific T lymphocytes from pluripotent stem cells to promote cancer immunosurveillance.Cancer Res.201171144742474710.1158/0008‑5472.CAN‑11‑035921628492
    [Google Scholar]
  69. PatelS.J. YamauchiT. ItoF. Induced pluripotent stem cell-derived T cells for cancer immunotherapy.Surg. Oncol. Clin. N. Am.201928348950410.1016/j.soc.2019.02.00531079802
    [Google Scholar]
  70. ZhouY. LiM. ZhouK. BrownJ. TsaoT. CenX. HusmanT. BajpaiA. DunnZ.S. YangL. Engineering induced pluripotent stem cells for cancer immunotherapy.Cancers2022149226610.3390/cancers1409226635565395
    [Google Scholar]
  71. SchultzL. MackallC. Driving CAR T cell translation forward.Sci. Transl. Med.201911481eaaw212710.1126/scitranslmed.aaw212730814337
    [Google Scholar]
  72. ZhaoJ. LinQ. SongY. LiuD. Universal CARs, universal T cells, and universal CAR T cells.J. Hematol. Oncol.201811113210.1186/s13045‑018‑0677‑230482221
    [Google Scholar]
  73. MillerJ.S. LanierL.L. Natural killer cells in cancer immunotherapy.Annu. Rev. Cancer Biol.2019317710310.1146/annurev‑cancerbio‑030518‑055653
    [Google Scholar]
  74. LiuE. MarinD. BanerjeeP. MacapinlacH.A. ThompsonP. BasarR. Nassif KerbauyL. OvermanB. ThallP. KaplanM. NandivadaV. KaurI. Nunez CortesA. CaoK. DaherM. HosingC. CohenE.N. KebriaeiP. MehtaR. NeelapuS. NietoY. WangM. WierdaW. KeatingM. ChamplinR. ShpallE.J. RezvaniK. Use of CAR-transduced natural killer cells in CD19-positive lymphoid tumors.N. Engl. J. Med.2020382654555310.1056/NEJMoa191060732023374
    [Google Scholar]
  75. SchmidtC. The struggle to do no harm in clinical trials.Nature20175527685S74S7510.1038/d41586‑017‑08705‑4
    [Google Scholar]
  76. CorthayA. Does the immune system naturally protect against cancer?Front. Immunol.2014519710.3389/fimmu.2014.0019724860567
    [Google Scholar]
  77. HongD. PatelS. PatelM. MusniK. AndersonM. CooleyS. ValamehrB. ChuW. 380 preliminary results of an ongoing phase I trial of FT500, a first-in-class, off-the-shelf, induced pluripotent stem cell (IPSC) derived natural killer (NK) cell therapy in advanced solid tumors.Regular and young investigator award abstractsBMJ Publishing Group Ltd2020A231A232
    [Google Scholar]
  78. ZhuH. BlumR.H. BjordahlR. GaidarovaS. RogersP. LeeT.T. AbujarourR. BonelloG.B. WuJ. TsaiP.F. MillerJ.S. WalcheckB. ValamehrB. KaufmanD.S. Pluripotent stem cell–derived NK cells with high-affinity noncleavable CD16a mediate improved antitumor activity.Blood2020135639941010.1182/blood.201900062131856277
    [Google Scholar]
  79. van HallT. AndréP. HorowitzA. RuanD. F. BorstL. ZerbibR. Narni-MancinelliE. van der BurgS. H. VivierE. Monalizumab: Inhibiting the novel immune checkpoint NKG2A.J Immunother Cancer201971263
    [Google Scholar]
  80. DevillierR. FurstS. boyer ChammardA. PagliardiniT. HarbiS. MaisanoV. GranataA. LegrandF. PakradouniJ. BoherM. FauriatC. ChretienA-S. ChabannonC. VeyN. VivierE. OliveD. BlaiseD. Safety of anti-NKG2A blocking antibody monalizumab as maintenance therapy after allogeneic hematopoietic stem cell transplantation: A phase I study.Blood2021138Suppl. 1181710.1182/blood‑2021‑150730
    [Google Scholar]
  81. LuevanoM. DaryouzehM. AlnabhanR. QuerolS. KhakooS. MadrigalA. SaudemontA. The unique profile of cord blood natural killer cells balances incomplete maturation and effective killing function upon activation.Hum. Immunol.201273324825710.1016/j.humimm.2011.12.01522234167
    [Google Scholar]
  82. KlingemannH. BoisselL. ToneguzzoF. Natural Killer Cells for Immunotherapy – Advantages of the NK-92 Cell Line over Blood NK Cells.Front. Immunol.201679110.3389/fimmu.2016.0009127014270
    [Google Scholar]
  83. HermansonD.L. BendzickL. PribylL. McCullarV. VogelR.I. MillerJ.S. GellerM.A. KaufmanD.S. Induced pluripotent stem cell-derived natural killer cells for treatment of ovarian cancer.Stem Cells20163419310110.1002/stem.223026503833
    [Google Scholar]
  84. KnorrD.A. NiZ. HermansonD. HexumM.K. BendzickL. CooperL.J.N. LeeD.A. KaufmanD.S. Clinical-scale derivation of natural killer cells from human pluripotent stem cells for cancer therapy.Stem Cells Transl. Med.20132427428310.5966/sctm.2012‑008423515118
    [Google Scholar]
  85. ZengJ. TangS.Y. TohL.L. WangS. Generation of “off-the-shelf” natural killer cells from peripheral blood cell-derived induced pluripotent stem cells.Stem Cell Reports2017961796181210.1016/j.stemcr.2017.10.02029173894
    [Google Scholar]
  86. MengF. ZhangS. XieJ. ZhouY. WuQ. LuB. ZhouS. ZhaoX. LiY. Leveraging CD16 fusion receptors to remodel the immune response for enhancing anti-tumor immunotherapy in iPSC-derived NK cells.J. Hematol. Oncol.20231616210.1186/s13045‑023‑01455‑z37316891
    [Google Scholar]
  87. HuntingtonN.D. LegrandN. AlvesN.L. JaronB. WeijerK. PletA. CorcuffE. MortierE. JacquesY. SpitsH. Di SantoJ.P. IL-15 trans-presentation promotes human NK cell development and differentiation in vivo.J. Exp. Med.20092061253410.1084/jem.2008201319103877
    [Google Scholar]
  88. LiuL.L. BéziatV. OeiV.Y.S. PfefferleA. SchafferM. LehmannS. Hellström-LindbergE. SöderhällS. HeymanM. GrandérD. MalmbergK.J. Ex vivo expanded adaptive NK cells effectively kill primary acute lymphoblastic leukemia cells.Cancer Immunol. Res.20175865466510.1158/2326‑6066.CIR‑16‑029628637877
    [Google Scholar]
  89. HaynesW.D.G. ShertockK.L. SkinnerJ.M. WhiteheadR. The ultrastructural immunohistochemistry of oncofoetal antigens in large bowel carcinomas.Virchows Arch. A Pathol. Anat. Histopathol.1985405226327510.1007/BF007043773918390
    [Google Scholar]
  90. Sá-NunesA. OliveiraC.J.F. Dendritic cells as a disputed fortress on the tick–host battlefield.Trends Parasitol.202137434035410.1016/j.pt.2020.11.00433303363
    [Google Scholar]
  91. SteinmanR.M. Decisions about dendritic cells: Past, present, and future.Annu. Rev. Immunol.201230112210.1146/annurev‑immunol‑100311‑10283922136168
    [Google Scholar]
  92. EisenbarthS.C. Dendritic cell subsets in T cell programming: Location dictates function.Nat. Rev. Immunol.20191928910310.1038/s41577‑018‑0088‑130464294
    [Google Scholar]
  93. JoffreO.P. SeguraE. SavinaA. AmigorenaS. Cross-presentation by dendritic cells.Nat. Rev. Immunol.201212855756910.1038/nri325422790179
    [Google Scholar]
  94. PatenteT.A. PinhoM.P. OliveiraA.A. EvangelistaG.C.M. Bergami-SantosP.C. BarbutoJ.A.M. Human dendritic cells: Their heterogeneity and clinical application potential in cancer immunotherapy.Front. Immunol.20199317610.3389/fimmu.2018.0317630719026
    [Google Scholar]
  95. PerezC.R. De PalmaM. Engineering dendritic cell vaccines to improve cancer immunotherapy.Nat. Commun.2019101540810.1038/s41467‑019‑13368‑y31776331
    [Google Scholar]
  96. YangJ. ShangguanJ. EresenA. LiY. WangJ. ZhangZ. Dendritic cells in pancreatic cancer immunotherapy: Vaccines and combination immunotherapies.Pathol. Res. Pract.20192151215269110.1016/j.prp.2019.15269131676092
    [Google Scholar]
  97. TjomslandV. SpångeusA. SandströmP. BorchK. MessmerD. LarssonM. Semi mature blood dendritic cells exist in patients with ductal pancreatic adenocarcinoma owing to inflammatory factors released from the tumor.PLoS One2010510e1344110.1371/journal.pone.001344120976171
    [Google Scholar]
  98. AckermannM. LiebhaberS. KlusmannJ.H. LachmannN. Lost in translation: Pluripotent stem cell-derived hematopoiesis.EMBO Mol. Med.20157111388140210.15252/emmm.20150530126174486
    [Google Scholar]
  99. Garcia-AlegriaE. MenegattiS. FadlullahM.Z.H. MenendezP. LacaudG. KouskoffV. Early human hemogenic endothelium generates primitive and definitive hematopoiesis in vitro.Stem Cell Reports20181151061107410.1016/j.stemcr.2018.09.01330449319
    [Google Scholar]
  100. ChoiK.D. VodyanikM.A. SlukvinI.I. Generation of mature human myelomonocytic cells through expansion and differentiation of pluripotent stem cell–derived lin–CD34+CD43+CD45+ progenitors.J. Clin. Invest.200911992818282910.1172/JCI3859119726877
    [Google Scholar]
  101. SilkK.M. SilkJ.D. IchiryuN. DaviesT.J. NolanK.F. LeishmanA.J. CarpenterL. WattS.M. CerundoloV. FairchildP.J. Cross-presentation of tumour antigens by human induced pluripotent stem cell-derived CD141+XCR1+ dendritic cells.Gene Ther.201219101035104010.1038/gt.2011.17722071967
    [Google Scholar]
  102. FairchildP.J. BrookF.A. GardnerR.L. GraçaL. StrongV. ToneY. ToneM. NolanK.F. WaldmannH. Directed differentiation of dendritic cells from mouse embryonic stem cells.Curr. Biol.200010231515151810.1016/S0960‑9822(00)00824‑111114519
    [Google Scholar]
  103. SatohT. ToledoM.A.S. BoehnkeJ. OlschokK. FlosdorfN. GötzK. KüstermannC. SontagS. SeréK. KoschmiederS. BrümmendorfT.H. ChatainN. TagawaY. ZenkeM. Human DC3 antigen presenting dendritic cells from induced pluripotent stem cells.Front. Cell Dev. Biol.2021966730410.3389/fcell.2021.66730434368123
    [Google Scholar]
  104. SontagS. FörsterM. QinJ. WanekP. MitzkaS. SchülerH.M. KoschmiederS. Rose-JohnS. SeréK. ZenkeM. Modelling IRF8 deficient human hematopoiesis and dendritic cell development with engineered iPS cells.Stem Cells201735489890810.1002/stem.256528090699
    [Google Scholar]
  105. MakinoK. LongM.D. KajiharaR. MatsuedaS. ObaT. KanehiraK. LiuS. ItoF. Generation of cDC-like cells from human induced pluripotent stem cells viaNotch signaling.J. Immunother. Cancer2022101e00382710.1136/jitc‑2021‑00382735101945
    [Google Scholar]
  106. HortonC. DaviesT.J. LahiriP. SachamitrP. FairchildP.J. Induced pluripotent stem cells reprogrammed from primary dendritic cells provide an abundant source of immunostimulatory dendritic cells for use in immunotherapy.Stem Cells2020381677910.1002/stem.309531621975
    [Google Scholar]
  107. ZhangR. LiuT.Y. SenjuS. HarutaM. HirosawaN. SuzukiM. TatsumiM. UedaN. MakiH. NakatsukaR. MatsuokaY. SasakiY. TsuzukiS. NakanishiH. ArakiR. AbeM. AkatsukaY. SakamotoY. SonodaY. NishimuraY. KuzushimaK. UemuraY. Generation of mouse pluripotent stem cell-derived proliferating myeloid cells as an unlimited source of functional antigen-presenting cells.Cancer Immunol. Res.20153666867710.1158/2326‑6066.CIR‑14‑011725672396
    [Google Scholar]
  108. TsuchiyaN. ZhangR. IwamaT. UedaN. LiuT. TatsumiM. SasakiY. ShimodaR. OsakoY. SawadaY. KuboY. MiyashitaA. FukushimaS. ChengZ. NakakiR. TakuboK. OkadaS. KanekoS. IhnH. KaishoT. NishimuraY. SenjuS. EndoI. NakatsuraT. UemuraY. TypeI. Type I interferon delivery by ipsc-derived myeloid cells elicits antitumor immunity viaXCR1+ dendritic cells.Cell Rep.2019291162175.e910.1016/j.celrep.2019.08.08631577946
    [Google Scholar]
  109. KitadaniJ. OjimaT. IwamotoH. TabataH. NakamoriM. NakamuraM. HayataK. KatsudaM. MiyajimaM. YamaueH. Cancer vaccine therapy using carcinoembryonic antigen - expressing dendritic cells generated from induced pluripotent stem cells.Sci. Rep.201881456910.1038/s41598‑018‑23120‑z29545628
    [Google Scholar]
  110. NakazawaT. MaeokaR. MorimotoT. MatsudaR. NakamuraM. NishimuraF. YamadaS. NakagawaI. ParkY.S. NakaseH. TsujimuraT. Capability of human dendritic cells pulsed with autologous induced pluripotent stem cell lysate to induce cytotoxic T lymphocytes against HLA-A33- matched cancer cells.Int. J. Mol. Sci.202223211299210.3390/ijms23211299236361783
    [Google Scholar]
  111. MaziniL. RochetteL. AmineM. MalkaG. Regenerative capacity of adipose derived stem cells (ADSCs), comparison with mesenchymal stem cells (MSCs).Int. J. Mol. Sci.20192010252310.3390/ijms2010252331121953
    [Google Scholar]
  112. BarzegarM. KaurG. GavinsF.N.E. WangY. BoyerC.J. AlexanderJ.S. Potential therapeutic roles of stem cells in ischemia-reperfusion injury.Stem Cell Res.20193710142110.1016/j.scr.2019.10142130933723
    [Google Scholar]
  113. ParkS.R. KimJ.W. JunH.S. RohJ.Y. LeeH.Y. HongI.S. Stem cell secretome and its effect on cellular mechanisms relevant to wound healing.Mol. Ther.201826260661710.1016/j.ymthe.2017.09.02329066165
    [Google Scholar]
  114. KalimuthuS. OhJ.M. GangadaranP. ZhuL. LeeH.W. RajendranR.L. BaekS. JeonY.H. JeongS.Y. LeeS-W. LeeJ. AhnB-C. In vivo tracking of chemokine receptor CXCR4-engineered mesenchymal stem cell migration by optical molecular imaging.Stem Cells Int.2017201711010.1155/2017/8085637
    [Google Scholar]
  115. MenonL.G. PicinichS. KoneruR. GaoH. LinS.Y. KoneruM. Mayer-KuckukP. GlodJ. BanerjeeD. Differential gene expression associated with migration of mesenchymal stem cells to conditioned medium from tumor cells or bone marrow cells.Stem Cells200725252052810.1634/stemcells.2006‑025717053212
    [Google Scholar]
  116. ChristodoulouI. GoulielmakiM. DevetziM. PanagiotidisM. KoliakosG. ZoumpourlisV. Mesenchymal stem cells in preclinical cancer cytotherapy: A systematic review.Stem Cell Res. Ther.20189133610.1186/s13287‑018‑1078‑830526687
    [Google Scholar]
  117. MesbahN. BarikrowN. HeshmatiM. Studying the suppressing effect of mesenchymal stem cells derived from amniotic membrane on colorectal cancer.J Curr Biomed Rep2021192200
    [Google Scholar]
  118. LiuX. HuJ. LiY. CaoW. WangY. MaZ. LiF. Mesenchymal stem cells expressing interleukin-18 inhibit breast cancer in a mouse model.Oncol. Lett.20181556265627410.3892/ol.2018.816629725393
    [Google Scholar]
  119. GuoY. ZhangZ. XuX. XuZ. WangS. HuangD. LiY. MouX. LiuF. XiangC. Menstrual blood-derived stem cells as delivery vehicles for oncolytic adenovirus virotherapy for colorectal cancer.Stem Cells Dev.2019281388289610.1089/scd.2018.022230991894
    [Google Scholar]
  120. ChenF. ZhongX. DaiQ. LiK. ZhangW. WangJ. ZhaoY. ShenJ. XiaoZ. XingH. LiJ. Human umbilical cord MSC delivered-soluble trail inhibits the proliferation and promotes apoptosis of B-all cell in vitro and in vivo.Pharmaceuticals20221511139110.3390/ph1511139136422522
    [Google Scholar]
  121. MokuG. LayekB. TrautmanL. PutnamS. PanyamJ. PrabhaS. Improving payload capacity and anti-tumor efficacy of mesenchymal stem cells using TAT peptide functionalized polymeric nanoparticles.Cancers201911449110.3390/cancers1104049130959908
    [Google Scholar]
  122. ZhangJ. ChenM. LiaoJ. ChangC. LiuY. PadhiarA.A. ZhouY. ZhouG. Induced pluripotent stem cell-derived mesenchymal stem cells hold lower heterogeneity and great promise in biological research and clinical applications.Front. Cell Dev. Biol.2021971690710.3389/fcell.2021.71690734660579
    [Google Scholar]
  123. LianQ. ZhangY. ZhangJ. ZhangH.K. WuX. ZhangY. LamF.F.Y. KangS. XiaJ.C. LaiW.H. AuK.W. ChowY.Y. SiuC.W. LeeC.N. TseH.F. Functional mesenchymal stem cells derived from human induced pluripotent stem cells attenuate limb ischemia in mice.Circulation201012191113112310.1161/CIRCULATIONAHA.109.89831220176987
    [Google Scholar]
  124. WeiH. TanG. Manasi QiuS. KongG. YongP. KohC. OoiT.H. LimS.Y. WongP. GanS.U. ShimW. One-step derivation of cardiomyocytes and mesenchymal stem cells from human pluripotent stem cells.Stem Cell Res.2012928710010.1016/j.scr.2012.04.003
    [Google Scholar]
  125. ChenY.S. PelekanosR.A. EllisR.L. HorneR. WolvetangE.J. FiskN.M. Small molecule mesengenic induction of human induced pluripotent stem cells to generate mesenchymal stem/stromal cells.Stem Cells Transl. Med.201212839510.5966/sctm.2011‑002223197756
    [Google Scholar]
  126. LiuB. ChenF. WuY. WangX. FengM. LiZ. ZhouM. WangY. WuL. LiuX. LiangD. Enhanced tumor growth inhibition by mesenchymal stem cells derived from iPSCs with targeted integration of interleukin24 into rDNA loci.Oncotarget2017825407914080310.18632/oncotarget.1658428388559
    [Google Scholar]
  127. WangZ. ChenH. WangP. ZhouM. LiG. HuZ. HuQ. ZhaoJ. LiuX. WuL. LiangD. Site-specific integration of TRAIL in iPSC-derived mesenchymal stem cells for targeted cancer therapy.Stem Cells Transl. Med.202211329730910.1093/stcltm/szab03135267023
    [Google Scholar]
  128. ZhaoQ. HaiB. KellyJ. WuS. LiuF. Extracellular vesicle mimics made from iPS cell-derived mesenchymal stem cells improve the treatment of metastatic prostate cancer.Stem Cell Res. Ther.20211212910.1186/s13287‑020‑02097‑533413659
    [Google Scholar]
  129. BertolinoG.M. MaumusM. JorgensenC. NoëlD. Recent advances in extracellular vesicle-based therapies using induced pluripotent stem cell-derived mesenchymal stromal cells.Biomedicines2022109228110.3390/biomedicines1009228136140386
    [Google Scholar]
  130. LancasterM.A. KnoblichJ.A. Organogenesis in a dish: Modeling development and disease using organoid technologies.Science20143456194124712510.1126/science.124712525035496
    [Google Scholar]
  131. DrostJ. CleversH. Organoids in cancer research.Nat. Rev. Cancer201818740741810.1038/s41568‑018‑0007‑629692415
    [Google Scholar]
  132. CleversH. Modeling development and disease with organoids.Cell201616571586159710.1016/j.cell.2016.05.08227315476
    [Google Scholar]
  133. GarretaE. KammR.D. Chuva de Sousa LopesS.M. LancasterM.A. WeissR. TrepatX. HyunI. MontserratN. Rethinking organoid technology through bioengineering.Nat. Mater.202120214515510.1038/s41563‑020‑00804‑433199860
    [Google Scholar]
  134. LancasterM.A. RennerM. MartinC.A. WenzelD. BicknellL.S. HurlesM.E. HomfrayT. PenningerJ.M. JacksonA.P. KnoblichJ.A. Cerebral organoids model human brain development and microcephaly.Nature2013501746737337910.1038/nature1251723995685
    [Google Scholar]
  135. TakebeT. SekineK. EnomuraM. KoikeH. KimuraM. OgaeriT. ZhangR.R. UenoY. ZhengY.W. KoikeN. AoyamaS. AdachiY. TaniguchiH. Vascularized and functional human liver from an iPSC-derived organ bud transplant.Nature2013499745948148410.1038/nature1227123823721
    [Google Scholar]
  136. BasilM. C. MorriseyE. E. Lung regeneration: A tale of mice and men.Seminars in Cell and Developmental Biology. Elsevier Ltd 202088100
    [Google Scholar]
  137. WeeberF. van de WeteringM. HoogstraatM. DijkstraK.K. KrijgsmanO. KuilmanT. Gadellaa-van HooijdonkC.G.M. van der VeldenD.L. PeeperD.S. CuppenE.P.J.G. VriesR.G. CleversH. VoestE.E. Preserved genetic diversity in organoids cultured from biopsies of human colorectal cancer metastases.Proc. Natl. Acad. Sci. USA201511243133081331110.1073/pnas.151668911226460009
    [Google Scholar]
  138. MatanoM. DateS. ShimokawaM. TakanoA. FujiiM. OhtaY. WatanabeT. KanaiT. SatoT. Modeling colorectal cancer using CRISPR-Cas9–mediated engineering of human intestinal organoids.Nat. Med.201521325626210.1038/nm.380225706875
    [Google Scholar]
  139. LeeD.F. SuJ. KimH.S. ChangB. PapatsenkoD. ZhaoR. YuanY. GingoldJ. XiaW. DarrH. MirzayansR. HungM.C. SchanielC. LemischkaI.R. Modeling familial cancer with induced pluripotent stem cells.Cell2015161224025410.1016/j.cell.2015.02.04525860607
    [Google Scholar]
  140. Sancho-MartinezI. NivetE. XiaY. HishidaT. AguirreA. OcampoA. MaL. MoreyR. KrauseM.N. ZembrzyckiA. AnsorgeO. Vazquez-FerrerE. DubovaI. ReddyP. LamD. HishidaY. WuM.Z. EstebanC.R. O’LearyD. WahlG.M. VermaI.M. LaurentL.C. Izpisua BelmonteJ.C. Establishment of human iPSC-based models for the study and targeting of glioma initiating cells.Nat. Commun.2016711074310.1038/ncomms1074326899176
    [Google Scholar]
  141. HuangL. DesaiR. ConradD.N. LeiteN.C. AkshinthalaD. LimC.M. GonzalezR. MuthuswamyL.B. GartnerZ. MuthuswamyS.K. Commitment and oncogene-induced plasticity of human stem cell-derived pancreatic acinar and ductal organoids.Cell Stem Cell202128610901104.e610.1016/j.stem.2021.03.02233915081
    [Google Scholar]
  142. TakeuchiK. TabeS. TakahashiK. AoshimaK. MatsuoM. UenoY. FurukawaY. YamaguchiK. OhtsukaM. MorinagaS. MiyagiY. YamaguchiT. TanimizuN. TaniguchiH. Incorporation of human iPSC-derived stromal cells creates a pancreatic cancer organoid with heterogeneous cancer-associated fibroblasts.Cell Rep.2023421111342010.1016/j.celrep.2023.11342037955987
    [Google Scholar]
  143. VansteenkisteJ.F. ChoB.C. VanakesaT. De PasT. ZielinskiM. KimM.S. JassemJ. YoshimuraM. DahabrehJ. NakayamaH. HavelL. KondoH. MitsudomiT. ZarogoulidisK. GladkovO.A. UdudK. TadaH. HoffmanH. BuggeA. TaylorP. GonzalezE.E. LiaoM.L. HeJ. PujolJ.L. LouahedJ. DeboisM. BrichardV. DebruyneC. TherasseP. AltorkiN. Efficacy of the MAGE-A3 cancer immunotherapeutic as adjuvant therapy in patients with resected MAGE-A3-positive non-small-cell lung cancer (MAGRIT): A randomised, double-blind, placebo-controlled, phase 3 trial.Lancet Oncol.201617682283510.1016/S1470‑2045(16)00099‑127132212
    [Google Scholar]
  144. ShimizuY. SuzukiT. YoshikawaT. TsuchiyaN. SawadaY. EndoI. NakatsuraT. Cancer immunotherapy-targeted glypican-3 or neoantigens.Cancer Sci.2018109353154110.1111/cas.1348529285841
    [Google Scholar]
  145. ZhaoT. ZhangZ.N. RongZ. XuY. Immunogenicity of induced pluripotent stem cells.Nature2011474735021221510.1038/nature1013521572395
    [Google Scholar]
  146. KooremanN.G. KimY. de AlmeidaP.E. TermglinchanV. DieckeS. ShaoN.Y. WeiT.T. YiH. DeyD. NelakantiR. BrouwerT.P. PaikD.T. Sagiv-BarfiI. HanA. QuaxP.H.A. HammingJ.F. LevyR. DavisM.M. WuJ.C. Autologous iPSC-based vaccines elicit anti-tumor responses in vivo.Cell Stem Cell2018224501513.e710.1016/j.stem.2018.01.01629456158
    [Google Scholar]
  147. LeD.T. UramJ.N. WangH. BartlettB.R. KemberlingH. EyringA.D. SkoraA.D. LuberB.S. AzadN.S. LaheruD. BiedrzyckiB. DonehowerR.C. ZaheerA. FisherG.A. CrocenziT.S. LeeJ.J. DuffyS.M. GoldbergR.M. de la ChapelleA. KoshijiM. BhaijeeF. HuebnerT. HrubanR.H. WoodL.D. CukaN. PardollD.M. PapadopoulosN. KinzlerK.W. ZhouS. CornishT.C. TaubeJ.M. AndersR.A. EshlemanJ.R. VogelsteinB. DiazL.A.Jr PD-1 blockade in tumors with mismatch-repair deficiency.N. Engl. J. Med.2015372262509252010.1056/NEJMoa150059626028255
    [Google Scholar]
  148. Gąbka-BuszekA. Kwiatkowska-BorowczykE. JankowskiJ. KozłowskaA.K. MackiewiczA. Novel genetic melanoma vaccines based on induced pluripotent stem cells or melanosphere-derived stem-like cells display high efficacy in a murine tumor rejection model.Vaccines20208214710.3390/vaccines802014732224883
    [Google Scholar]
  149. WangJ. ShaoL. WuL. MaW. ZhengY. HuC. LiF. Expression levels of a gene signature in hiPSC associated with lung adenocarcinoma stem cells and its capability in eliciting specific antitumor immune-response in a humanized mice model.Thorac. Cancer20201161603161210.1111/1759‑7714.1344032314522
    [Google Scholar]
  150. LuS. ZhangZ. DuP. ChardL.S. YanW. El KhouriM. WangZ. ZhangZ. ChuY. GaoD. ZhangQ. ZhangL. NaganoA. WangJ. ChelalaC. LiuJ. ChenJ. LiuP. DongY. WangS. LiX. DongJ. LemoineN.R. PeiD. WangY. A virus-infected, reprogrammed somatic cell–derived tumor cell (VIReST) vaccination regime can prevent initiation and progression of pancreatic cancer.Clin. Cancer Res.202026246547610.1158/1078‑0432.CCR‑19‑139531767564
    [Google Scholar]
  151. WangR. ZhuT. HouB. HuangX. An iPSC-derived exosome-pulsed dendritic cell vaccine boosts antitumor immunity in melanoma.Mol. Ther.20233182376239010.1016/j.ymthe.2023.06.00537312452
    [Google Scholar]
  152. MooreN. HoughtonJ. LyleS. Slow-cycling therapy-resistant cancer cells.Stem Cells Dev.201221101822183010.1089/scd.2011.047721973238
    [Google Scholar]
  153. BonnetD. DickJ.E. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell.Nat. Med.19973773073710.1038/nm0797‑7309212098
    [Google Scholar]
  154. LapidotT. SirardC. VormoorJ. MurdochB. HoangT. Caceres-CortesJ. MindenM. PatersonB. CaligiuriM.A. DickJ.E. A cell initiating human acute myeloid leukaemia after transplantation into SCID mice.Nature1994367646464564810.1038/367645a07509044
    [Google Scholar]
  155. Al-HajjM. WichaM.S. Benito-HernandezA. MorrisonS.J. ClarkeM.F. Prospective identification of tumorigenic breast cancer cells.Proc. Natl. Acad. Sci. USA200310073983398810.1073/pnas.053029110012629218
    [Google Scholar]
  156. SchattonT. MurphyG.F. FrankN.Y. YamauraK. Waaga-GasserA.M. GasserM. ZhanQ. JordanS. DuncanL.M. WeishauptC. FuhlbriggeR.C. KupperT.S. SayeghM.H. FrankM.H. Identification of cells initiating human melanomas.Nature2008451717634534910.1038/nature0648918202660
    [Google Scholar]
  157. EramoA. LottiF. SetteG. PilozziE. BiffoniM. Di VirgilioA. ConticelloC. RucoL. PeschleC. De MariaR. Identification and expansion of the tumorigenic lung cancer stem cell population.Cell Death Differ.200815350451410.1038/sj.cdd.440228318049477
    [Google Scholar]
  158. YangZ.F. HoD.W. NgM.N. LauC.K. YuW.C. NgaiP. ChuP.W.K. LamC.T. PoonR.T.P. FanS.T. Significance of CD90+ cancer stem cells in human liver cancer.Cancer Cell200813215316610.1016/j.ccr.2008.01.01318242515
    [Google Scholar]
  159. LiC. HeidtD.G. DalerbaP. BurantC.F. ZhangL. AdsayV. WichaM. ClarkeM.F. SimeoneD.M. Identification of pancreatic cancer stem cells.Cancer Res.20076731030103710.1158/0008‑5472.CAN‑06‑203017283135
    [Google Scholar]
  160. O’BrienC.A. PollettA. GallingerS. DickJ.E. A human colon cancer cell capable of initiating tumour growth in immunodeficient mice.Nature2007445712310611010.1038/nature0537217122772
    [Google Scholar]
  161. YuZ. PestellT.G. LisantiM.P. PestellR.G. Cancer stem cells.Int. J. Biochem. Cell Biol.201244122144215110.1016/j.biocel.2012.08.02222981632
    [Google Scholar]
  162. UtikalJ. MaheraliN. KulalertW. HochedlingerK. Sox2 is dispensable for the reprogramming of melanocytes and melanoma cells into induced pluripotent stem cells.J. Cell Sci.2009122193502351010.1242/jcs.05478319723802
    [Google Scholar]
  163. MathieuJ. ZhangZ. ZhouW. WangA.J. HeddlestonJ.M. PinnaC.M.A. HubaudA. StadlerB. ChoiM. BarM. TewariM. LiuA. VessellaR. RostomilyR. BornD. HorwitzM. WareC. BlauC.A. ClearyM.A. RichJ.N. Ruohola-BakerH. HIF induces human embryonic stem cell markers in cancer cells.Cancer Res.201171134640465210.1158/0008‑5472.CAN‑10‑332021712410
    [Google Scholar]
  164. ZhangX. CruzF. D. TerryM. RemottiF. MatushanskyI. Terminal differentiation and loss of tumorigenicity of human cancers via pluripotency-based reprogramming.Oncogene 201332182249226010.1038/onc.2012.237
    [Google Scholar]
  165. BernhardtM. NovakD. AssenovY. OroujiE. KnappeN. WeinaK. ReithM. LarribereL. GebhardtC. PlassC. UmanskyV. UtikalJ. Melanoma-derived iPCCs show differential tumorigenicity and therapy response.Stem Cell Reports2017851379139110.1016/j.stemcr.2017.03.00728392221
    [Google Scholar]
  166. Corominas-FajaB. CufíS. Oliveras-FerrarosC. CuyàsE. López-BonetE. LupuR. AlarcónT. VellonL. Manuel IglesiasJ. LeisO. MartínA. Vazquez-MartinA. MenendezJ.A. Nuclear reprogramming of luminal-like breast cancer cells generates Sox2-overexpressing cancer stem-like cellular states harboring transcriptional activation of the mTOR pathway.Cell Cycle201312183109312410.4161/cc.2617323974095
    [Google Scholar]
  167. KimJ. HoffmanJ.P. AlpaughR.K. RhimA.D. ReichertM. StangerB.Z. FurthE.E. SepulvedaA.R. YuanC.X. WonK.J. DonahueG. SandsJ. GumbsA.A. ZaretK.S. An iPSC line from human pancreatic ductal adenocarcinoma undergoes early to invasive stages of pancreatic cancer progression.Cell Rep.2013362088209910.1016/j.celrep.2013.05.03623791528
    [Google Scholar]
  168. BorgesG.T. VêncioE.F. VêncioR.Z.N. VessellaR.L. WareC.B. LiuA.Y. Reprogramming of prostate cancer cells-technical challenges.Curr. Urol. Rep.201516146810.1007/s11934‑014‑0468‑425404182
    [Google Scholar]
  169. LinT. WuS. Reprogramming with small molecules instead of exogenous transcription factors.Stem Cells Int 2015201579463210.1155/2015/794632
    [Google Scholar]
  170. ChaudharyA. RazaS.S. HaqueR. Transcriptional factors targeting in cancer stem cells for tumor modulation.Semin. Cancer Biol.20238812313710.1016/j.semcancer.2022.12.01036603792
    [Google Scholar]
  171. EunK. HamS.W. KimH. Cancer stem cell heterogeneity: Origin and new perspectives on CSC targeting.BMB Rep.201750311712510.5483/BMBRep.2017.50.3.22227998397
    [Google Scholar]
  172. WangX. LiuQ. HouB. ZhangW. YanM. JiaH. LiH. YanD. ZhengF. DingW. YiC. Hai Wang Concomitant targeting of multiple key transcription factors effectively disrupts cancer stem cells enriched in side population of human pancreatic cancer cells.PLoS One201389e7394210.1371/journal.pone.007394224040121
    [Google Scholar]
  173. MiyoshiN. IshiiH. NagaiK. HoshinoH. MimoriK. TanakaF. NaganoH. SekimotoM. DokiY. MoriM. Defined factors induce reprogramming of gastrointestinal cancer cells.Proc. Natl. Acad. Sci. USA20101071404510.1073/pnas.091240710720018687
    [Google Scholar]
  174. GongL. YanQ. ZhangY. FangX. LiuB. GuanX. Cancer cell reprogramming: A promising therapy converting malignancy to benignity.Cancer Commun201939158
    [Google Scholar]
  175. FirasJ. LiuX. LimS. M. PoloJ. M. Transcription factor-mediated reprogramming: Epigenetics and therapeutic potential.Immunol Cell Biol2015284289
    [Google Scholar]
  176. ZimmermannovaO. CaiadoI. FerreiraA.G. PereiraC.F. Cell fate reprogramming in the era of cancer immunotherapy.Front. Immunol.20211271482210.3389/fimmu.2021.71482234367185
    [Google Scholar]
  177. VitanzaN.A. WilsonA.L. HuangW. SeidelK. BrownC. GustafsonJ.A. YokoyamaJ.K. JohnsonA.J. BaxterB.A. KoningR.W. ReidA.N. MeechanM. BieryM.C. MyersC. Rawlings-RheaS.D. AlbertC.M. BrowdS.R. HauptmanJ.S. LeeA. OjemannJ.G. BerensM.E. DunM.D. FosterJ.B. CrottyE.E. LearyS.E.S. ColeB.L. PerezF.A. WrightJ.N. OrentasR.J. ChourT. NewellE.W. WhiteakerJ.R. ZhaoL. PaulovichA.G. PintoN. GustJ. GardnerR.A. JensenM.C. ParkJ.R. Intraventricular B7-H3 CAR T cells for diffuse intrinsic pontine glioma: Preliminary first-in-human bioactivity and safety.Cancer Discov.202313111413110.1158/2159‑8290.CD‑22‑075036259971
    [Google Scholar]
  178. PatelK. RothmanS. DasP.A. YeeS. RamachandranI. KoumenisI. CookT.A. YuanY. TredeN.S. MattourA.H. The ELiPSE-1 study: A phase 1, multicenter, open-label study of CNTY-101 in subjects with relapsed or refractory CD19-positive B-cell malignancies.J. Clin. Oncol.20234116_supplSuppl.TPS7580TPS758010.1200/JCO.2023.41.16_suppl.TPS7580
    [Google Scholar]
  179. BloorA.J.C. PatelA. GriffinJ.E. GilleeceM.H. RadiaR. YeungD.T. DrierD. LarsonL.S. UenishiG.I. HeiD. KellyK. SlukvinI. RaskoJ.E.J. Production, safety and efficacy of iPSC-derived mesenchymal stromal cells in acute steroid-resistant graft versus host disease: A phase I, multicenter, open-label, dose-escalation study.Nat. Med.202026111720172510.1038/s41591‑020‑1050‑x32929265
    [Google Scholar]
/content/journals/cscr/10.2174/011574888X294791240408055222
Loading
/content/journals/cscr/10.2174/011574888X294791240408055222
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test