Skip to content
2000
Volume 20, Issue 7
  • ISSN: 1574-888X
  • E-ISSN: 2212-3946

Abstract

Background

Spinal Cord Injury (SCI) results in motor, sensory, and autonomic dysfunctions and causes social and economic problems. Surgery, medication, and stem cell transplantation are therapeutic strategies for SCI. The use of endogenous neural stem cells seems preferable due to their lower immune responses. miR-126 serves as a promising microRNA for reducing inflammation after SCI. It can promote angiogenesis and proliferation of neural stem cells.

Objectives

This study aimed to observe changes in miR-126 expression after SCI in an animal mice model.

Methods

A total of 42 healthy adult FVB mice were divided equally into 7 groups (6 SCI model versus 1 control). At different periods following SCI establishment in the model groups, Basso Mouse Scale score (BMS), histopathological changes, and expression levels of miR-126 were evaluated in the model groups compared to the control one.

Results

The BMS score increased to a certain extent as the time after spinal cord injury progressed. HE and Nissl staining showed that the acute period (1-7 days) after spinal cord injury was characterized by neuronal loss, whereas the chronic phase (21st day) was characterized by scar and cavity formation. Compared with the control group, the model group exhibited decreased expression of miR-126 during the acute phase (days 1-7 post-SCI). However, its expression increased by 21th day after SCI.

Conclusion

Overexpressed miR-126 can contribute to reduced SCI-related damages, which may result in the promotion of the growth and proliferation of neural stem cells as well as the repair of motor function.

Loading

Article metrics loading...

/content/journals/cscr/10.2174/011574888X289224240723042538
2024-07-29
2026-02-05
Loading full text...

Full text loading...

References

  1. LeeB.B. CrippsR.A. FitzharrisM. WingP.C. The global map for traumatic spinal cord injury epidemiology: Update 2011, global incidence rate.Spinal Cord201452211011610.1038/sc.2012.15823439068
    [Google Scholar]
  2. HouS. RabchevskyA.G. Autonomic consequences of spinal cord injury.Compr. Physiol.2014441419145310.1002/cphy.c13004525428850
    [Google Scholar]
  3. YuH-P. XiaL-M. ZhangA-P. ZhengQ. DingJ. JinZ. YuH. WongW-H. Quercetin-3-O-β-D-glucuronide inhibits mitochondria pathway-mediated platelet apoptosis via the phosphatidylinositol-3-kinase/AKT pathway in immunological bone marrow failure.World J. Tradit. Chin. Med.20228111512210.4103/wjtcm.wjtcm_44_21
    [Google Scholar]
  4. ChenY. TangY. VogelL. DeVivoM. Causes of spinal cord injury.Top. Spinal Cord Inj. Rehabil.20131911810.1310/sci1901‑123678280
    [Google Scholar]
  5. García-AltésA. PérezK. NovoaA. SuelvesJ.M. BernabeuM. VidalJ. ArrufatV. Santamariña-RubioE. FerrandoJ. CogollosM. CanteraC.M. LuqueJ.C.G. Spinal cord injury and traumatic brain injury: A cost-of-illness study.Neuroepidemiology201239210310810.1159/00033829722846706
    [Google Scholar]
  6. AhujaC.S. WilsonJ.R. NoriS. KotterM.R.N. DruschelC. CurtA. FehlingsM.G. Traumatic spinal cord injury.Nat. Rev. Dis. Primers2017311701810.1038/nrdp.2017.1828447605
    [Google Scholar]
  7. MotheA.J. TatorC.H. Review of transplantation of neural stem/progenitor cells for spinal cord injury.Int. J. Dev. Neurosci.201331770171310.1016/j.ijdevneu.2013.07.00423928260
    [Google Scholar]
  8. NasK. YazmalarL. ŞahV. AydınA. ÖneşK. Rehabilitation of spinal cord injuries.World J. Orthop.20156181610.5312/wjo.v6.i1.825621206
    [Google Scholar]
  9. KumagaiG. OkadaY. YamaneJ. NagoshiN. KitamuraK. MukainoM. TsujiO. FujiyoshiK. KatohH. OkadaS. ShibataS. MatsuzakiY. TohS. ToyamaY. NakamuraM. OkanoH. Roles of ES cell-derived gliogenic neural stem/progenitor cells in functional recovery after spinal cord injury.PLoS One2009411e770610.1371/journal.pone.000770619893739
    [Google Scholar]
  10. TarasenkoY.I. GaoJ. NieL. JohnsonK.M. GradyJ.J. HulseboschC.E. McAdooD.J. WuP. Human fetal neural stem cells grafted into contusion-injured rat spinal cords improve behavior.J. Neurosci. Res.2007851475710.1002/jnr.2109817075895
    [Google Scholar]
  11. CurtisE MartinJR GabelB SidhuN RzesiewiczTK MandevilleR A first-in-human, phase I study of neural stem cell transplantation for chronic spinal cord injury.Cell Stem Cell2018226941950.e610.1016/j.stem.2018.05.014
    [Google Scholar]
  12. GuptaN HenryRG StroberJ KangS-M LimDA BucciM Neural stem cell engraftment and myelination in the human brain.Sci Transl Med20124155155ra13710.1126/scitranslmed.3004373
    [Google Scholar]
  13. GilbertE.A.B. LakshmanN. LauK.S.K. MorsheadC.M. Regulating endogenous neural stem cell activation to promote spinal cord injury repair.Cells202211584610.3390/cells1105084635269466
    [Google Scholar]
  14. AmeresS.L. ZamoreP.D. Diversifying microRNA sequence and function.Nat. Rev. Mol. Cell Biol.201314847548810.1038/nrm361123800994
    [Google Scholar]
  15. BushatiN. CohenS.M. microRNA Functions.Annu. Rev. Cell Dev. Biol.200723117520510.1146/annurev.cellbio.23.090506.12340617506695
    [Google Scholar]
  16. NingB. GaoL. LiuR.H. LiuY. ZhangN.S. ChenZ.Y. microRNAs in spinal cord injury: Potential roles and therapeutic implications.Int. J. Biol. Sci.2014109997100610.7150/ijbs.905825210498
    [Google Scholar]
  17. TigchelaarS. StreijgerF. SinhaS. FlibotteS. ManouchehriN. SoK. ShorttK. OkonE. RizzutoM.A. MalenicaI. Courtright-LimA. EisenA. Keuren-JensenK.V. NislowC. KwonB.K. Serum microRNAs reflect injury severity in a large animal model of thoracic spinal cord injury.Sci. Rep.201771137610.1038/s41598‑017‑01299‑x28469141
    [Google Scholar]
  18. SilvestroS. MazzonE. MiRNAs as promising translational strategies for neuronal repair and regeneration in spinal cord injury.Cells20221114217710.3390/cells1114217735883621
    [Google Scholar]
  19. HuangJ.H. XuY. YinX.M. LinF.Y. Exosomes derived from miR-126-modified MSCs promote angiogenesis and neurogenesis and attenuate apoptosis after spinal cord injury in rats.Neuroscience202042413314510.1016/j.neuroscience.2019.10.04331704348
    [Google Scholar]
  20. WangS. AuroraA.B. JohnsonB.A. QiX. McAnallyJ. HillJ.A. RichardsonJ.A. Bassel-DubyR. OlsonE.N. The endothelial-specific microRNA miR-126 governs vascular integrity and angiogenesis.Dev. Cell200815226127110.1016/j.devcel.2008.07.00218694565
    [Google Scholar]
  21. FishJ.E. SantoroM.M. MortonS.U. YuS. YehR.F. WytheJ.D. IveyK.N. BruneauB.G. StainierD.Y.R. SrivastavaD. miR-126 regulates angiogenic signaling and vascular integrity.Dev. Cell200815227228410.1016/j.devcel.2008.07.00818694566
    [Google Scholar]
  22. HarrisT.A. YamakuchiM. FerlitoM. MendellJ.T. LowensteinC.J. MicroRNA-126 regulates endothelial expression of vascular cell adhesion molecule 1.Proc. Natl. Acad. Sci. USA200810551516152110.1073/pnas.070749310518227515
    [Google Scholar]
  23. FlemingJ.C. NorenbergM.D. RamsayD.A. DekabanG.A. MarcilloA.E. SaenzA.D. Pasquale-StylesM. DietrichW.D. WeaverL.C. The cellular inflammatory response in human spinal cords after injury.Brain2006129123249326910.1093/brain/awl29617071951
    [Google Scholar]
  24. HuJ. ZengL. HuangJ. WangG. LuH. miR-126 promotes angiogenesis and attenuates inflammation after contusion spinal cord injury in rats.Brain Res.2015160819120210.1016/j.brainres.2015.02.03625724143
    [Google Scholar]
  25. WeiH. WangC. ZhangC. LiP. WangF. ZhangZ. Comparative profiling of microRNA expression between neural stem cells and motor neurons in embryonic spinal cord in rat.Int. J. Dev. Neurosci.201028654555110.1016/j.ijdevneu.2010.04.00720450967
    [Google Scholar]
  26. ZhangQ. ZengS. QuanC. LinX. Induction function of miR-126 in survival and proliferation in neural stem cells.Med. Sci. Monit.2015213023302710.12659/MSM.89467226445299
    [Google Scholar]
  27. LiS. ZhouJ. ZhangJ. WangD. MaJ. Construction of rat spinal cord injury model based on Allen’s animal model.Saudi J. Biol. Sci.20192682122212610.1016/j.sjbs.2019.09.03331889806
    [Google Scholar]
  28. AbramsG.M. WakasaM. Chronic complications of spinal cord injury and disease. Autonomic dysreflexia alphen aan den rijn. Netherlands Wolters Kluwer2019
    [Google Scholar]
  29. HagenE.M. Acute complications of spinal cord injuries.World J. Orthop.201561172310.5312/wjo.v6.i1.1725621207
    [Google Scholar]
  30. SweisR. BillerJ. Systemic complications of spinal cord injury.Curr. Neurol. Neurosci. Rep.2017171810.1007/s11910‑017‑0715‑428188542
    [Google Scholar]
  31. KramerA.S. HarveyA.R. PlantG.W. HodgettsS.I. Systematic review of induced pluripotent stem cell technology as a potential clinical therapy for spinal cord injury.Cell Transplant.201322457161710.3727/096368912X65520822944020
    [Google Scholar]
  32. YsasiN.A. KerwinS. MariniI. McDanielsB. AntolD.L. A comprehensive literature review of secondary complications of spinal cord injury.J. Life Care Plan.2016141
    [Google Scholar]
  33. FakhouryM. Spinal cord injury: Overview of experimental approaches used to restore locomotor activity.Rev. Neurosci.201526439740510.1515/revneuro‑2015‑000125870961
    [Google Scholar]
  34. SezerN. AkkuşS. UğurluF.G. Chronic complications of spinal cord injury.World J. Orthop.201561243310.5312/wjo.v6.i1.2425621208
    [Google Scholar]
  35. Dudley-JavoroskiS. ShieldsR.K. Assessment of physical function and secondary complications after complete spinal cord injury.Disabil. Rehabil.200628210311010.1080/0963828050016382816393840
    [Google Scholar]
  36. VisavadiyaN.P. PatelS.P. VanRooyenJ.L. SullivanP.G. RabchevskyA.G. Cellular and subcellular oxidative stress parameters following severe spinal cord injury.Redox Biol.20168596710.1016/j.redox.2015.12.01126760911
    [Google Scholar]
  37. OyinboC. Secondary injury mechanisms in traumatic spinal cord injury: A nugget of this multiply cascade.Acta Neurobiol. Exp. (Warsz.)201171228129910.55782/ane‑2011‑184821731081
    [Google Scholar]
  38. PauloseCS JohnPS ChinthuR AkhilrajPR AnjuTR Spinal cord regeneration by modulating bone marrow with neurotransmitters and Citicholine: Analysis at micromolecular level.Biomed J201740294100
    [Google Scholar]
  39. HellenbrandD.J. QuinnC.M. PiperZ.J. MorehouseC.N. FixelJ.A. HannaA.S. Inflammation after spinal cord injury: A review of the critical timeline of signaling cues and cellular infiltration.J. Neuroinflammation202118128410.1186/s12974‑021‑02337‑234876174
    [Google Scholar]
  40. ZhangN. YinY. XuS-J. WuY-P. ChenW-S. Inflammation & apoptosis in spinal cord injury.Indian J. Med. Res.2012135328729622561613
    [Google Scholar]
  41. TotoiuM.O. Characterization and repair of demyelination after spinal cord trauma.Irvine University of California2004
    [Google Scholar]
  42. SmalleyD.M. LeyK. L-selectin: Mechanisms and physiological significance of ectodomain cleavage.J. Cell. Mol. Med.20059225526610.1111/j.1582‑4934.2005.tb00354.x15963248
    [Google Scholar]
  43. RowlandsD. SugaharaK. KwokJ. Glycosaminoglycans and glycomimetics in the central nervous system.Molecules20152033527354810.3390/molecules2003352725706756
    [Google Scholar]
  44. QuintáH.R. PasquiniJ.M. RabinovichG.A. PasquiniL.A. Glycan-dependent binding of galectin-1 to neuropilin-1 promotes axonal regeneration after spinal cord injury.Cell Death Differ.201421694195510.1038/cdd.2014.1424561343
    [Google Scholar]
  45. SteinerO. CoisneC. CecchelliR. BoscacciR. DeutschU. EngelhardtB. LyckR. Differential roles for endothelial ICAM-1, ICAM-2, and VCAM-1 in shear-resistant T cell arrest, polarization, and directed crawling on blood-brain barrier endothelium.J. Immunol.201018584846485510.4049/jimmunol.090373220861356
    [Google Scholar]
  46. CeruttiC. EdwardsL.J. de VriesH.E. SharrackB. MaleD.K. RomeroI.A. MiR-126 and miR-126* regulate shear-resistant firm leukocyte adhesion to human brain endothelium.Sci. Rep.2017714528410.1038/srep4528428358058
    [Google Scholar]
  47. BanerjeeN. KimH. TalcottS. Mertens-TalcottS. Pomegranate polyphenolics suppressed azoxymethane-induced colorectal aberrant crypt foci and inflammation: Possible role of miR-126/VCAM-1 and miR-126/PI3K/AKT/mTOR.Carcinogenesis201334122814282210.1093/carcin/bgt29523996930
    [Google Scholar]
  48. ÁsgeirsdóttirS.A. van SolingenC. KurniatiN.F. ZwiersP.J. HeeringaP. van MeursM. SatchellS.C. SaleemM.A. MathiesonP.W. BanasB. KampsJ.A.A.M. RabelinkT.J. van ZonneveldA.J. MolemaG. MicroRNA-126 contributes to renal microvascular heterogeneity of VCAM-1 protein expression in acute inflammation.Am. J. Physiol. Renal Physiol.201230212F1630F163910.1152/ajprenal.00400.201122419694
    [Google Scholar]
  49. CoulsonD.J. BakhashabS. LatiefJ.S. WeaverJ.U. MiR-126, IL-7, CXCR1/2 receptors, inflammation and circulating endothelial progenitor cells: The study on targets for treatment pathways in a model of subclinical cardiovascular disease (type 1 diabetes mellitus).J. Transl. Med.202119114010.1186/s12967‑021‑02785‑733858417
    [Google Scholar]
  50. LiJ YangC WangY. miR-126 overexpression attenuates oxygen-glucose deprivation/reperfusion injury by inhibiting oxidative stress and inflammatory response via the activation of SIRT1/Nrf2 signaling pathway in human umbilical vein endothelial cells.Mol Med Rep.2021232165
    [Google Scholar]
  51. FengX. WangH. YeS. GuanJ. TanW. ChengS. WeiG. WuW. WuF. ZhouY. Up-regulation of microRNA-126 may contribute to pathogenesis of ulcerative colitis via regulating NF-kappaB inhibitor IκBα.PLoS One2012712e5278210.1371/journal.pone.005278223285182
    [Google Scholar]
  52. AlizadehA. DyckS.M. Karimi-AbdolrezaeeS. Traumatic spinal cord injury: An overview of pathophysiology, models and acute injury mechanisms.Front. Neurol.20191028210.3389/fneur.2019.0028230967837
    [Google Scholar]
  53. YangB. ZhangF. ChengF. YingL. WangC. ShiK. WangJ. XiaK. GongZ. HuangX. YuC. LiF. LiangC. ChenQ. Strategies and prospects of effective neural circuits reconstruction after spinal cord injury.Cell Death Dis.202011643910.1038/s41419‑020‑2620‑z32513969
    [Google Scholar]
  54. de FreriaC.M. Van NiekerkE. BleschA. LuP. Neural stem cells: Promoting axonal regeneration and spinal cord connectivity.Cells20211012329610.3390/cells1012329634943804
    [Google Scholar]
  55. PereiraI.M. MaroteA. SalgadoA.J. SilvaN.A. Filling the gap: Neural stem cells as a promising therapy for spinal cord injury.Pharmaceuticals (Basel)20191226510.3390/ph1202006531035689
    [Google Scholar]
  56. GongZ. XiaK. XuA. YuC. WangC. ZhuJ. HuangX. ChenQ. LiF. LiangC. Stem cell transplantation: A promising therapy for spinal cord injury.Curr. Stem Cell Res. Ther.202015432133110.2174/1574888X1466619082314442431441733
    [Google Scholar]
  57. FischerI. DulinJ.N. LaneM.A. Transplanting neural progenitor cells to restore connectivity after spinal cord injury.Nat. Rev. Neurosci.202021736638310.1038/s41583‑020‑0314‑232518349
    [Google Scholar]
  58. IyerN.R. WilemsT.S. Sakiyama-ElbertS.E. Stem cells for spinal cord injury: Strategies to inform differentiation and transplantation.Biotechnol. Bioeng.2017114224525910.1002/bit.2607427531038
    [Google Scholar]
  59. SalewskiR.P. MitchellR.A. ShenC. FehlingsM.G. Transplantation of neural stem cells clonally derived from embryonic stem cells promotes recovery after murine spinal cord injury.Stem Cells Dev.2015241365010.1089/scd.2014.009625119334
    [Google Scholar]
  60. SkaperSD Neurotrophic factors: An overview.Methods Mol Biol2018172711710.1007/978‑1‑4939‑7571‑6_1
    [Google Scholar]
  61. HuangE.J. ReichardtL.F. Neurotrophins: Roles in neuronal development and function.Annu. Rev. Neurosci.200124167773610.1146/annurev.neuro.24.1.67711520916
    [Google Scholar]
  62. KanekiyoK. WakabayashiT. NakanoN. YamadaY. TamachiM. SuzukiY. FukushimaM. SaitoF. AbeS. TsukagoshiC. MiyamotoC. IdeC. Effects of intrathecal injection of the conditioned medium from bone marrow stromal cells on spinal cord injury in rats.J. Neurotrauma201835352153210.1089/neu.2017.520129054133
    [Google Scholar]
  63. GordonT. The role of neurotrophic factors in nerve regeneration.Neurosurg. Focus2009262E310.3171/FOC.2009.26.2.E319228105
    [Google Scholar]
  64. VieiraM.S. SantosA.K. VasconcellosR. GoulartV.A.M. ParreiraR.C. KiharaA.H. UlrichH. ResendeR.R. Neural stem cell differentiation into mature neurons: Mechanisms of regulation and biotechnological applications.Biotechnol. Adv.20183671946197010.1016/j.biotechadv.2018.08.00230077716
    [Google Scholar]
  65. TrujilloC.A. SchwindtT.T. MartinsA.H. AlvesJ.M. MelloL.E. UlrichH. Novel perspectives of neural stem cell differentiation: From neurotransmitters to therapeutics.Cytometry A200975A1385310.1002/cyto.a.2066618988295
    [Google Scholar]
  66. UchidaN ChenK DohseM HansenKD DeanJ BuserJR Human neural stem cells induce functional myelination in mice with severe dysmyelination.Sci Transl Med.20124155155ra13610.1126/scitranslmed.3004371
    [Google Scholar]
  67. GuoY. ShiD. LiW. LiangC. WangH. YeZ. HuL. WangH.Q. LiY. Proliferation and neurogenesis of neural stem cells enhanced by cerebral microvascular endothelial cells.Microsurgery2008281546010.1002/micr.2044318085703
    [Google Scholar]
  68. WangH. YangH. ShiY. XiaoY. YinY. JiangB. RenH. ChenW. XueQ. XuX. Reconstituting neurovascular unit with primary neural stem cells and brain microvascular endothelial cells in three-dimensional matrix.Brain Pathol.2021315e1294010.1111/bpa.1294033576166
    [Google Scholar]
  69. KüryP. AkkermannR. BeyerF. Heterogeneous populations of neural stem cells contribute to myelin repair.Neural Regen. Res.201712450951710.4103/1673‑5374.20499928553319
    [Google Scholar]
  70. AndresR.H. HorieN. SlikkerW. Keren-GillH. ZhanK. SunG. ManleyN.C. PereiraM.P. SheikhL.A. McMillanE.L. SchaarB.T. SvendsenC.N. BlissT.M. SteinbergG.K. Human neural stem cells enhance structural plasticity and axonal transport in the ischaemic brain.Brain201113461777178910.1093/brain/awr09421616972
    [Google Scholar]
  71. LiuW. XuB. XueW. YangB. FanY. ChenB. XiaoZ. XueX. SunZ. ShuM. ZhangQ. ShiY. ZhaoY. DaiJ. A functional scaffold to promote the migration and neuronal differentiation of neural stem/progenitor cells for spinal cord injury repair.Biomaterials202024311994110.1016/j.biomaterials.2020.11994132172034
    [Google Scholar]
  72. NishimuraS. YasudaA. IwaiH. TakanoM. KobayashiY. NoriS. TsujiO. FujiyoshiK. EbiseH. ToyamaY. OkanoH. NakamuraM. Time-dependent changes in the microenvironment of injured spinal cord affects the therapeutic potential of neural stem cell transplantation for spinal cord injury.Mol. Brain201361310.1186/1756‑6606‑6‑323298657
    [Google Scholar]
  73. Song-MinY.I.W.H. DengC.S. miR-126 signaling in the differentiation of neural stem cells into chat-positive neurons.Journal of Practical Orthopaedics.20111210901094
    [Google Scholar]
  74. RouigariM. DehbashiM. GhaediK. PourhosseinM. Targetome analysis revealed involvement of MiR-126 in neurotrophin signaling pathway: A possible role in prevention of glioma development.Cell J.201820215015629633591
    [Google Scholar]
  75. Le BoiteuxE. GuichetP.O. MasliantsevK. MontibusB. Vaurs-BarriereC. Gonthier-GueretC. ChautardE. VerrelleP. Karayan-TaponL. FogliA. CourtF. ArnaudP. The long non-coding RNA HOXA-AS2 promotes proliferation of glioma stem cells and modulates their inflammation pathway mainly through post- transcriptional regulation.Int. J. Mol. Sci.2022239474310.3390/ijms2309474335563134
    [Google Scholar]
  76. Nieto-DiazM. EstebanF.J. ReigadaD. Muñoz-GaldeanoT. YuntaM. Caballero-LópezM. Navarro-RuizR. ÁguilaÁ. MazaR.M. MicroRNA dysregulation in spinal cord injury: Causes, consequences and therapeutics.Front. Cell. Neurosci.201485310.3389/fncel.2014.0005324701199
    [Google Scholar]
  77. HuJ.Z. HuangJ.H. ZengL. WangG. CaoM. LuH.B. Anti-apoptotic effect of microRNA-21 after contusion spinal cord injury in rats.J. Neurotrauma201330151349136010.1089/neu.2012.274823647386
    [Google Scholar]
/content/journals/cscr/10.2174/011574888X289224240723042538
Loading
/content/journals/cscr/10.2174/011574888X289224240723042538
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test