Skip to content
2000
Volume 18, Issue 1
  • ISSN: 1874-4710
  • E-ISSN: 1874-4729

Abstract

Objective

Traditional cell-based radiobiological methods are inadequate for assessing the toxicity of ionizing radiation exposure in relation to the microstructure of the extracellular matrix. Organotypic tissue slices preserve the spatial organization observed , making the tissue easily accessible for visualization and staining. This study aims to explore the use of fluorescence microscopy of physiologically relevant 3D tissue cultures to assess the effects of ionizing radiation.

Methods

Organotypic tissue slices were obtained by vibratome, and their mechanical properties were studied. Slices were exposed by two ionizing radiation sources; electron beams (80 Gy and 4 Gy), and soft gamma irradiation (80 Gy and 4 Gy). Two tissue culture protocols were used: the standard (37°C), and hypothermic (30°C) conditions. A qualitative analysis of cell viability in organotypic tissue slices was performed using fluorescent dyes and standard laser confocal microscopy.

Results

Biological dosimetry is represented by differentially stained 200-μm thick organotypic tissue sections related to living and dead cells and cell metabolic activity.

Conclusion

Our results underscore the ability of fluorescence laser scanning confocal microscopy to rapidly assess the radiobiological effects of ionizing radiation on 3D organotypic tissue slices.

Loading

Article metrics loading...

/content/journals/crp/10.2174/0118744710293570240419110322
2025-03-01
2025-08-14
Loading full text...

Full text loading...

References

  1. DesoizeB. JardillierJ. Multicellular resistance: A paradigm for clinical resistance?Crit. Rev. Oncol. Hematol.2000362-319320710.1016/S1040‑8428(00)00086‑X 11033306
    [Google Scholar]
  2. SantiniM.T. RainaldiG. IndovinaP.L. Multicellular tumour spheroids in radiation biology.Int. J. Radiat. Biol.199975778779910.1080/095530099139845 10489890
    [Google Scholar]
  3. DurandR.E. SutherlandR.M. Radiation studies with spheroids.Spheroids in cancer research198410311510.1007/978‑3‑642‑82340‑4_6
    [Google Scholar]
  4. VillasanaL.E. AkinyekeT. WeberS. RaberJ. Paradoxical effects of 137Cs irradiation on pharmacological stimulation of reactive oxygen species in hippocampal slices from apoE2 and apoE4 mice.Oncotarget2017844765877660510.18632/oncotarget.20603 29100334
    [Google Scholar]
  5. EkeI. CordesN. Radiobiology goes 3D: How ECM and cell morphology impact on cell survival after irradiation.Radiother. Oncol.201199327127810.1016/j.radonc.2011.06.007 21704412
    [Google Scholar]
  6. TuiengR.J. CartmellS.H. KirwanC.C. SherrattM.J. The effects of ionising and non-ionising electromagnetic radiation on extracellular matrix proteins.Cells20211011304110.3390/cells10113041 34831262
    [Google Scholar]
  7. WangT. NandaS.S. PapaefthymiouG.C. YiD.K. Mechanophysical cues in extracellular matrix regulation of cell behavior.ChemBioChem20202191254126410.1002/cbic.201900686 31868957
    [Google Scholar]
  8. BrayL.J. HutmacherD.W. BockN. Addressing patient specificity in the engineering of tumor models.Front. Bioeng. Biotechnol.2019721710.3389/fbioe.2019.00217 31572718
    [Google Scholar]
  9. BussekA. WettwerE. ChristT. LohmannH. CamellitiP. RavensU. Tissue slices from adult mammalian hearts as a model for pharmacological drug testing.Cell. Physiol. Biochem.2009245-652753610.1159/000257528 19910693
    [Google Scholar]
  10. CarrelA. BurrowsM.T. Cultivation of tissues in vitro and its technique.J. Exp. Med.191113338739610.1084/jem.13.3.387 19867420
    [Google Scholar]
  11. WarburgO. MinamiS. Versuche an überlebendem carcinom-gewebe.Klin. Wochenschr.192321777677710.1007/BF01712130
    [Google Scholar]
  12. DanielJ. DeucharsJ. DeucharsS. Organotypic spinal cord slice cultures and a method to detect cell proliferation in these slices.Bio Protoc.2016619e1951e195110.21769/BioProtoc.1951
    [Google Scholar]
  13. SönnichsenR. HennigL. BlaschkeV. WinterK. KörferJ. HähnelS. MoneckeA. WittekindC. Jansen-WinkelnB. ThiemeR. GockelI. GrosserK. WeimannA. KubickC. WiechmannV. AignerA. BechmannI. LordickF. KallendruschS. Individual susceptibility analysis using patient-derived slice cultures of colorectal carcinoma.Clin. Colorectal Cancer2018172e189e19910.1016/j.clcc.2017.11.002 29233603
    [Google Scholar]
  14. IulianellaA. Cutting thick sections using a vibratome.Cold Spring Harbor Protocols.20176pdb-prot094011.10.1101/pdb.prot094011
    [Google Scholar]
  15. RoelantsC. PilletC. FranquetQ. SarrazinC. PeilleronN. GiacosaS. GuyonL. FontanellA. FiardG. LongJ.A. DescotesJ.L. CochetC. FilholO. Ex-vivo treatment of tumor tissue slices as a predictive preclinical method to evaluate targeted therapies for patients with renal carcinoma.Cancers202012123210.3390/cancers12010232 31963500
    [Google Scholar]
  16. ShestakovaV.A. KlabukovI.D. BelkinaS.V. SmirnovaA.N. BaranovskyD.S. YatsenkoE.M. Device for determining mechanical properties of survive tissue sections. RU 218945,2023
    [Google Scholar]
  17. LiQ. ZhaoG. HanW. XuS. WuL. Radiation target: Moving from theory to practice.Nuclear Analysis20221210002410.1016/j.nucana.2022.100024
    [Google Scholar]
  18. PanD. XueG. ZhuJ. HuB. Ionizing radiation induced biological effects in three-dimensional cell cultures.Rend. Lincei Sci. Fis. Nat.201425S1818610.1007/s12210‑013‑0260‑2
    [Google Scholar]
  19. GrafB.W. BoppartS.A. Imaging and analysis of three-dimensional cell culture models.Live Cell Imaging: Methods and Protocols201021122710.1007/978‑1‑60761‑404‑3_13
    [Google Scholar]
  20. SharmaT. Kavita; Mishra, B.B.; Variyar, P.S. Detection of gamma radiation processed onion during storage using propidium iodide based fluorescence microscopy.Food Chem.202339813392810.1016/j.foodchem.2022.133928 35988414
    [Google Scholar]
  21. ByrdT.F.IV HoangL.T. KimE.G. PfisterM.E. WernerE.M. ArndtS.E. ChamberlainJ.W. HugheyJ.J. NguyenB.A. SchneibelE.J. WertzL.L. WhitfieldJ.S. WikswoJ.P. SealeK.T. The microfluidic multitrap nanophysiometer for hematologic cancer cell characterization reveals temporal sensitivity of the calcein-AM efflux assay.Sci. Rep.201441511710.1038/srep05117 24873950
    [Google Scholar]
  22. AtaleN. GuptaS. YadavU.C.S. RaniV. Cell‐death assessment by fluorescent and nonfluorescent cytosolic and nuclear staining techniques.J. Microsc.2014255171910.1111/jmi.12133 24831993
    [Google Scholar]
  23. MajorovaD. AtkinsE. MartineauH. VokralI. OosterhuisD. OlingaP. WrenB. CuccuiJ. WerlingD. Use of precision-cut tissue slices as a translational model to study host-pathogen interaction.Front. Vet. Sci.2021868608810.3389/fvets.2021.686088 34150901
    [Google Scholar]
  24. KlokerL. YurttasC. LauerU. Three-dimensional tumor cell cultures employed in virotherapy research.Oncolytic Virother.20187799310.2147/OV.S165479 30234074
    [Google Scholar]
  25. SieryiO. PopovA. KalchenkoV. BykovA. MeglinskiI. Tissue-mimicking phantoms for biomedical applications.Tissue Optics and Photonics202011363111117
    [Google Scholar]
  26. AnandG. LoweA. Al-JumailyA. Tissue phantoms to mimic the dielectric properties of human forearm section for multi-frequency bioimpedance analysis at low frequencies.Mater. Sci. Eng. C20199649650810.1016/j.msec.2018.11.080 30606559
    [Google Scholar]
  27. McGarryC.K. GrattanL.J. IvoryA.M. LeekF. LineyG.P. LiuY. MiloroP. RaiR. RobinsonA. ShihA.J. ZeqiriB. ClarkC.H. Tissue mimicking materials for imaging and therapy phantoms: A review.Phys. Med. Biol.2020652323TR0110.1088/1361‑6560/abbd17 32998112
    [Google Scholar]
  28. BabelL. GrunewaldM. LehnR. LanghansM. MeckelT. Direct evidence for cell adhesion-mediated radioresistance (CAM-RR) on the level of individual integrin β1 clusters.Sci. Rep.201771339310.1038/s41598‑017‑03414‑4 28611417
    [Google Scholar]
  29. TangH.L. TangH.M. HardwickJ.M. FungM.C. Strategies for tracking anastasis, a cell survival phenomenon that reverses apoptosis.J. Vis. Exp.2015201596e51964 25742050
    [Google Scholar]
  30. GalluzziL. VitaleI. AaronsonS.A. AbramsJ.M. AdamD. AgostinisP. AlnemriE.S. AltucciL. AmelioI. AndrewsD.W. Annicchiarico-PetruzzelliM. AntonovA.V. AramaE. BaehreckeE.H. BarlevN.A. BazanN.G. BernassolaF. BertrandM.J.M. BianchiK. BlagosklonnyM.V. BlomgrenK. BornerC. BoyaP. BrennerC. CampanellaM. CandiE. Carmona-GutierrezD. CecconiF. ChanF.K.M. ChandelN.S. ChengE.H. ChipukJ.E. CidlowskiJ.A. CiechanoverA. CohenG.M. ConradM. Cubillos-RuizJ.R. CzabotarP.E. D’AngiolellaV. DawsonT.M. DawsonV.L. De LaurenziV. De MariaR. DebatinK.M. DeBerardinisR.J. DeshmukhM. Di DanieleN. Di VirgilioF. DixitV.M. DixonS.J. DuckettC.S. DynlachtB.D. El-DeiryW.S. ElrodJ.W. FimiaG.M. FuldaS. García-SáezA.J. GargA.D. GarridoC. GavathiotisE. GolsteinP. GottliebE. GreenD.R. GreeneL.A. GronemeyerH. GrossA. HajnoczkyG. HardwickJ.M. HarrisI.S. HengartnerM.O. HetzC. IchijoH. JäätteläM. JosephB. JostP.J. JuinP.P. KaiserW.J. KarinM. KaufmannT. KeppO. KimchiA. KitsisR.N. KlionskyD.J. KnightR.A. KumarS. LeeS.W. LemastersJ.J. LevineB. LinkermannA. LiptonS.A. LockshinR.A. López-OtínC. LoweS.W. LueddeT. LugliE. MacFarlaneM. MadeoF. MalewiczM. MalorniW. ManicG. MarineJ.C. MartinS.J. MartinouJ.C. MedemaJ.P. MehlenP. MeierP. MelinoS. MiaoE.A. MolkentinJ.D. MollU.M. Muñoz-PinedoC. NagataS. NuñezG. OberstA. OrenM. OverholtzerM. PaganoM. PanaretakisT. PasparakisM. PenningerJ.M. PereiraD.M. PervaizS. PeterM.E. PiacentiniM. PintonP. PrehnJ.H.M. PuthalakathH. RabinovichG.A. RehmM. RizzutoR. RodriguesC.M.P. RubinszteinD.C. RudelT. RyanK.M. SayanE. ScorranoL. ShaoF. ShiY. SilkeJ. SimonH.U. SistiguA. StockwellB.R. StrasserA. SzabadkaiG. TaitS.W.G. TangD. TavernarakisN. ThorburnA. TsujimotoY. TurkB. Vanden BergheT. VandenabeeleP. Vander HeidenM.G. VillungerA. VirginH.W. VousdenK.H. VucicD. WagnerE.F. WalczakH. WallachD. WangY. WellsJ.A. WoodW. YuanJ. ZakeriZ. ZhivotovskyB. ZitvogelL. MelinoG. KroemerG. Molecular mechanisms of cell death: Recommendations of the nomenclature committee on cell death 2018.Cell Death Differ.201825348654110.1038/s41418‑017‑0012‑4 29362479
    [Google Scholar]
  31. EvansD.W. MoranE.C. BaptistaP.M. SokerS. SparksJ.L. Scale-dependent mechanical properties of native and decellularized liver tissue.Biomech. Model. Mechanobiol.201312356958010.1007/s10237‑012‑0426‑3 22890366
    [Google Scholar]
  32. KarimiA. ShojaeiA. An experimental study to measure the mechanical properties of the human liver.Dig. Dis.201836215015510.1159/000481344 29131053
    [Google Scholar]
  33. EstermannS.J. Förster-StreffleurS. HirtlerL. StreicherJ. PahrD.H. ReisingerA. Comparison of Thiel preserved, fresh human, and animal liver tissue in terms of mechanical properties.Ann. Anat.202123615171710.1016/j.aanat.2021.151717 33689839
    [Google Scholar]
  34. HuwartL. PeetersF. SinkusR. AnnetL. SalamehN. ter BeekL.C. HorsmansY. Van BeersB.E. Liver fibrosis: Non‐invasive assessment with MR elastography.NMR Biomed.200619217317910.1002/nbm.1030 16521091
    [Google Scholar]
  35. WangM.H. PalmeriM.L. GuyC.D. YangL. HedlundL.W. DiehlA.M. NightingaleK.R. In vivo quantification of liver stiffness in a rat model of hepatic fibrosis with acoustic radiation force.Ultrasound Med. Biol.200935101709172110.1016/j.ultrasmedbio.2009.04.019 19683381
    [Google Scholar]
  36. CarterF.J. FrankT.G. DaviesP.J. McLeanD. CuschieriA. Measurements and modelling of the compliance of human and porcine organs.Med. Image Anal.20015423123610.1016/S1361‑8415(01)00048‑2 11731303
    [Google Scholar]
  37. PerepelyukM. ChinL. CaoX. van OostenA. ShenoyV.B. JanmeyP.A. WellsR.G. Normal and fibrotic rat livers demonstrate shear strain softening and compression stiffening: A model for soft tissue mechanics.PLoS One2016111e014658810.1371/journal.pone.0146588 26735954
    [Google Scholar]
  38. IshikiriyamaT. NakashimaH. Endo-UmedaK. NakashimaM. ItoS. KinoshitaM. IkarashiM. MakishimaM. SekiS. Contrasting functional responses of resident Kupffer cells and recruited liver macrophages to irradiation and liver X receptor stimulation.PLoS One2021167e025488610.1371/journal.pone.0254886 34297734
    [Google Scholar]
  39. PoppH.D. BrendelS. HofmannW.K. FabariusA. Immunofluorescence microscopy of γH2AX and 53BP1 for analyzing the formation and repair of dna double-strand breaks.J. Vis. Exp.2017129e56617 29155797
    [Google Scholar]
/content/journals/crp/10.2174/0118744710293570240419110322
Loading
/content/journals/crp/10.2174/0118744710293570240419110322
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test