Skip to content
2000
image of Multifunctional Nanoparticles for Gene and Drug Co-delivery via the Pulmonary Route: Difficulties and Advancements

Abstract

Pulmonary drug delivery systems are targeted therapies for respiratory conditions that deliver drugs directly to the lungs for increased bioavailability and faster action. The selection of the pulmonary route is based on its rapid absorption, which avoids the liver's first-pass metabolism. The approach involves studying how these nanoparticles help encapsulate drugs, shield them from deterioration, and improve their absorption into the lungs. These problems are being addressed by recent developments in improved targeting techniques, surface alterations, and particle size optimization, which are improving stability, release, and distribution. Inhalable dry powder formulations and nano-carriers for immunotherapy and gene therapy are also encouraging. Still, problems continue, including formulation stability, industrial scalability, lung toxicity, and patient compliance with breathing devices. The efficacy of PDDS will depend on resolving these issues with technologies such as Nano printing, combination therapy, and customized drugs. These developments are anticipated to result in more practical and successful pulmonary treatments for respiratory conditions with further research. The focus of this review is the solid lipid nanoparticles, dendrimers, liposomes, and DNA or mRNA approaches. These NPs help protect drugs from degradation, help encapsulate them, and improve lung penetration. This review discusses the nanoparticle and gene therapy for the treatment of PDDS.

Loading

Article metrics loading...

/content/journals/crmr/10.2174/011573398X439272251216114932
2026-01-15
2026-02-04
Loading full text...

Full text loading...

References

  1. Baryakova T.H. Pogostin B.H. Langer R. McHugh K.J. Overcoming barriers to patient adherence: The case for developing innovative drug delivery systems. Nat. Rev. Drug Discov. 2023 22 5 387 409 10.1038/s41573‑023‑00670‑0 36973491
    [Google Scholar]
  2. Kumar M. Hilles A.R. Almurisi S.H. Bhatia A. Mahmood S. Micro and nano-carriers-based pulmonary drug delivery system: Their current updates, challenges, and limitations - A review. JCIS Open 2023 12 100095 10.1016/j.jciso.2023.100095
    [Google Scholar]
  3. Narmani A. Jahedi R. Bakhshian-Dehkordi E. Biomedical applications of PLGA nanoparticles in nanomedicine: Advances in drug delivery systems and cancer therapy. Expert Opin. Drug Deliv. 2023 20 7 937 954 10.1080/17425247.2023.2223941 37294853
    [Google Scholar]
  4. Nguyen P.H.D. Jayasinghe M.K. Le A.H. Peng B. Le M.T.N. Advances in drug delivery systems based on red blood cells and their membrane-derived nanoparticles. ACS Nano 2023 17 6 5187 5210 10.1021/acsnano.2c11965 36896898
    [Google Scholar]
  5. Bhatt P. Kumar V. Subramaniyan V. Plasma modification techniques for natural polymer-based drug delivery systems. Pharmaceutics 2023 15 8 2066 2073 10.3390/pharmaceutics15082066 37631280
    [Google Scholar]
  6. Cazzola M. Cavalli F. Usmani O.S. Rogliani P. Advances in pulmonary drug delivery devices for the treatment of chronic obstructive pulmonary disease. Expert Opin. Drug Deliv. 2020 17 5 635 646 10.1080/17425247.2020.1739021 32130023
    [Google Scholar]
  7. Sen S Xavier J Kumar N Ahmad MZ Ranjan OP Exosomes as natural nanocarrier-based drug delivery system: Recent insights and future perspectives. 3 Biotech 2023 13 101 10.1007/s13205‑023‑03521‑2
    [Google Scholar]
  8. Pramanik S. Mohanto S. Manne R. Nanoparticle-based drug delivery system: The magic bullet for the treatment of chronic pulmonary diseases. Mol. Pharm. 2021 18 10 3671 3718 10.1021/acs.molpharmaceut.1c00491 34491754
    [Google Scholar]
  9. Xu X. Wu J. Weng W. Fu M. Investigation of inhalation and exhalation flow pattern in a realistic human upper airway model by PIV experiments and CFD simulations. Biomech. Model. Mechanobiol. 2020 19 5 1679 1695 10.1007/s10237‑020‑01299‑3 32026145
    [Google Scholar]
  10. Qin L. Cui Z. Wu Y. Challenges and strategies to enhance the systemic absorption of inhaled peptides and proteins. Pharm. Res. 2023 40 5 1037 1055 10.1007/s11095‑022‑03435‑3 36385216
    [Google Scholar]
  11. Liu Q. Guan J. Qin L. Zhang X. Mao S. Physicochemical properties affecting the fate of nanoparticles in pulmonary drug delivery. Drug Discov. Today 2020 25 1 150 159 10.1016/j.drudis.2019.09.023 31600580
    [Google Scholar]
  12. Smith-Hall C. Pyakurel D. Treue T. A roadmap to sustainable management of commercial medicinal and aromatic plants, fungi, and lichens in Nepal. Conserv. Biol. 2025 39 4 e14442 e14445 10.1111/cobi.14442 39822046
    [Google Scholar]
  13. Sorino C. Negri S. Spanevello A. Visca D. Scichilone N. Inhalation therapy devices for the treatment of obstructive lung diseases: The history of inhalers towards the ideal inhaler. Eur. J. Intern. Med. 2020 75 15 18 10.1016/j.ejim.2020.02.023 32113944
    [Google Scholar]
  14. Munir M. Setiawan H. Awaludin R. Kett V.L. Aerosolised micro and nanoparticle: Formulation and delivery method for lung imaging. Clin. Transl. Imaging 2022 11 1 33 50 10.1007/s40336‑022‑00527‑3 36196096
    [Google Scholar]
  15. Xiroudaki S. Schoubben A. Giovagnoli S. Rekkas D.M. Dry powder inhalers in the digitalization era: Current status and future perspectives. Pharmaceutics 2021 13 9 1455 10.3390/pharmaceutics13091455 34575530
    [Google Scholar]
  16. Manzari M.T. Shamay Y. Kiguchi H. Rosen N. Scaltriti M. Heller D.A. Targeted drug delivery strategies for precision medicines. Nat. Rev. Mater. 2021 6 4 351 370 10.1038/s41578‑020‑00269‑6 34950512
    [Google Scholar]
  17. Dong L. Zhuang X. Insights into inhalation drug disposition: The roles of pulmonary drug-metabolizing enzymes and transporters. Int. J. Mol. Sci. 2024 25 9 4671 4675 10.3390/ijms25094671 38731891
    [Google Scholar]
  18. Abdulbaqi I.M. Assi R.A. Yaghmur A. Pulmonary delivery of anticancer drugs via lipid-based nanocarriers for the treatment of lung cancer: An update. Pharmaceuticals 2021 14 8 725 729 10.3390/ph14080725 34451824
    [Google Scholar]
  19. Epameinondas Georgakopoulou V. Papalexis P. Trakas N. Nanotechnology-based approaches for targeted drug delivery for the treatment of respiratory tract infections. J. Biol. Methods 2024 11 4 e99010032 10.14440/jbm.2024.0065 39839091
    [Google Scholar]
  20. Wang J.H. Gessler D.J. Zhan W. Gallagher T.L. Gao G. Adeno-associated virus as a delivery vector for gene therapy of human diseases. Signal Transduct. Target. Ther. 2024 9 1 78 82 10.1038/s41392‑024‑01780‑w 38565561
    [Google Scholar]
  21. Bierlaagh M.C. Muilwijk D. Beekman J.M. van der Ent C.K. A new era for people with cystic fibrosis. Eur. J. Pediatr. 2021 180 9 2731 2739 10.1007/s00431‑021‑04168‑y 34213646
    [Google Scholar]
  22. Aronson K.I. Danoff S.K. Russell A.M. Patient-centered outcomes research in interstitial lung disease: An official american thoracic society research statement. Am. J. Respir. Crit. Care Med. 2021 204 2 e3 e23 10.1164/rccm.202105‑1193ST 34283696
    [Google Scholar]
  23. Feng X. Shi Y. Zhang Y. Lei F. Ren R. Tang X. Opportunities and challenges for inhalable nanomedicine formulations in respiratory diseases: A review. Int. J. Nanomedicine 2024 19 1509 1538 10.2147/IJN.S446919 38384321
    [Google Scholar]
  24. Wang B. Wang L. Yang Q. Pulmonary inhalation for disease treatment: Basic research and clinical translations. Mater. Today Bio 2024 25 100966 100970 10.1016/j.mtbio.2024.100966 38318475
    [Google Scholar]
  25. Singh S. Chib S. Akhtar M.J. Kumar B. Chawla P.A. Bhatia R. Paradigms and success stories of natural products in drug discovery against neurodegenerative disorders (NDDs). Curr. Neuropharmacol. 2024 22 6 992 1015 10.2174/1570159X21666230105110834 36606589
    [Google Scholar]
  26. De Rubis G. Paudel K.R. Corrie L. Applications and advancements of nanoparticle-based drug delivery in alleviating lung cancer and chronic obstructive pulmonary disease. Naunyn Schmiedebergs Arch. Pharmacol. 2024 397 5 2793 2833 10.1007/s00210‑023‑02830‑w 37991539
    [Google Scholar]
  27. Lee R.E. Reidel B. Nelson M.R. Macdonald J.K. Kesimer M. Randell S.H. Air-Liquid interface cultures to model drug delivery through the mucociliary epithelial barrier. Adv. Drug Deliv. Rev. 2023 198 114866 114871 10.1016/j.addr.2023.114866 37196698
    [Google Scholar]
  28. Pangeni R. Meng T. Poudel S. Airway mucus in pulmonary diseases: Muco-adhesive and muco-penetrating particles to overcome the airway mucus barriers. Int. J. Pharm. 2023 634 122661 122668 10.1016/j.ijpharm.2023.122661 36736964
    [Google Scholar]
  29. Anderson S. Atkins P. Bäckman P. Inhaled medicines: Past, present, and future. Pharmacol. Rev. 2022 74 1 48 118 10.1124/pharmrev.120.000108 34987088
    [Google Scholar]
  30. Man F. Tang J. Swedrowska M. Forbes B.T.M. de Rosales R. Imaging drug delivery to the lungs: Methods and applications in oncology. Adv. Drug Deliv. Rev. 2023 192 114641 10.1016/j.addr.2022.114641 36509173
    [Google Scholar]
  31. Lukhele B.S. Bassey K. Witika B.A. The utilization of plant-material-loaded vesicular drug delivery systems in the management of pulmonary diseases. Curr. Issues Mol. Biol. 2023 45 12 9985 10017 10.3390/cimb45120624 38132470
    [Google Scholar]
  32. Boboltz A. Kumar S. Duncan G.A. Inhaled drug delivery for the targeted treatment of asthma. Adv. Drug Deliv. Rev. 2023 198 114858 114869 10.1016/j.addr.2023.114858 37178928
    [Google Scholar]
  33. Yarlagadda D.L. Kawakami K. Samavedi S. Leveraging molecular interactions to develop a generalized design framework for coamorphous drug-drug mixtures exhibiting elevated glass transition temperatures. Mol. Pharm. 2025 22 6 3084 3096 10.1021/acs.molpharmaceut.5c00006 40377977
    [Google Scholar]
  34. Zilker M. Sörgel F. Holzgrabe U. A systematic review of the stability of finished pharmaceutical products and drug substances beyond their labeled expiry dates. J. Pharm. Biomed. Anal. 2019 166 222 235 10.1016/j.jpba.2019.01.016 30660807
    [Google Scholar]
  35. Yu Q. Zhang Q. Wu Z. Yang Y. Inhalable metal-organic frameworks: A promising delivery platform for pulmonary diseases treatment. ACS Nano 2025 19 3 3037 3053 10.1021/acsnano.4c16873 39808505
    [Google Scholar]
  36. Osman N.M. Sexton D.W. Saleem I.Y. Toxicological assessment of nanoparticle interactions with the pulmonary system. Nanotoxicology 2020 14 1 21 58 10.1080/17435390.2019.1661043 31502904
    [Google Scholar]
  37. He S. Gui J. Xiong K. Chen M. Gao H. Fu Y. A roadmap to pulmonary delivery strategies for the treatment of infectious lung diseases. J. Nanobiotechnology 2022 20 1 101 107 10.1186/s12951‑022‑01307‑x 35241085
    [Google Scholar]
  38. El-Tanani M. Satyam S.M. Rabbani S.A. Revolutionizing drug delivery: The impact of advanced materials science and technology on precision medicine. Pharmaceutics 2025 17 3 375 10.3390/pharmaceutics17030375 40143038
    [Google Scholar]
  39. Zöller K. Karlegger A. Truszkowska M. Stengel D. Bernkop-Schnürch A. Fluorescent hydrophobic ion pairs: A powerful tool to investigate cellular uptake of hydrophobic drug complexes via lipid-based nanocarriers. J. Colloid Interface Sci. 2024 654 174 188 10.1016/j.jcis.2023.10.001
    [Google Scholar]
  40. Safaeian Laein S. Katouzian I. Mozafari M.R. Biological and thermodynamic stabilization of lipid-based delivery systems through natural biopolymers; controlled release and molecular dynamics simulations. Crit. Rev. Food Sci. Nutr. 2024 64 22 7728 7747 10.1080/10408398.2023.2191281 36950963
    [Google Scholar]
  41. Subhash S. Chaurawal N. Raza K. Promises of lipid-based nanocarriers for delivery of dimethyl fumarate to multiple sclerosis brain. Methods Mol. Biol. 2024 2761 457 475 10.1007/978‑1‑0716‑3662‑6_31 38427255
    [Google Scholar]
  42. Ming Y. He X. Zhao Z. Nanocarrier-assisted delivery of berberine promotes diabetic alveolar bone regeneration by scavenging ros and improving mitochondrial dysfunction. Int. J. Nanomedicine 2024 19 10263 10282 10.2147/IJN.S475320 39399826
    [Google Scholar]
  43. Simrah H.A. Hafeez A. Usmani S.A. Izhar M.P. Transfersome, an ultra-deformable lipid-based drug nanocarrier: An updated review with therapeutic applications. Naunyn Schmiedebergs Arch. Pharmacol. 2024 397 2 639 673 10.1007/s00210‑023‑02670‑8 37597094
    [Google Scholar]
  44. Beigi A. Naghib S.M. Matini A. Tajabadi M. Mozafari M.R. Lipid-based nanocarriers for targeted gene delivery in lung cancer therapy: Exploring a novel therapeutic paradigm. Curr. Gene Ther. 2025 25 2 92 112 10.2174/0115665232292768240503050508 38778601
    [Google Scholar]
  45. Patel P. Garala K. Singh S. Prajapati B.G. Chittasupho C. Lipid-based nanoparticles in delivering bioactive compounds for improving therapeutic efficacy. Pharmaceuticals 2024 17 3 329 340 10.3390/ph17030329 38543115
    [Google Scholar]
  46. Tomeh M.A. Smith R.K. Watkinson A. Recent developments of RNA vaccines and therapeutics: Reagents, formulations, and characterization. Mol. Pharm. 2025 22 9 5257 5282 10.1021/acs.molpharmaceut.5c00670 40788115
    [Google Scholar]
  47. Munir M. Zaman M. Waqar M.A. Khan M.A. Alvi M.N. Solid lipid nanoparticles: A versatile approach for controlled release and targeted drug delivery. J. Liposome Res. 2024 34 2 335 348 10.1080/08982104.2023.2268711 37840238
    [Google Scholar]
  48. Mostafaei F. Hemmati S. Valizadeh H. Enhanced intracellular accumulation and cytotoxicity of bortezomib against liver cancer cells using N-stearyl lactobionamide surface modified solid lipid nanoparticles. Int. J. Pharm. 2024 649 123635 123641 10.1016/j.ijpharm.2023.123635 38000649
    [Google Scholar]
  49. Vakili-Ghartavol M. Arouiee H. Golmohammadzadeh S. Naseri M. Bandian L. Edible coatings based on solid lipid nanoparticles containing essential oil to improve antimicrobial activity, shelf-life, and quality of strawberries. J. Stored Prod. Res. 2024 106 102262 102270 10.1016/j.jspr.2024.102262
    [Google Scholar]
  50. Sharma A. Wairkar S. Flavonoids for treating pulmonary fibrosis: Present status and future prospects. Phytother. Res. 2024 38 9 4406 4423 10.1002/ptr.8285 38986681
    [Google Scholar]
  51. Weber S. Zimmer A. Pardeike J. Solid Lipid Nanoparticles (SLN) and Nanostructured Lipid Carriers (NLC) for pulmonary application: A review of the state of the art. Eur. J. Pharm. Biopharm. 2014 86 1 7 22 10.1016/j.ejpb.2013.08.013 24007657
    [Google Scholar]
  52. Alwani S. Wasan E.K. Badea I. Solid lipid nanoparticles for pulmonary delivery of biopharmaceuticals: A review of opportunities, challenges, and delivery applications. Mol. Pharm. 2024 21 7 3084 3102 10.1021/acs.molpharmaceut.4c00128 38828798
    [Google Scholar]
  53. Suberi A. Grun M.K. Mao T. Polymer nanoparticles deliver mRNA to the lung for mucosal vaccination. Sci. Transl. Med. 2023 15 709 eabq0603 10.1126/scitranslmed.abq0603 37585505
    [Google Scholar]
  54. de Barros A.O.S. Pinto S.R. dos Reis S.R.R. Polymeric nanoparticles and nanomicelles of hydroxychloroquine co-loaded with azithromycin potentiate anti-SARS-CoV-2 effect. J. Nanostructure Chem. 2023 13 2 263 281 10.1007/s40097‑022‑00476‑3 35251554
    [Google Scholar]
  55. d’Angelo I. Costabile G. Durantie E. Hybrid lipid/polymer nanoparticles for pulmonary delivery of sirna: Development and fate upon in vitro deposition on the human epithelial airway barrier. J. Aerosol Med. Pulm. Drug Deliv. 2018 31 3 170 181 10.1089/jamp.2017.1364 29035132
    [Google Scholar]
  56. Mirhadi E. Kesharwani P. Johnston T.P. Sahebkar A. Nanomedicine-mediated therapeutic approaches for pulmonary arterial hypertension. Drug Discov. Today 2023 28 6 103599 103609 10.1016/j.drudis.2023.103599 37116826
    [Google Scholar]
  57. Dilliard S.A. Siegwart D.J. Passive, active and endogenous organ-targeted lipid and polymer nanoparticles for delivery of genetic drugs. Nat. Rev. Mater. 2023 8 4 282 300 10.1038/s41578‑022‑00529‑7 36691401
    [Google Scholar]
  58. Fei Q. Bentley I. Ghadiali S.N. Englert J.A. Pulmonary drug delivery for acute respiratory distress syndrome. Pulm. Pharmacol. Ther. 2023 79 102196 102205 10.1016/j.pupt.2023.102196 36682407
    [Google Scholar]
  59. Fatani W.K. Aleanizy F.S. Alqahtani F.Y. Erlotinib-loaded dendrimer nanocomposites as a targeted lung cancer chemotherapy. Molecules 2023 28 9 3974 10.3390/molecules28093974 37175381
    [Google Scholar]
  60. Gao Y. Dai W. Ouyang Z. Shen M. Shi X. Dendrimer-mediated intracellular delivery of fibronectin guides macrophage polarization to alleviate acute lung injury. Biomacromolecules 2023 24 2 886 895 10.1021/acs.biomac.2c01318 36668816
    [Google Scholar]
  61. Sanhueza C. Vergara D. Chávez-Aravena C. Gálvez-Jiron F. Chavez-Angel E. Castro-Alvarez A. Functionalizing dendrimers for targeted delivery of bioactive molecules to macrophages: A potential treatment for Mycobacterium tuberculosis infection—A review. Pharmaceuticals 2023 16 10 1428 1435 10.3390/ph16101428 37895899
    [Google Scholar]
  62. Hye T. Moinuddin S.M. Sarkar T. Nguyen T. Saha D. Ahsan F. An evolving perspective on novel modified release drug delivery systems for inhalational therapy. Expert Opin. Drug Deliv. 2023 20 3 335 348 10.1080/17425247.2023.2175814 36720629
    [Google Scholar]
  63. Scafa Udriște A. Burdușel A. Niculescu A.G. Rădulescu M. Grumezescu A. Metal-based nanoparticles for cardiovascular diseases. Int. J. Mol. Sci. 2024 25 2 1001 1017 10.3390/ijms25021001 38256075
    [Google Scholar]
  64. Scialabba C. Craparo E.F. Bonsignore S. Cabibbo M. Cavallaro G. Lipid-polymer hybrid nanoparticles in microparticle-based powder: Evaluating the potential of methylprednisolone delivery for future lung disease treatment via inhalation. Pharmaceutics 2024 16 11 1454 1462 10.3390/pharmaceutics16111454 39598577
    [Google Scholar]
  65. Zheng X. Wu Y. Zuo H. Chen W. Wang K. Metal nanoparticles as novel agents for lung cancer diagnosis and therapy. Small 2023 19 18 2206624 10.1002/smll.202206624 36732908
    [Google Scholar]
  66. Yoosefian M. Sabaghian H. Silver nanoparticle-based drug delivery systems in the fight against COVID-19: Enhancing efficacy, reducing toxicity and improving drug bioavailability. J. Drug Target. 2024 32 7 794 806 10.1080/1061186X.2024.2356147 38742854
    [Google Scholar]
  67. Chand K. Vasquez-Guardado E.S. Magnetic nanoparticles: Synthesis and applications in life sciences. ChemistryOpen 2025 ••• e2500214 10.1002/open.202500214 40728013
    [Google Scholar]
  68. Arshad F. Naikoo G.A. Hassan I.U. Bioinspired and green synthesis of silver nanoparticles for medical applications: A green perspective. Appl. Biochem. Biotechnol. 2024 196 6 3636 3669 10.1007/s12010‑023‑04719‑z 37668757
    [Google Scholar]
  69. Yüce M. Albayrak E. Yontar A.K. Çevik S. Gumuskaptan C. Eco-friendly synthesis of silver nanoparticles using Anemone coronaria bulb extract and their potent anticancer and antibacterial activities. Sci. Rep. 2025 15 1 32066 32070 10.1038/s41598‑025‑16692‑0 40890316
    [Google Scholar]
  70. Cojocaru E. Petriș O.R. Cojocaru C. Nanoparticle-based drug delivery systems in inhaled therapy: Improving respiratory medicine. Pharmaceuticals 2024 17 8 1059 1066 10.3390/ph17081059 39204164
    [Google Scholar]
  71. Patel M. Mazumder R. Mishra R. Kant Kaushik K. Potential of nanotechnology-based formulations in combating pulmonary infectious diseases: A current scenario. Curr. Pharm. Des. 2022 28 42 3413 3427 10.2174/1381612829666221116143138 36397631
    [Google Scholar]
  72. Noga M. Milan J. Frydrych A. Jurowski K. Toxicological aspects, safety assessment, and green toxicology of silver nanoparticles (AgNPs)—critical review: State of the art. Int. J. Mol. Sci. 2023 24 6 5133 10.3390/ijms24065133 36982206
    [Google Scholar]
  73. Agarwal H. Shanmugam V. A review on anti-inflammatory activity of green synthesized zinc oxide nanoparticle: Mechanism-based approach. Bioorg. Chem. 2020 94 103423 103431 10.1016/j.bioorg.2019.103423 31776035
    [Google Scholar]
  74. Placha D. Jampilek J. Chronic inflammatory diseases, anti-inflammatory agents and their delivery nanosystems. Pharmaceutics 2021 13 1 64 71 10.3390/pharmaceutics13010064 33419176
    [Google Scholar]
  75. Zhang N. Xiong G. Liu Z. Toxicity of metal-based nanoparticles: Challenges in the nano era. Front. Bioeng. Biotechnol. 2022 10 1001572 10.3389/fbioe.2022.1001572 36619393
    [Google Scholar]
  76. Taghavizadeh Yazdi M.E. Qayoomian M. Beigoli S. Boskabady M.H. Recent advances in nanoparticle applications in respiratory disorders: A review. Front. Pharmacol. 2023 14 1059343 1059346 10.3389/fphar.2023.1059343 37538179
    [Google Scholar]
  77. Anjum S. Hashim M. Malik S.A. Recent advances in zinc oxide nanoparticles (ZnO NPs) for cancer diagnosis, target drug delivery, and treatment. Cancers 2021 13 18 4570 4577 10.3390/cancers13184570 34572797
    [Google Scholar]
  78. Lai Y-K. Wang Q. Huang J-Y. TiO2 nanotube platforms for smart drug delivery: A review. Int. J. Nanomedicine 2016 11 4819 4834 10.2147/IJN.S108847 27703349
    [Google Scholar]
  79. Li C. Tang M. The toxicological effects of nano titanium dioxide on target organs and mechanisms of toxicity. J. Appl. Toxicol. 2024 44 2 152 164 10.1002/jat.4534 37655586
    [Google Scholar]
  80. Korangath P. Jin L. Yang C.T. Iron oxide nanoparticles inhibit tumor progression and suppress lung metastases in mouse models of breast cancer. ACS Nano 2024 18 15 10509 10526 10.1021/acsnano.3c12064 38564478
    [Google Scholar]
  81. Wu K. Su D. Liu J. Saha R. Wang J.P. Magnetic nanoparticles in nanomedicine: A review of recent advances. Nanotechnology 2019 30 50 502003 502022 10.1088/1361‑6528/ab4241 31491782
    [Google Scholar]
  82. Horvat N.K. Chocarro S. Marques O. Superparamagnetic iron oxide nanoparticles reprogram the tumor microenvironment and reduce lung cancer regrowth after crizotinib treatment. ACS Nano 2024 18 17 11025 11041 10.1021/acsnano.3c08335 38626916
    [Google Scholar]
  83. Vasić K. Knez Ž. Leitgeb M. Multifunctional iron oxide nanoparticles as promising magnetic biomaterials in drug delivery: A review. J. Funct. Biomater. 2024 15 8 227 236 10.3390/jfb15080227 39194665
    [Google Scholar]
  84. Yadav K.S. Upadhya A. Misra A. Targeted drug therapy in nonsmall cell lung cancer: Clinical significance and possible solutions-part II (role of nanocarriers). Expert Opin. Drug Deliv. 2021 18 1 103 118 10.1080/17425247.2021.1832989 33017541
    [Google Scholar]
  85. Meng Y.Q. Shi Y.N. Zhu Y.P. Recent trends in preparation and biomedical applications of iron oxide nanoparticles. J. Nanobiotechnology 2024 22 1 24 41 10.1186/s12951‑023‑02235‑0 38191388
    [Google Scholar]
  86. Lu Y. Qiao Y. Wu T. Zhang Y. Shi J. Jiang J. Biomimetic nanoparticles coated with ScFv-modified macrophage membranes for siRNA delivery to relieve brain metastases of lung cancer. BMC Biotechnol. 2025 25 1 97 115 10.1186/s12896‑025‑01000‑5 40898177
    [Google Scholar]
  87. Rozhina E. Danilushkina A. Akhatova F. Fakhrullin R. Rozhin A. Batasheva S. Biocompatibility of magnetic nanoparticles coating with polycations using A549 cells. J. Biotechnol. 2021 325 25 34 10.1016/j.jbiotec.2020.12.003 33285149
    [Google Scholar]
  88. Xing E. Yu Y. Yu H. Solvation-layer mediated interfacial assembly for surface topological engineering of mesoporous microcarriers. ACS Nano 2025 19 38 33798 33812 10.1021/acsnano.5c07154 40970679
    [Google Scholar]
  89. Yetisgin A.A. Cetinel S. Zuvin M. Kosar A. Kutlu O. Therapeutic nanoparticles and their targeted delivery applications. Molecules 2020 25 9 2193 2198 10.3390/molecules25092193 32397080
    [Google Scholar]
  90. Budiman A. Anastasya G. Handini A. Lestari I. Subra L. Aulifa D. Characterization of drug with good glass-forming ability loaded mesoporous silica nanoparticles and its impact toward in vitro and in vivo studies. Int. J. Nanomedicine 2024 19 2199 2225 10.2147/IJN.S453873 38465205
    [Google Scholar]
  91. Waheed S. Li Z. Zhang F. Chiarini A. Armato U. Wu J. Engineering nano-drug biointerface to overcome biological barriers toward precision drug delivery. J. Nanobiotechnology 2022 20 1 395 399 10.1186/s12951‑022‑01605‑4 36045386
    [Google Scholar]
  92. Frickenstein A.N. Hagood J.M. Britten C.N. Mesoporous silica nanoparticles: Properties and strategies for enhancing clinical effect. Pharmaceutics 2021 13 4 570 10.3390/pharmaceutics13040570 33920503
    [Google Scholar]
  93. Guo Y. Mao Z. Ran F. Nanotechnology-based drug delivery systems to control bacterial-biofilm-associated lung infections. Pharmaceutics 2023 15 11 2582 2596 10.3390/pharmaceutics15112582 38004561
    [Google Scholar]
  94. Kankala R.K. Han Y.H. Na J. Nanoarchitectured structure and surface biofunctionality of mesoporous silica nanoparticles. Adv. Mater. 2020 32 23 1907035 10.1002/adma.201907035 32319133
    [Google Scholar]
  95. Gao Y. Gao D. Shen J. Wang Q. A review of mesoporous silica nanoparticle delivery systems in chemo-based combination cancer therapies. Front Chem. 2020 8 598722 10.3389/fchem.2020.598722 33330389
    [Google Scholar]
  96. Iranshahy M. Hanafi-Bojd M.Y. Aghili S.H. Curcumin-loaded mesoporous silica nanoparticles for drug delivery: Synthesis, biological assays and therapeutic potential - a review. RSC Advances 2023 13 32 22250 22267 10.1039/D3RA02772D 37492509
    [Google Scholar]
  97. Zuo X. Gu Y. Guo X. Preparation of budesonide-loaded liposomal nanoparticles for pulmonary delivery and their therapeutic effect in ova-induced asthma in mice. Int. J. Nanomedicine 2024 19 673 688 10.2147/IJN.S441345 38283200
    [Google Scholar]
  98. Lee W.T. Lee H. Kim J. Alveolar macrophage phagocytosis-evading inhaled microgels incorporating nintedanib-PLGA nanoparticles and pirfenidone-liposomes for improved treatment of pulmonary fibrosis. Bioact. Mater. 2024 33 262 278 10.1016/j.bioactmat.2023.11.005 38076650
    [Google Scholar]
  99. Yang Y. Ding Y. Fan B. Inflammation-targeting polymeric nanoparticles deliver sparfloxacin and tacrolimus for combating acute lung sepsis. J. Control. Release 2020 321 463 474 10.1016/j.jconrel.2020.02.030 32087302
    [Google Scholar]
  100. Singh S. Wairkar S. Long-circulating thiolated chitosan nanoparticles of nintedanib with N-acetyl cysteine for treating idiopathic pulmonary fibrosis: In vitro assessment of cytotoxicity, antioxidant, and antifibrotic potential. Int. J. Pharm. 2023 644 123322 123331 10.1016/j.ijpharm.2023.123322 37591474
    [Google Scholar]
  101. Cemal S.D. Ladetto M.F. Alava K.H. Voriconazole-loaded nanohydrogels towards optimized antifungal therapy for cystic fibrosis patients. Pharmaceutics 2025 17 6 725 735 10.3390/pharmaceutics17060725 40574038
    [Google Scholar]
  102. Chen D. Xuan X. Chen Y. Aerosol inhalation of inflammatory cells-targeted dendrimer-dexamethasone conjugate for efficient allergic asthma therapy. Biointerphases 2024 19 2 021001 021015 10.1116/6.0003480 38466073
    [Google Scholar]
  103. Wang H. Chen L. Li R. Lv C. Xu Y. Xiong Y. Polydopamine-coated mesoporous silica nanoparticles co-loaded with Ziyuglycoside I and Oseltamivir for synergistic treatment of viral pneumonia. Int. J. Pharm. 2023 645 123412 123427 10.1016/j.ijpharm.2023.123412 37703956
    [Google Scholar]
  104. Zhang X.L. Li B. Zhang X. 18β-Glycyrrhetinic acid monoglucuronide (GAMG) alleviates single-walled carbon nanotubes (SWCNT)-induced lung inflammation and fibrosis in mice through PI3K/AKT/NF-κB signaling pathway. Ecotoxicol. Environ. Saf. 2022 242 113858 10.1016/j.ecoenv.2022.113858 35809393
    [Google Scholar]
  105. Zhuo L.B. Liu Y.M. Jiang Y. Yan Z. Zinc oxide nanoparticles induce acute lung injury via oxidative stress-mediated mitochondrial damage and NLRP3 inflammasome activation: In vitro and in vivo studies. Environ. Pollut. 2024 341 122950 122965 10.1016/j.envpol.2023.122950 37979646
    [Google Scholar]
  106. Shu Y. Ma M. Pan X. Shafiq M. Yu H. Chen H. Cobalt protoporphyrin-induced nano-self-assembly for CT imaging, magnetic-guidance, and antioxidative protection of stem cells in pulmonary fibrosis treatment. Bioact. Mater. 2023 21 129 141 10.1016/j.bioactmat.2022.08.008 36093327
    [Google Scholar]
  107. Huang X. Li C. Wei T. Oropharyngeal aspirated Ag/TiO2 nanohybrids: Transformation, distribution and toxicity. Sci. Total Environ. 2024 908 168309 168315 10.1016/j.scitotenv.2023.168309 37944607
    [Google Scholar]
  108. Li X. Cheng S. Yu C. Co-delivery of retinoic acid and miRNA by functional Au nanoparticles for improved survival and CT imaging tracking of MSCs in pulmonary fibrosis therapy. Asian J. Pharm. Sci. 2024 19 4 100944 100957 10.1016/j.ajps.2024.100944 39660166
    [Google Scholar]
  109. Patel A. Redinger N. Richter A. In vitro and in vivo antitubercular activity of benzothiazinone-loaded human serum albumin nanocarriers designed for inhalation. J. Control. Release 2020 328 339 349 10.1016/j.jconrel.2020.08.022 32827612
    [Google Scholar]
  110. Thakur V. Mahajan R. Novel therapeutic target(s) for psoriatic disease. Front. Med. 2022 9 712313 712327 10.3389/fmed.2022.712313 35265634
    [Google Scholar]
  111. Zhou S. Wang Z. Gao L. C5a/C5aR1 axis as a key driver promotes epithelial-to-mesenchymal transition in airway epithelial cells in silica nanoparticles-induced pulmonary fibrosis. Int. Immunopharmacol. 2023 125 111112 10.1016/j.intimp.2023.111112
    [Google Scholar]
  112. Nikjoo D. van der Zwaan I. Rudén J. Frenning G. Engineered microparticles of hyaluronic acid hydrogel for controlled pulmonary release of salbutamol sulphate. Int. J. Pharm. 2023 643 123225 123237 10.1016/j.ijpharm.2023.123225 37451326
    [Google Scholar]
  113. Mohammed S.W. El-Megrab N.A. Hasan A.A. Gomaa E. A remodeled ivermectin polycaprolactone-based nanoparticles for inhalation as a promising treatment of pulmonary inflammatory diseases. Eur. J. Pharm. Sci. 2024 195 106714 106726 10.1016/j.ejps.2024.106714 38301972
    [Google Scholar]
  114. Abu Elella M.H. Kolawole O.M. Recent advances in modified chitosan-based drug delivery systems for transmucosal applications: A comprehensive review. Int. J. Biol. Macromol. 2024 277 Pt 4 134531 134537 10.1016/j.ijbiomac.2024.134531 39116977
    [Google Scholar]
  115. Si Y. Luo H. Zhang P. CD-MOFs: From preparation to drug delivery and therapeutic application. Carbohydr. Polym. 2024 323 121424 121433 10.1016/j.carbpol.2023.121424 37940296
    [Google Scholar]
  116. Jessamine V. Mehndiratta S. De Rubis G. The application of nanoparticles as advanced drug delivery systems in Attenuating COPD. Heliyon 2024 10 3 25393 10.1016/j.heliyon.2024.e25393 38356590
    [Google Scholar]
  117. Chheda D. Shete S. Tanisha T. Multifaceted therapeutic applications of biomimetic nanovaccines. Drug Discov. Today 2024 29 6 103991 103999 10.1016/j.drudis.2024.103991 38663578
    [Google Scholar]
  118. Datsyuk J.K. Paudel K.R. Rajput R. Emerging applications and prospects of NFκB decoy oligodeoxynucleotides in managing respiratory diseases. Chem. Biol. Interact. 2023 385 110737 110743 10.1016/j.cbi.2023.110737 37774998
    [Google Scholar]
  119. Bag N. Bardhan S. Roy S. Nanoparticle-mediated stimulus-responsive antibacterial therapy. Biomater. Sci. 2023 11 6 1994 2019 10.1039/D2BM01941H 36748318
    [Google Scholar]
  120. Yu Y. Li S. Yao Y. Shen X. Li L. Huang Y. Increasing stiffness promotes pulmonary retention of ligand-directed dexamethasone-loaded nanoparticle for enhanced acute lung inflammation therapy. Bioact. Mater. 2023 20 539 547 10.1016/j.bioactmat.2022.06.016 35846844
    [Google Scholar]
  121. Li X. Li Y. Yu C. ROS-responsive janus Au/Mesoporous Silica Core/shell nanoparticles for drug delivery and long-term CT imaging tracking of MSCs in pulmonary fibrosis treatment. ACS Nano 2023 17 7 6387 6399 10.1021/acsnano.2c11112 36946383
    [Google Scholar]
  122. Li J. Liao H. Tian S. Liu L. Xu H. Yan L. A pH-responsive polycarbonate nanoplatform enables sequential drug release for enhanced apoptotic cascade synergy in non-small cell lung cancer therapy. Acta Biomater. 2025 205 550 567 10.1016/j.actbio.2025.09.001
    [Google Scholar]
  123. Lin X. Wu J. Liu Y. Lin N. Hu J. Zhang B. Stimuli-responsive drug delivery systems for the diagnosis and therapy of lung cancer. Molecules 2022 27 3 948 957 10.3390/molecules27030948 35164213
    [Google Scholar]
  124. Tian X. Bera H. Guo X. Pulmonary delivery of reactive oxygen species/glutathione-responsive paclitaxel dimeric nanoparticles improved therapeutic indices against metastatic lung cancer. ACS Appl. Mater. Interfaces 2021 13 48 56858 56872 10.1021/acsami.1c16351 34806372
    [Google Scholar]
  125. Liu C. Gao J. Cheng Y. Zhang S. Fu C. Homologous-adhering/targeting cell membrane- and cell-mediated delivery systems: A cancer-catch-cancer strategy in cancer therapy. Regen. Biomater. 2025 12 rbae135 42 10.1093/rb/rbae135 39811105
    [Google Scholar]
  126. Zhong W. Zhang X. Duan X. Redox-responsive self-assembled polymeric nanoprodrug for delivery of gemcitabine in B-cell lymphoma therapy. Acta Biomater. 2022 144 67 80 10.1016/j.actbio.2022.03.035 35331940
    [Google Scholar]
  127. Bhat A.A. Thapa R. Goyal A. Curcumin-based nanoformulations as an emerging therapeutic strategy for inflammatory lung diseases. Future Med. Chem. 2023 15 7 583 586 10.4155/fmc‑2023‑0048 37140132
    [Google Scholar]
  128. A Razak SA Mohd Gazzali A Fisol FA Advances in nanocarriers for effective delivery of docetaxel in the treatment of lung cancer: An overview. Cancers 2021 13 3 400 21 10.3390/cancers13030400 33499040
    [Google Scholar]
  129. Valencia-Lazcano A.A. Hassan D. Pourmadadi M. 5-Fluorouracil nano-delivery systems as a cutting-edge for cancer therapy. Eur. J. Med. Chem. 2023 246 114995 114999 10.1016/j.ejmech.2022.114995 36493619
    [Google Scholar]
  130. Madheswaran T. Chellappan D.K. Lye F.S.N. Dua K. Recent advances in the use of liquid crystalline nanoparticles for non-small cell lung cancer treatment. Expert Opin. Drug Deliv. 2025 22 5 615 627 10.1080/17425247.2025.2474693 40022612
    [Google Scholar]
  131. Kumar A. Ekavali, Chopra K, Mukherjee M, Pottabathini R, Dhull DK. Current knowledge and pharmacological profile of berberine: An update. Eur. J. Pharmacol. 2015 761 288 297 10.1016/j.ejphar.2015.05.068 26092760
    [Google Scholar]
  132. Khaledi S. Jafari S. Hamidi S. Molavi O. Davaran S. Preparation and characterization of PLGA-PEG-PLGA polymeric nanoparticles for co-delivery of 5-Fluorouracil and Chrysin. J. Biomater. Sci. Polym. Ed. 2020 31 9 1107 1126 10.1080/09205063.2020.1743946 32249693
    [Google Scholar]
  133. Zhu S. Yu Q. Huo C. Ferroptosis: A novel mechanism of artemisinin and its derivatives in cancer therapy. Curr. Med. Chem. 2021 28 2 329 345 10.2174/1875533XMTAzlNzkj1 31965935
    [Google Scholar]
  134. Jayalakshmi C.S. Haider M. Sanpui P. Tyrosine kinase inhibitor-loaded zein nanoparticles with enhanced drug delivery and anticancer efficacy. Int. J. Biol. Macromol. 2025 314 143898 143907 10.1016/j.ijbiomac.2025.143898 40348249
    [Google Scholar]
  135. Gilligan D. Nicolson M. Smith I. Preoperative chemotherapy in patients with resectable non-small cell lung cancer: Results of the MRC LU22/NVALT 2/EORTC 08012 multicentre randomised trial and update of systematic review. Lancet 2007 369 9577 1929 1937 10.1016/S0140‑6736(07)60714‑4 17544497
    [Google Scholar]
  136. Alven S. Aderibigbe B.A. Nanoparticles formulations of artemisinin and derivatives as potential therapeutics for the treatment of cancer, leishmaniasis and malaria. Pharmaceutics 2020 12 8 748 755 10.3390/pharmaceutics12080748 32784933
    [Google Scholar]
  137. Wang L. Chen M. Ran X. Tang H. Cao D. Sorafenib-based drug delivery systems: Applications and perspectives. Polymers 2023 15 12 2638 2650 10.3390/polym15122638 37376284
    [Google Scholar]
  138. Pradhan A. Pattnaik G. Das S. Acharya B. Patra C.N. Advancements in lung cancer: Molecular insights, innovative therapies, and future prospects. Med. Oncol. 2025 42 9 383 397 10.1007/s12032‑025‑02725‑1 40719980
    [Google Scholar]
  139. Dera A.A. Rajagopalan P. Al Fayi M. Ahmed I. Chandramoorthy H.C. Indirubin-3-monoxime and thymoquinone exhibit synergistic efficacy as therapeutic combination in in-vitro and in-vivo models of Lung cancer. Arch. Pharm. Res. 2020 43 6 655 665 10.1007/s12272‑020‑01241‑2 32588331
    [Google Scholar]
  140. Chu B. Deng H. Niu T. Qu Y. Qian Z. Stimulus-responsive nano-prodrug strategies for cancer therapy: A focus on camptothecin delivery. Small Methods 2024 8 8 2301271 10.1002/smtd.202301271 38085682
    [Google Scholar]
  141. Graham C. Hart S. CRISPR/Cas9 gene editing therapies for cystic fibrosis. Expert Opin. Biol. Ther. 2021 21 6 767 780 10.1080/14712598.2021.1869208 33412935
    [Google Scholar]
  142. da Silva A.L. de Oliveira G.P. Kim N. Nanoparticle-based thymulin gene therapy therapeutically reverses key pathology of experimental allergic asthma. Sci. Adv. 2020 6 24 eaay7973 10.1126/sciadv.aay7973 32577505
    [Google Scholar]
  143. Mohamed A. Kunda N.K. Ross K. Hutcheon G.A. Saleem I.Y. Polymeric nanoparticles for the delivery of miRNA to treat Chronic Obstructive Pulmonary Disease (COPD). Eur. J. Pharm. Biopharm. 2019 136 1 8 10.1016/j.ejpb.2019.01.002 30615927
    [Google Scholar]
  144. Jasińska-Stroschein M. A review of genetically-driven rodent models of pulmonary hypertension. Vascul. Pharmacol. 2022 144 106970 10.1016/j.vph.2022.106970 35150934
    [Google Scholar]
  145. Allemailem K.S. Alsahli M.A. Almatroudi A. Innovative strategies of reprogramming immune system cells by targeting crispr/cas9-based genome-editing tools: A new era of cancer management. Int. J. Nanomedicine 2023 18 5531 5559 10.2147/IJN.S424872 37795042
    [Google Scholar]
  146. Patel M.N. Patel A.J. Nandpal M.N. Advancing against drug-resistant tuberculosis: An extensive review, novel strategies and patent landscape. Naunyn Schmiedebergs Arch. Pharmacol. 2025 398 3 2127 2150 10.1007/s00210‑024‑03466‑0 39377922
    [Google Scholar]
  147. Jin H. Park S.Y. Lee J.E. GTSE1-driven ZEB1 stabilization promotes pulmonary fibrosis through the epithelial-to-mesenchymal transition. Mol. Ther. 2024 32 11 4138 4157 10.1016/j.ymthe.2024.09.029 39342428
    [Google Scholar]
  148. Muhammad W. Zhai Z. Wang S. Gao C. Inflammation-modulating nanoparticles for pneumonia therapy. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2022 14 2 1763 10.1002/wnan.1763 34713969
    [Google Scholar]
  149. Watkins R.R. Using precision medicine for the diagnosis and treatment of viral pneumonia. Adv. Ther. 2022 39 7 3061 3071 10.1007/s12325‑022‑02180‑8 35596912
    [Google Scholar]
  150. Li Z. Zhang X.Q. Ho W. Lipid-polymer hybrid “Particle-in-Particle” nanostructure gene delivery platform explored for lyophilizable DNA and mRNA COVID-19 vaccines. Adv. Funct. Mater. 2022 32 40 2204462 2204479 10.1002/adfm.202204462 35942271
    [Google Scholar]
  151. Espeseth A.S. Cejas P.J. Citron M.P. Modified mRNA/lipid nanoparticle-based vaccines expressing respiratory syncytial virus F protein variants are immunogenic and protective in rodent models of RSV infection. NPJ Vaccines 2020 5 1 16 27 10.1038/s41541‑020‑0163‑z 32128257
    [Google Scholar]
  152. Zhang Y. Zhuang X. Hu Y. Constructing a ready-to-use mRNA vaccine delivery system for the Prevention of influenza A virus, utilizing FDA-approved raw materials. Biomacromolecules 2024 25 7 4281 4291 10.1021/acs.biomac.4c00365 38843459
    [Google Scholar]
  153. Pires Ferreira D. Gruntman A.M. Flotte T.R. Gene therapy for alpha-1 antitrypsin deficiency: An update. Expert Opin. Biol. Ther. 2023 23 3 283 291 10.1080/14712598.2023.2183771
    [Google Scholar]
  154. Xu D. Tao X. Fan Y. Teng Y. Sarcoidosis: Molecular mechanisms and therapeutic strategies. Mol. Biomed. 2025 6 1 6 19 10.1186/s43556‑025‑00244‑z 39904950
    [Google Scholar]
  155. Lei L. Pan W. Shou X. Nanomaterials-assisted gene editing and synthetic biology for optimizing the treatment of pulmonary diseases. J. Nanobiotechnology 2024 22 1 343 352 10.1186/s12951‑024‑02627‑w 38890749
    [Google Scholar]
  156. Costabel U. Miyazaki Y. Pardo A. Hypersensitivity pneumonitis. Nat. Rev. Dis. Primers 2020 6 1 65 76 10.1038/s41572‑020‑0191‑z 32764620
    [Google Scholar]
  157. Karam M. Aqel S. Haider M.Z. Beyond the injury: How does smoking impair stem cell-mediated repair mechanisms? a dual review of smoking-induced stem cell damage and stem cell-based therapeutic applications. Stem Cell Rev. Rep. 2025 21 5 1311 1330 10.1007/s12015‑025‑10886‑9 40279029
    [Google Scholar]
  158. De Matteis S. Heederik D. Burdorf A. Current and new challenges in occupational lung diseases. Eur. Respir. Rev. 2017 26 146 170080 170091 10.1183/16000617.0080‑2017 29141963
    [Google Scholar]
  159. Alapati D. Zacharias W.J. Hartman H.A. In utero gene editing for monogenic lung disease. Sci. Transl. Med. 2019 11 488 eaav8375 10.1126/scitranslmed.aav8375 30996081
    [Google Scholar]
  160. Espinel Jde O. Uribe C. Meyer F.S. Bringheti R. Kulczynski J.U. Saueressig M.G. Cell therapy in the treatment of bronchiolitis obliterans in a murine model. Rev. Col. Bras. Cir. 2015 42 3 181 188 10.1590/0100‑69912015003010 26291260
    [Google Scholar]
  161. Phillips K.G. Aljabban I. Wolbrom D.H. Cardiac xenotransplantation: Current state and future directions. Circulation 2025 152 1 58 73 10.1161/CIRCULATIONAHA.124.070875 40623074
    [Google Scholar]
  162. Chen X. Wu S. Tang L. Mesenchymal stem cells overexpressing heme oxygenase-1 ameliorate lipopolysaccharide-induced acute lung injury in rats. J. Cell. Physiol. 2019 234 5 7301 7319 10.1002/jcp.27488 30362554
    [Google Scholar]
  163. Assaad S. Kratzert W.B. Shelley B. Friedman M.B. Perrino A. Assessment of pulmonary edema: Principles and practice. J. Cardiothorac. Vasc. Anesth. 2018 32 2 901 914 10.1053/j.jvca.2017.08.028 29174750
    [Google Scholar]
  164. Woo C.J. Allawzi A. Clark N. Inhaled delivery of a lipid nanoparticle encapsulated messenger RNA encoding a ciliary protein for the treatment of primary ciliary dyskinesia. Pulm. Pharmacol. Ther. 2022 75 102134 102158 10.1016/j.pupt.2022.102134 35613658
    [Google Scholar]
  165. Rychahou P. Bae Y. Reichel D. Colorectal cancer lung metastasis treatment with polymer-drug nanoparticles. J. Control. Release 2018 275 85 91 10.1016/j.jconrel.2018.02.008 29421609
    [Google Scholar]
  166. Patterson K.C. Strek M.E. Diagnosis and treatment of pulmonary aspergillosis syndromes. Chest 2014 146 5 1358 1368 10.1378/chest.14‑0917 25367472
    [Google Scholar]
  167. Moretti M. De Boek L. Ilsen B. Demuyser T. Vanderhelst E. Therapeutical strategies in cavitary legionnaires’ disease, two cases from the field and a systematic review. Ann. Clin. Microbiol. Antimicrob. 2023 22 1 105 121 10.1186/s12941‑023‑00652‑5 38031167
    [Google Scholar]
  168. McKinsey D.S. Treatment and prevention of histoplasmosis in adults living with HIV. J. Fungi 2021 7 6 429 439 10.3390/jof7060429 34071599
    [Google Scholar]
  169. Bower W.A. Yu Y. Person M.K. CDC guidelines for the prevention and treatment of anthrax, 2023. MMWR Recomm. Rep. 2023 72 6 1 47 10.15585/mmwr.rr7206a1 37963097
    [Google Scholar]
  170. Afzal S. Ali L. Batool A. Hantavirus: An overview and advancements in therapeutic approaches for infection. Front. Microbiol. 2023 14 1233433 1233447 10.3389/fmicb.2023.1233433 37901807
    [Google Scholar]
  171. Yin H. Gu X. Wang Y. Clinical characteristics of patients with bronchiectasis with nontuberculous mycobacterial disease in Mainland China: A single center cross-sectional study. BMC Infect. Dis. 2021 21 1 1216 10.1186/s12879‑021‑06917‑8 34872515
    [Google Scholar]
  172. Taylor A. Zerfas I. Le C. D’Amico F. Heath F.R. Baumgartner M. Treatment of acute bronchitis and its impact on return emergency department visits. J. Emerg. Med. 2022 63 1 10 16 10.1016/j.jemermed.2022.01.020 35933264
    [Google Scholar]
  173. Peçanha-Pietrobom P.M. Tirado-Sánchez A. Gonçalves S.S. Bonifaz A. Colombo A.L. Diagnosis and treatment of pulmonary coccidioidomycosis and paracoccidioidomycosis. J. Fungi 2023 9 2 218 232 10.3390/jof9020218 36836333
    [Google Scholar]
  174. Zhou D. Fu D. Yan L. Peng L. Pulmonary rehabilitation strategies for the treatment of pneumoconiosis: A narrative review. Iran. J. Public Health 2023 52 11 2234 2247 10.18502/ijph.v52i11.14024 38106829
    [Google Scholar]
  175. Nachbagauer R. Shore D. Yang H. Broadly reactive human monoclonal antibodies elicited following pandemic h1n1 influenza virus exposure protect mice against highly pathogenic H5N1 challenge. J. Virol. 2018 92 16 e00949 e18 10.1128/JVI.00949‑18 29899095
    [Google Scholar]
  176. Alnuqaydan A.M. Almutary A.G. Sukamaran A. Middle east respiratory syndrome (MERS) virus—pathophysiological axis and the current treatment strategies. AAPS PharmSciTech 2021 22 5 173 188 10.1208/s12249‑021‑02062‑2 34105037
    [Google Scholar]
  177. Aibani N. Patel P. Buchanan R. Assessing the in vivo effectiveness of cationic lipid nanoparticles with a triple adjuvant for intranasal vaccination against the respiratory pathogen Bordetella pertussis. Mol. Pharm. 2022 19 6 1814 1824 10.1021/acs.molpharmaceut.1c00852 35302764
    [Google Scholar]
  178. Ngan N.T.T. Flower B. Day J.N. Treatment of cryptococcal meningitis: How have we got here and where are we going? Drugs 2022 82 12 1237 1249 10.1007/s40265‑022‑01757‑5 36112342
    [Google Scholar]
  179. Durlak W. Thébaud B. BPD: Latest strategies of prevention and treatment. Neonatology 2024 121 5 596 607 10.1159/000540002 39053447
    [Google Scholar]
  180. Pitlick M.M. Li J.T. Pongdee T. Current and emerging biologic therapies targeting eosinophilic disorders. World Allergy Organ. J. 2022 15 8 100676 100686 10.1016/j.waojou.2022.100676 35983569
    [Google Scholar]
  181. Agarwal R. Muthu V. Sehgal I.S. Clinical manifestation and treatment of allergic bronchopulmonary aspergillosis. Semin. Respir. Crit. Care Med. 2024 45 1 114 127 10.1055/s‑0043‑1776912 38154470
    [Google Scholar]
  182. Ma J. Song W. Xu H. Zhong Z. Huyan Y. Liu S. Pulmonary endarterectomy in patients with occlusive isolated pulmonary vasculitis. Eur. J. Med. Res. 2023 28 1 269 287 10.1186/s40001‑023‑01239‑8 37550701
    [Google Scholar]
  183. Rodriguez-Galindo C. Clinical features and treatment of Langerhans cell histiocytosis. Acta Paediatr. 2021 110 11 2892 2902 10.1111/apa.16014 34192374
    [Google Scholar]
  184. Park J.A. Treatment of diffuse alveolar hemorrhage: Controlling inflammation and obtaining rapid and effective hemostasis. Int. J. Mol. Sci. 2021 22 2 793 799 10.3390/ijms22020793 33466873
    [Google Scholar]
  185. Saha B.K. Milman N.T. Idiopathic pulmonary hemosiderosis: A review of the treatments used during the past 30 years and future directions. Clin. Rheumatol. 2021 40 7 2547 2557 10.1007/s10067‑020‑05507‑4 33184706
    [Google Scholar]
  186. Rosenberg C.E. Khoury P. Approach to eosinophilia presenting with pulmonary symptoms. Chest 2021 159 2 507 516 10.1016/j.chest.2020.09.247 33002503
    [Google Scholar]
  187. Pogoda L. Ziylan F. Smeeing D.P.J. Dikkers F.G. Rinkel R.N.P.M. Bevacizumab as treatment option for recurrent respiratory papillomatosis: A systematic review. Eur. Arch. Otorhinolaryngol. 2022 279 9 4229 4240 10.1007/s00405‑022‑07388‑6 35462578
    [Google Scholar]
  188. Lettieri S. Bonella F. Marando V.A. Franciosi A.N. Corsico A.G. Campo I. Pathogenesis-driven treatment of primary pulmonary alveolar proteinosis. Eur. Respir. Rev. 2024 33 173 240064 240077 10.1183/16000617.0064‑2024 39142709
    [Google Scholar]
  189. Ying C. Zhang L. Jin X. Zhu D. Wu W. Advances in diagnosis and treatment of non-tuberculous mycobacterial lung disease. Diagn. Microbiol. Infect. Dis. 2024 109 2 116254 116269 10.1016/j.diagmicrobio.2024.116254 38492490
    [Google Scholar]
  190. Ronzano N. Scala M. Abiusi E. Phosphatase and tensin homolog (PTEN) variants and epilepsy: A multicenter case series. Seizure 2022 100 82 86 10.1016/j.seizure.2022.06.013 35780606
    [Google Scholar]
  191. Liang W. Pan H.W. Vllasaliu D. Lam J.K.W. Pulmonary delivery of biological drugs. Pharmaceutics 2020 12 11 1025 1037 10.3390/pharmaceutics12111025 33114726
    [Google Scholar]
  192. Xie L. He L. Fu Y. Wei Y. Zhang K. Chen M. A three-site recognition cytosensor for accurate detection of circulating tumor cells based on novel branched Pt Au nanospheres and MnO2-GO-Au nanosheets. Mikrochim. Acta 2025 192 3 175 189 10.1007/s00604‑025‑07032‑0 39969682
    [Google Scholar]
  193. Tapekar S. Dhuri A. Paul P. Stimuli-responsive and receptor-targeted carbon nanotubes for multimodal cancer therapy and diagnosis. Mol. Pharm. 2025 22 9 5669 5696 10.1021/acs.molpharmaceut.5c00787 40773415
    [Google Scholar]
  194. Chertok B. Langer R. Circulating magnetic microbubbles for localized real-time control of drug delivery by ultrasonography-guided magnetic targeting and ultrasound. Theranostics 2018 8 2 341 357 10.7150/thno.20781 29290812
    [Google Scholar]
  195. Li M. Yang L. An Y. Selenium-doped carbon dots as a multipronged nanoplatform to alleviate oxidative stress and ferroptosis for the reversal of acute kidney injury. ACS Nano 2025 19 18 17834 17849 10.1021/acsnano.5c03415 40315398
    [Google Scholar]
  196. Joseph R.A. Haley R.M. Padilla M.S. Ricciardi A.S. Yamagata H.M. Mitchell M.J. Cas9 protein outperforms mRNA in lipid nanoparticle-mediated CFTR repair. Nano Lett. 2025 25 39 14348 14355 10.1021/acs.nanolett.5c03548 40961329
    [Google Scholar]
  197. Qi H. Yang L. Li X. Exosomes separated based on the “STOP” criteria for tumor-targeted drug delivery. J. Mater. Chem. B Mater. Biol. Med. 2018 6 18 2758 2768 10.1039/C8TB00355F 32254228
    [Google Scholar]
  198. Batool S Sohail S ud Din F A detailed insight of the tumor targeting using nanocarrier drug delivery system. Drug Deliv. 2023 30 1 2183815 2183822 10.1080/10717544.2023.2183815 36866455
    [Google Scholar]
  199. Guo X. Zuo X. Zhou Z. PLGA-based micro/nanoparticles: An overview of their applications in respiratory diseases. Int. J. Mol. Sci. 2023 24 5 4333 10.3390/ijms24054333 36901762
    [Google Scholar]
  200. Singh A.P. Biswas A. Shukla A. Maiti P. Targeted therapy in chronic diseases using nanomaterial-based drug delivery vehicles. Signal Transduct. Target. Ther. 2019 4 1 33 42 10.1038/s41392‑019‑0068‑3 31637012
    [Google Scholar]
  201. Lagreca E. Onesto V. Di Natale C. La Manna S. Netti P.A. Vecchione R. Recent advances in the formulation of PLGA microparticles for controlled drug delivery. Prog. Biomater. 2020 9 4 153 174 10.1007/s40204‑020‑00139‑y 33058072
    [Google Scholar]
  202. Chakravarty M. Vora A. Nanotechnology-based antiviral therapeutics. Drug Deliv. Transl. Res. 2021 11 3 748 787 10.1007/s13346‑020‑00818‑0 32748035
    [Google Scholar]
  203. Falanga V. Isseroff R.R. Soulika A.M. Chronic wounds. Nat. Rev. Dis. Primers 2022 8 1 50 66 10.1038/s41572‑022‑00377‑3 35864102
    [Google Scholar]
  204. Subramanian D.A. Langer R. Traverso G. Mucus interaction to improve gastrointestinal retention and pharmacokinetics of orally administered nano-drug delivery systems. J. Nanobiotechnology 2022 20 1 362 377 10.1186/s12951‑022‑01539‑x 35933341
    [Google Scholar]
  205. Karthivashan G. Ganesan P. Park S.Y. Kim J.S. Choi D.K. Therapeutic strategies and nano-drug delivery applications in management of ageing Alzheimer’s disease. Drug Deliv. 2018 25 1 307 320 10.1080/10717544.2018.1428243 29350055
    [Google Scholar]
  206. Bhat A.A. Gilhotra R. Singh Y. Advanced drug-delivery approaches in managing P53-mediated lung diseases remodeling. Nanomedicine 2023 18 7 583 587 10.2217/nnm‑2023‑0032 37194747
    [Google Scholar]
  207. Singh A. Bora S. Kumar P. Kukreti R. Kaushik M. Targeted nanotherapy by vinblastine-loaded chitosan-coated pla nanoparticles to improve the chemotherapy via reactive oxygen species to hamper hepatocellular carcinoma. ACS Omega 2025 10 1 170 180 10.1021/acsomega.4c02983 39829490
    [Google Scholar]
  208. Scherließ R. Bock S. Bungert N. Neustock A. Valentin L. Particle engineering in dry powders for inhalation. Eur. J. Pharm. Sci. 2022 172 106158 106169 10.1016/j.ejps.2022.106158 35248734
    [Google Scholar]
  209. Kuek S.L. Wong N.X. Dalziel S. Dry-powder inhaler use in primary school-aged children with asthma: A systematic review. ERJ Open Res. 2024 10 6 00455 02024 10.1183/23120541.00455‑2024 39655170
    [Google Scholar]
  210. Ari A. A path to successful patient outcomes through aerosol drug delivery to children: A narrative review. Ann. Transl. Med. 2021 9 7 593 598 10.21037/atm‑20‑1682 33987291
    [Google Scholar]
  211. Khairnar S.V. Jain D.D. Tambe S.M. Chavan Y.R. Amin P.D. Nebulizer systems: A new frontier for therapeutics and targeted delivery. Ther. Deliv. 2022 13 1 31 49 10.4155/tde‑2021‑0070 34766509
    [Google Scholar]
  212. Weisbrot D.M. Carlson G.A. When no diagnosis “Fits”. Child Adolesc. Psychiatr. Clin. N. Am. 2021 30 2 445 457 10.1016/j.chc.2020.10.015 33743950
    [Google Scholar]
  213. Baba R. Nakachi I. Masaki K. Repetitive instructions at short intervals contribute to the improvement of inhalation technique. Asia Pac. Allergy 2020 10 2 19 10.5415/apallergy.2020.10.e19 32411584
    [Google Scholar]
  214. Rai E. Alaraimi R.A.L. Aamri I. Pediatric lower respiratory tract infection: Considerations for the anesthesiologist. Paediatr. Anaesth. 2022 32 2 181 190 10.1111/pan.14382 34927318
    [Google Scholar]
  215. Shaahinfar A. Klekowski N. Kangwa M. Parker M.G. Binder Z.W. Ultrasound-guided regional analgesia in the pediatric emergency department. Pediatr. Emerg. Care 2025 41 10 828 839 10.1097/PEC.0000000000003440 41028949
    [Google Scholar]
  216. Barzegari S. ArabKermani Z, Mahmoudvand Z, Arpaci I, Shabani F, Najafi AH. Prevalence and contributing factors of computer vision syndrome among university students in Iran: A cross-sectional study. BMC Ophthalmol. 2025 25 1 501 522 10.1186/s12886‑025‑04367‑3 40954461
    [Google Scholar]
  217. van den Bosch W.B. Kloosterman S.F. Andrinopoulou E.R. Small airways targeted treatment with smart nebulizer technology could improve severe asthma in children: A retrospective analysis. J. Asthma 2022 59 11 2223 2233 10.1080/02770903.2021.1996597 34699298
    [Google Scholar]
/content/journals/crmr/10.2174/011573398X439272251216114932
Loading
/content/journals/crmr/10.2174/011573398X439272251216114932
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: nanoparticles ; Gene therapy ; nano printing ; targeting techniques ; liposomes ; stability
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test