Skip to content
2000
image of Emerging Therapeutic Approaches to Drug-Resistant Tuberculosis: Compressive Review

Abstract

Introduction

Drug-resistant tuberculosis (TB), including multidrug-resistant (MDR-TB) and extensively drug-resistant TB (XDR-TB), poses major global health challenges. Conventional regimens achieve only 50-60% success rates compared to 85% in drug-susceptible TB. This review examines recent therapeutic advances in drug-resistant TB management, focusing on novel and repurposed agents, their mechanisms, clinical efficacy, and integration into optimized treatment regimens.

Methods

We conducted a systematic literature search of PubMed, Embase, Cochrane Library, and Web of Science databases from inception to December 2024. Search terms included “multidrug-resistant tuberculosis”, “bedaquiline”, “delamanid”, “pretomanid”, and “clinical trials”. We included peer-reviewed studies, systematic reviews, meta-analyses, and clinical trial reports, prioritizing high-quality evidence from randomized controlled trials and prospective cohort studies. Data extraction focused on drug mechanisms, clinical outcomes, safety profiles, and resistance patterns.

Results

Analysis of 125 studies and 15 ongoing clinical trials demonstrated substantial therapeutic improvements. Novel agents achieved treatment success rates of 73-90% compared to 50-60% with conventional second-line regimens. The BPaL regimen (bedaquiline, pretomanid, linezolid) showed 89-90% favorable outcomes within 6 months compared to traditional 18-24 month durations. Delamanid demonstrated a 73.1% success rate with culture conversion rates of 61-95%. However, bedaquiline resistance increased to 5.7% globally, reaching 14% in high-burden regions.

Discussion

Novel therapeutic agents represent transformative advances in drug-resistant TB management, enabling shortened all-oral regimens that address critical barriers, including adherence, toxicity, and healthcare burden. However, rising resistance underscores the need for stewardship and innovation.

Conclusion

Bedaquiline, delamanid, and pretomanid have revolutionized drug-resistant TB treatment outcomes, positioning the field toward effective universal treatment access and TB elimination goals.

Loading

Article metrics loading...

/content/journals/crmr/10.2174/011573398X409282250823051901
2025-08-29
2025-09-17
Loading full text...

Full text loading...

References

  1. Global Tuberculosis Report 2023. 2023 Available from: https://iris.who.int/handle/10665/373792
  2. Orenstein E.W. Basu S. Shah N.S. Andrews J.R. Friedland G.H. Moll A.P. Gandhi N.R. Galvani A.P. Treatment outcomes among patients with multidrug-resistant tuberculosis: Systematic review and meta-analysis. Lancet Infect. Dis. 2009 9 3 153 161 10.1016/S1473‑3099(09)70041‑6 19246019
    [Google Scholar]
  3. Udwadia Z. Furin J. Quality of drug-resistant tuberculosis care: Gaps and solutions. J. Clin. Tuberc. Other Mycobact. Dis. 2019 16 100101 10.1016/j.jctube.2019.100101 31720427
    [Google Scholar]
  4. Mahajan R. Bedaquiline: First FDA-approved tuberculosis drug in 40 years. Int. J. Appl. Basic Med. Res. 2013 3 1 1 2 10.4103/2229‑516X.112228 23776831
    [Google Scholar]
  5. WHO Consolidated Guidelines on Tuberculosis: Module 4. Treatment – Drug-Resistant Tuberculosis Treatment. 2022 Available from: https://www.who.int/publications/i/item/9789240063129
  6. Diaz J.M. Abulfathi A.A. te Brake L.H.M. van Ingen J. Kuipers S. Magis-Escurra C. Raaijmakers J. Svensson E.M. Boeree M.J. New and repurposed drugs for the treatment of active tuberculosis: An update for clinicians. Respiration 2023 102 2 83 100 10.1159/000528274 36516792
    [Google Scholar]
  7. Sharma K. Ahmed F. Sharma T. Grover A. Agarwal M. Grover S. Potential repurposed drug candidates for tuberculosis treatment: Progress and update of drugs identified in over a decade. ACS Omega 2023 8 20 17362 17380 10.1021/acsomega.2c05511 37251185
    [Google Scholar]
  8. Kandi S. Kandi T.K. Kandi S.R. Mathur N. Dasari C.D. Adepu R. Study of treatment outcomes of multidrug-resistant tuberculosis under programmatic conditions and factors influencing the outcomes in Hyderabad District. Indian J. Tuberc. 2021 68 3 379 383 10.1016/j.ijtb.2020.12.008 34099204
    [Google Scholar]
  9. Olaru I.D. von Groote-Bidlingmaier F. Heyckendorf J. Yew W.W. Lange C. Chang K.C. Novel drugs against tuberculosis: A clinician’s perspective. Eur. Respir. J. 2015 45 4 1119 1131 10.1183/09031936.00162314 25431273
    [Google Scholar]
  10. Kim D.H. Kim H.J. Park S.K. Kong S.J. Kim Y.S. Kim T.H. Kim E.K. Lee K.M. Lee S.S. Park J.S. Koh W.J. Lee C.H. Kim J.Y. Shim T.S. Treatment outcomes and long-term survival in patients with extensively drug-resistant tuberculosis. Am. J. Respir. Crit. Care Med. 2008 178 10 1075 1082 10.1164/rccm.200801‑132OC 18703792
    [Google Scholar]
  11. Stephanie F. Saragih M. Tambunan U.S.F. Recent progress and challenges for drug-resistant tuberculosis treatment. Pharmaceutics 2021 13 5 592 10.3390/pharmaceutics13050592 33919204
    [Google Scholar]
  12. Jaspard M. Butel N. El Helali N. Marigot-Outtandy D. Guillot H. Peytavin G. Veziris N. Bodaghi B. Flandre P. Petitjean G. Caumes E. Pourcher V. Linezolid-associated neurologic adverse events in patients with multidrug-resistant tuberculosis, France. Emerg. Infect. Dis. 2020 26 8 1792 1800 10.3201/eid2608.191499 32687026
    [Google Scholar]
  13. Pontali E. Sotgiu G. Tiberi S. D’Ambrosio L. Centis R. Migliori G.B. Cardiac safety of bedaquiline: A systematic and critical analysis of the evidence. Eur. Respir. J. 2017 50 5 1701462 10.1183/13993003.01462‑2017 29146605
    [Google Scholar]
  14. Shewade H.D. Shringarpure K.S. Parmar M. Patel N. Kuriya S. Shihora S. Ninama N. Gosai N. Khokhariya R. Popat C. Thanki H. Modi B. Dave P. Baxi R.K. Kumar A.M.V. Delay and attrition before treatment initiation among MDR-TB patients in five districts of Gujarat, India. Public Health Action 2018 8 2 59 65 10.5588/pha.18.0003 29946521
    [Google Scholar]
  15. Lange C. Abubakar I. Alffenaar J.W.C. Bothamley G. Caminero J.A. Carvalho A.C.C. Chang K.C. Codecasa L. Correia A. Crudu V. Davies P. Dedicoat M. Drobniewski F. Duarte R. Ehlers C. Erkens C. Goletti D. Günther G. Ibraim E. Kampmann B. Kuksa L. de Lange W. van Leth F. van Lunzen J. Matteelli A. Menzies D. Monedero I. Richter E. Rüsch-Gerdes S. Sandgren A. Scardigli A. Skrahina A. Tortoli E. Volchenkov G. Wagner D. van der Werf M.J. Williams B. Yew W.W. Zellweger J.P. Cirillo D.M. TBNET Management of patients with multidrug-resistant/extensively drug-resistant tuberculosis in Europe: A TBNET consensus statement. Eur. Respir. J. 2014 44 1 23 63 10.1183/09031936.00188313 24659544
    [Google Scholar]
  16. Vishwakarma D. Gaidhane A. Sahu S. Rathod A.S. Multi-drug resistance tuberculosis (MDR-TB) Challenges in India: A review. Cureus 2023 15 12 50222 10.7759/cureus.50222 38192967
    [Google Scholar]
  17. Zhang S. Chen J. Cui P. Shi W. Shi X. Niu H. Chan D. Yew W.W. Zhang W. Zhang Y. Mycobacterium tuberculosis mutations associated with reduced susceptibility to linezolid. Antimicrob. Agents Chemother. 2016 60 4 2542 2544 10.1128/AAC.02941‑15 26810645
    [Google Scholar]
  18. Chatterjee S. Das P. Stallworthy G. Bhambure G. Munje R. Vassall A. Catastrophic costs for tuberculosis patients in India: Impact of methodological choices. PLOS Glob. Public Health 2024 4 4 0003078 10.1371/journal.pgph.0003078 38669225
    [Google Scholar]
  19. Chandra A. Kumar R. Kant S. Parthasarathy R. Krishnan A. Direct and indirect patient costs of tuberculosis care in India. Trop. Med. Int. Health 2020 25 7 803 812 10.1111/tmi.13402 32306481
    [Google Scholar]
  20. Vasiliu A. Saktiawati A.M.I. Duarte R. Lange C. Cirillo D.M. Implementing molecular tuberculosis diagnostic methods in limited-resource and high-burden countries. Breathe 2022 18 4 220226 10.1183/20734735.0226‑2022 36865933
    [Google Scholar]
  21. D’Ambrosio L. Centis R. Tiberi S. Tadolini M. Dalcolmo M. Rendon A. Esposito S. Migliori G.B. Delamanid and bedaquiline to treat multidrug-resistant and extensively drug-resistant tuberculosis in children: A systematic review. J. Thorac. Dis. 2017 9 7 2093 2101 10.21037/jtd.2017.06.16 28840010
    [Google Scholar]
  22. Hards K. Robson J.R. Berney M. Shaw L. Bald D. Koul A. Andries K. Cook G.M. Bactericidal mode of action of bedaquiline. J. Antimicrob. Chemother. 2015 70 7 2028 2037 10.1093/jac/dkv054 25754998
    [Google Scholar]
  23. Sarathy J.P. Gruber G. Dick T. Re-understanding the mechanisms of action of the anti-mycobacterial drug bedaquiline. Antibiotics 2019 8 4 261 10.3390/antibiotics8040261 31835707
    [Google Scholar]
  24. Goel D. Bedaquiline: A novel drug to combat multiple drug-resistant tuberculosis. J. Pharmacol. Pharmacother. 2014 5 1 76 78 10.4103/0976‑500X.124435 24554919
    [Google Scholar]
  25. Diacon A.H. Pym A. Grobusch M.P. de los Rios J.M. Gotuzzo E. Vasilyeva I. Leimane V. Andries K. Bakare N. De Marez T. Haxaire-Theeuwes M. Lounis N. Meyvisch P. De Paepe E. van Heeswijk R.P.G. Dannemann B. Multidrug-resistant tuberculosis and culture conversion with bedaquiline. N. Engl. J. Med. 2014 371 8 723 732 10.1056/NEJMoa1313865 25140958
    [Google Scholar]
  26. Fox G.J. Menzies D. A review of the evidence for using bedaquiline (TMC207) to treat multi-drug resistant tuberculosis. Infect. Dis. Ther. 2013 2 2 123 144 10.1007/s40121‑013‑0009‑3 25134476
    [Google Scholar]
  27. Olayanju O. Limberis J. Esmail A. Oelofse S. Gina P. Pietersen E. Fadul M. Warren R. Dheda K. Long-term bedaquiline-related treatment outcomes in patients with extensively drug-resistant tuberculosis from South Africa. Eur. Respir. J. 2018 51 5 1800544 10.1183/13993003.00544‑2018 29700106
    [Google Scholar]
  28. Borisov S.E. Dheda K. Enwerem M. Romero Leyet R. D’Ambrosio L. Centis R. Sotgiu G. Tiberi S. Alffenaar J.W. Maryandyshev A. Belilovski E. Ganatra S. Skrahina A. Akkerman O. Aleksa A. Amale R. Artsukevich J. Bruchfeld J. Caminero J.A. Carpena Martinez I. Codecasa L. Dalcolmo M. Denholm J. Douglas P. Duarte R. Esmail A. Fadul M. Filippov A. Davies Forsman L. Gaga M. Garcia-Fuertes J.A. García-García J.M. Gualano G. Jonsson J. Kunst H. Lau J.S. Lazaro Mastrapa B. Teran Troya J.L. Manga S. Manika K. González Montaner P. Mullerpattan J. Oelofse S. Ortelli M. Palmero D.J. Palmieri F. Papalia A. Papavasileiou A. Payen M.C. Pontali E. Robalo Cordeiro C. Saderi L. Sadutshang T.D. Sanukevich T. Solodovnikova V. Spanevello A. Topgyal S. Toscanini F. Tramontana A.R. Farokh Udwadia Z. Viggiani P. White V. Zumla A. Migliori G.B. Effectiveness and safety of bedaquiline-containing regimens in the treatment of MDR- and XDR-TB: A multicentre study. Eur. Respir. J. 2017 49 5 1700387 10.1183/13993003.00387‑2017 28529205
    [Google Scholar]
  29. Ndjeka N. Schnippel K. Master I. Meintjes G. Maartens G. Romero R. Padanilam X. Enwerem M. Chotoo S. Singh N. Hughes J. Variava E. Ferreira H. te Riele J. Ismail N. Mohr E. Bantubani N. Conradie F. High treatment success rate for multidrug-resistant and extensively drug-resistant tuberculosis using a bedaquiline-containing treatment regimen. Eur. Respir. J. 2018 52 6 1801528 10.1183/13993003.01528‑2018 30361246
    [Google Scholar]
  30. Mallick J.S. Nair P. Abbew E.T. Van Deun A. Decroo T. Acquired bedaquiline resistance during the treatment of drug-resistant tuberculosis: A systematic review. JAC Antimicrob. Resist. 2022 4 2 dlac029 10.1093/jacamr/dlac029 35356403
    [Google Scholar]
  31. Derendinger B. Dippenaar A. de Vos M. Huo S. Alberts R. Tadokera R. Limberis J. Sirgel F. Dolby T. Spies C. Reuter A. Folkerts M. Allender C. Lemmer D. Van Rie A. Gagneux S. Rigouts L. te Riele J. Dheda K. Engelthaler D.M. Warren R. Metcalfe J. Cox H. Theron G. Bedaquiline resistance in patients with drug-resistant tuberculosis in Cape Town, South Africa: A retrospective longitudinal cohort study. Lancet Microbe 2023 4 12 e972 e982 10.1016/S2666‑5247(23)00172‑6 37931638
    [Google Scholar]
  32. Pai H. Ndjeka N. Mbuagbaw L. Kaniga K. Birmingham E. Mao G. Alquier L. Davis K. Bodard A. Williams A. Van Tongel M. Thoret-Bauchet F. Omar S.V. Bakare N. Bedaquiline safety, efficacy, utilization and emergence of resistance following treatment of multidrug-resistant tuberculosis patients in South Africa: A retrospective cohort analysis. BMC Infect. Dis. 2022 22 1 870 10.1186/s12879‑022‑07861‑x 36414938
    [Google Scholar]
  33. Hu Y. Fan J. Zhu D. Liu W. Li F. Li T. Zheng H. Investigation of bedaquiline resistance and genetic mutations in multi-drug resistant Mycobacterium tuberculosis clinical isolates in Chongqing, China. Ann. Clin. Microbiol. Antimicrob. 2023 22 1 19 10.1186/s12941‑023‑00568‑0 36855179
    [Google Scholar]
  34. Millard J. Rimmer S. Nimmo C. O’Donnell M. Therapeutic failure and acquired bedaquiline and delamanid resistance in treatment of drug-resistant TB. Emerg. Infect. Dis. 2023 29 5 1081 1084 10.3201/eid2905.221716 37081529
    [Google Scholar]
  35. Ryan N.J. Lo J.H. Delamanid: First global approval. Drugs 2014 74 9 1041 1045 10.1007/s40265‑014‑0241‑5 24923253
    [Google Scholar]
  36. Blair H.A. Scott L.J. Delamanid: A review of its use in patients with multidrug-resistant tuberculosis. Drugs 2015 75 1 91 100 10.1007/s40265‑014‑0331‑4 25404020
    [Google Scholar]
  37. Anwer R. Antimycobacterial drugs as a novel strategy to inhibit Pseudomonas aeruginosa virulence factors and combat antibiotic resistance: A molecular simulation study. Microbiol. Res. 2024 15 1 290 313 10.3390/microbiolres15010020
    [Google Scholar]
  38. Holmgaard F.B. Guglielmetti L. Lillebaek T. Andersen Å.B. Wejse C. Dahl V.N. Efficacy and tolerability of concomitant use of bedaquiline and delamanid for multidrug- and extensively drug-resistant tuberculosis: A systematic review and meta-analysis. Clin. Infect. Dis. 2023 76 7 1328 1337 10.1093/cid/ciac876 36331978
    [Google Scholar]
  39. Hafkin J. Hittel N. Martin A. Gupta R. Compassionate use of delamanid in combination with bedaquiline for the treatment of multidrug-resistant tuberculosis. Eur. Respir. J. 2019 53 1 1801154 10.1183/13993003.01154‑2018 30361253
    [Google Scholar]
  40. Migliori G. Pontali E. Sotgiu G. Centis R. D’Ambrosio L. Tiberi S. Tadolini M. Esposito S. Combined use of delamanid and bedaquiline to treat multidrug-resistant and extensively drug-resistant tuberculosis: A systematic review. Int. J. Mol. Sci. 2017 18 2 341 10.3390/ijms18020341 28178199
    [Google Scholar]
  41. Mok J. Kang H. Koh W.J. Jhun B.W. Yim J.J. Kwak N. Lee T. Kang B. Jeon D. Final treatment outcomes of delamanid-containing regimens in patients with MDR-/XDR-TB in South Korea. Eur. Respir. J. 2019 54 5 1900811 10.1183/13993003.00811‑2019 31285308
    [Google Scholar]
  42. Skripconoka V. Danilovits M. Pehme L. Tomson T. Skenders G. Kummik T. Cirule A. Leimane V. Kurve A. Levina K. Geiter L.J. Manissero D. Wells C.D. Delamanid improves outcomes and reduces mortality in multidrug-resistant tuberculosis. Eur. Respir. J. 2013 41 6 1393 1400 10.1183/09031936.00125812 23018916
    [Google Scholar]
  43. Khoshnood S. Taki E. Sadeghifard N. Kaviar V.H. Haddadi M.H. Farshadzadeh Z. Kouhsari E. Goudarzi M. Heidary M. Mechanism of action, resistance, synergism, and clinical implications of delamanid against multidrug-resistant Mycobacterium tuberculosis. Front. Microbiol. 2021 12 717045 10.3389/fmicb.2021.717045 34690963
    [Google Scholar]
  44. Yang J.S. Kim K.J. Choi H. Lee S.H. Delamanid, bedaquiline, and linezolid minimum inhibitory concentration distributions and resistance-related gene mutations in multidrug-resistant and extensively drug-resistant tuberculosis in Korea. Ann. Lab. Med. 2018 38 6 563 568 10.3343/alm.2018.38.6.563 30027700
    [Google Scholar]
  45. Abrahams K.A. Batt S.M. Gurcha S.S. Veerapen N. Bashiri G. Besra G.S. DprE2 is a molecular target of the anti-tubercular nitroimidazole compounds pretomanid and delamanid. Nat. Commun. 2023 14 1 3828 10.1038/s41467‑023‑39300‑z 37380634
    [Google Scholar]
  46. Stancil S.L. Mirzayev F. Abdel-Rahman S.M. Profiling pretomanid as a therapeutic option for TB infection: Evidence to date. Drug Des. Devel. Ther. 2021 15 2815 2830 10.2147/DDDT.S281639 34234413
    [Google Scholar]
  47. Mudde S.E. Upton A.M. Lenaerts A. Bax H.I. De Steenwinkel J.E.M. Delamanid or pretomanid? A Solomonic judgement! J. Antimicrob. Chemother. 2022 77 4 880 902 10.1093/jac/dkab505 35089314
    [Google Scholar]
  48. Conradie F. Diacon A.H. Ngubane N. Howell P. Everitt D. Crook A.M. Mendel C.M. Egizi E. Moreira J. Timm J. McHugh T.D. Wills G.H. Bateson A. Hunt R. Van Niekerk C. Li M. Olugbosi M. Spigelman M. Treatment of highly drug-resistant pulmonary tuberculosis. N. Engl. J. Med. 2020 382 10 893 902 10.1056/NEJMoa1901814 32130813
    [Google Scholar]
  49. Tweed C.D. Dawson R. Burger D.A. Conradie A. Crook A.M. Mendel C.M. Conradie F. Diacon A.H. Ntinginya N.E. Everitt D.E. Haraka F. Li M. van Niekerk C.H. Okwera A. Rassool M.S. Reither K. Sebe M.A. Staples S. Variava E. Spigelman M. Bedaquiline, moxifloxacin, pretomanid, and pyrazinamide during the first 8 weeks of treatment of patients with drug-susceptible or drug-resistant pulmonary tuberculosis: A multicentre, open-label, partially randomised, phase 2b trial. Lancet Respir. Med. 2019 7 12 1048 1058 10.1016/S2213‑2600(19)30366‑2 31732485
    [Google Scholar]
  50. Rifat D. Li S.Y. Ioerger T. Shah K. Lanoix J.P. Lee J. Bashiri G. Sacchettini J. Nuermberger E. Mutations in fbiD (Rv2983) as a novel determinant of resistance to pretomanid and delamanid in Mycobacterium tuberculosis. Antimicrob. Agents Chemother. 2020 65 1 e01948-20 10.1128/AAC.01948‑20 33077652
    [Google Scholar]
  51. Zhao B. Zheng H. Timm J. Song Z. Pei S. Xing R. Guo Y. Ma L. Li F. Li Q. Li Y. Huang L. Teng C. Wang N. Gupta A. Juneja S. Huang F. Zhao Y. Ou X. Prevalence and genetic basis of Mycobacterium tuberculosis resistance to pretomanid in China. Ann. Clin. Microbiol. Antimicrob. 2024 23 1 40 10.1186/s12941‑024‑00697‑0 38702782
    [Google Scholar]
  52. Manjunatha U.H. Boshoff H. Dowd C.S. Zhang L. Albert T.J. Norton J.E. Daniels L. Dick T. Pang S.S. Barry C.E. III Identification of a nitroimidazo-oxazine-specific protein involved in PA-824 resistance in Mycobacterium tuberculosis. Proc. Natl. Acad. Sci. USA 2006 103 2 431 436 10.1073/pnas.0508392103 16387854
    [Google Scholar]
  53. Ushtanit A. Kulagina E. Mikhailova Y. Makarova M. Safonova S. Zimenkov D. Molecular determinants of ethionamide resistance in clinical isolates of Mycobacterium tuberculosis. Antibiotics 2022 11 2 133 10.3390/antibiotics11020133 35203736
    [Google Scholar]
  54. Tan Y. Su B. Zheng H. Song Y. Wang Y. Pang Y. Molecular characterization of prothionamide-resistant Mycobacterium tuberculosis isolates in southern China. Front. Microbiol. 2017 8 2358 10.3389/fmicb.2017.02358 29250048
    [Google Scholar]
  55. Dookie N. Rambaran S. Padayatchi N. Mahomed S. Naidoo K. Evolution of drug resistance in Mycobacterium tuberculosis: A review on the molecular determinants of resistance and implications for personalized care. J. Antimicrob. Chemother. 2018 73 5 1138 1151 10.1093/jac/dkx506 29360989
    [Google Scholar]
  56. Nguyen T.V.A. Nguyen Q.H. Nguyen T.N.T. Anthony R.M. Vu D.H. Alffenaar J.W.C. Pretomanid resistance: An update on emergence, mechanisms and relevance for clinical practice. Int. J. Antimicrob. Agents 2023 62 4 106953 10.1016/j.ijantimicag.2023.106953 37595848
    [Google Scholar]
  57. Swaney S.M. Aoki H. Ganoza M.C. Shinabarger D.L. The oxazolidinone linezolid inhibits initiation of protein synthesis in bacteria. Antimicrob. Agents Chemother. 1998 42 12 3251 3255 10.1128/AAC.42.12.3251 9835522
    [Google Scholar]
  58. Tang S. Yao L. Hao X. Zhang X. Liu G. Liu X. Wu M. Zen L. Sun H. Liu Y. Gu J. Lin F. Wang X. Zhang Z. Efficacy, safety and tolerability of linezolid for the treatment of XDR-TB: A study in China. Eur. Respir. J. 2015 45 1 161 170 10.1183/09031936.00035114 25234807
    [Google Scholar]
  59. Lifan Z. Sainan B. Feng S. Siyan Z. Xiaoqing L. Linezolid for the treatment of extensively drug-resistant tuberculosis: A systematic review and meta-analysis. Int. J. Tuberc. Lung Dis. 2019 23 12 1293 1307 10.5588/ijtld.18.0822 31931914
    [Google Scholar]
  60. Mase A. Lowenthal P. True L. Henry L. Barry P. Flood J. Low- dose linezolid for treatment of patients with multidrug-resistant tuberculosis. Open Forum Infect. Dis. 2022 9 12 ofac500 10.1093/ofid/ofac500 36601556
    [Google Scholar]
  61. Singla R. Caminero J.A. Jaiswal A. Singla N. Gupta S. Bali R.K. Behera D. Linezolid: an effective, safe and cheap drug for patients failing multidrug-resistant tuberculosis treatment in India. Eur. Respir. J. 2012 39 4 956 962 10.1183/09031936.00076811 21965225
    [Google Scholar]
  62. Lechartier B. Cole S.T. Mode of action of clofazimine and combination therapy with benzothiazinones against Mycobacterium tuberculosis. Antimicrob. Agents Chemother. 2015 59 8 4457 4463 10.1128/AAC.00395‑15 25987624
    [Google Scholar]
  63. Stadler J.A.M. Maartens G. Meintjes G. Wasserman S. Clofazimine for the treatment of tuberculosis. Front. Pharmacol. 2023 14 1100488 10.3389/fphar.2023.1100488 36817137
    [Google Scholar]
  64. Nugraha R.V. Yunivita V. Santoso P. Aarnoutse R.E. Ruslami R. Clofazimine as a treatment for multidrug-resistant tuberculosis: A review. Sci. Pharm. 2021 89 2 19 10.3390/scipharm89020019
    [Google Scholar]
  65. Gopal M. Padayatchi N. Metcalfe J.Z. O’Donnell M.R. Systematic review of clofazimine for the treatment of drug-resistant tuberculosis. Int. J. Tuberc. Lung Dis. 2013 17 8 1001 1007 10.5588/ijtld.12.0144 23541151
    [Google Scholar]
  66. Park S. Jung J. Kim J. Han S.B. Ryoo S. Investigation of clofazimine resistance and genetic mutations in drug-resistant Mycobacterium tuberculosis isolates. J. Clin. Med. 2022 11 7 1927 10.3390/jcm11071927 35407536
    [Google Scholar]
  67. Zhang L. Zhang Y. Li Y. Rv1453 is associated with clofazimine resistance in Mycobacterium tuberculosis. Microbiol Spectr 2023 11 5 e0000223 10.1128/spectrum.00002‑23 37615440
    [Google Scholar]
  68. Nimmo C. Ortiz A.T. Tan C.C.S. Pang J. Acman M. Millard J. Padayatchi N. Grant A.D. O’Donnell M. Pym A. Brynildsrud O.B. Eldholm V. Grandjean L. Didelot X. Balloux F. van Dorp L. Detection of a historic reservoir of bedaquiline/clofazimine resistance-associated variants in Mycobacterium tuberculosis. Genome Med. 2024 16 1 34 10.1186/s13073‑024‑01289‑5 38374151
    [Google Scholar]
  69. Tornheim J.A. Udwadia Z.F. Arora P.R. Gajjar I. Sharma S. Karane M. Sawant N. Kharat N. Blum A.J. Shivakumar S.V.B.Y. Gupte A.N. Gupte N. Mullerpattan J.B. Pinto L.M. Ashavaid T.F. Gupta A. Rodrigues C. Increased moxifloxacin dosing among patients with multidrug-resistant tuberculosis with low-level resistance to moxifloxacin did not improve treatment outcomes in a tertiary care center in Mumbai, India. Open Forum Infect. Dis. 2022 9 2 ofab615 10.1093/ofid/ofab615 35097152
    [Google Scholar]
  70. Guan Y. Liu Y. Meta-analysis on effectiveness and safety of moxifloxacin in treatment of multidrug-resistant tuberculosis in adults. Medicine 2020 99 25 20648 10.1097/MD.0000000000020648 32569195
    [Google Scholar]
  71. Jing W. Wang Q. Wang J. Ma L. Huang M. Wang J. Du Y. Cai B. Shi W. Li Q. Li X. Chu N. Nie W. New all-oral short-term regimen for multidrug-resistant tuberculosis: A semi-randomized controlled trial conducted in China. Open Forum Infect. Dis. 2025 12 2 ofaf020 10.1093/ofid/ofaf020 40041440
    [Google Scholar]
  72. El Sahly H.M. Teeter L.D. Jost K.C. Jr Dunbar D. Lew J. Graviss E.A. Incidence of moxifloxacin resistance in clinical Mycobacterium tuberculosis isolates in Houston, Texas. J. Clin. Microbiol. 2011 49 8 2942 2945 10.1128/JCM.00231‑11 21653760
    [Google Scholar]
  73. Xia H. Zheng Y. Liu D. Wang S. He W. Zhao B. Song Y. Ou X. Zhou Y. van den Hof S. Cobelens F. Zhao Y. Strong increase in moxifloxacin resistance rate among multidrug-resistant Mycobacterium tuberculosis isolates in China, 2007 to 2013. Microbiol. Spectr. 2021 9 3 e00409-21 10.1128/Spectrum.00409‑21 34851179
    [Google Scholar]
  74. Guglielmetti L. Khan U. Velasquez G.E. Nine-month, all-oral regimens for rifampin-resistant tuberculosis. medRxiv 10.1101/2024.01.29.24301679
    [Google Scholar]
  75. Sangsayunh P. Sanchat T. Chuchottaworn C. Cheewakul K. Rattanawai S. The use of BPaL containing regimen in the MDR/PreXDR TB treatments in Thailand. J. Clin. Tuberc. Other Mycobact. Dis. 2024 34 100408 10.1016/j.jctube.2023.100408 38225943
    [Google Scholar]
  76. Huang Z. Luo W. Xu D. Guo F. Yang M. Zhu Y. Shen L. Chen S. Tang D. Li L. Li Y. Wang B. Franzblau S.G. Ding C.Z. Discovery and preclinical profile of sudapyridine (WX-081), a novel anti-tuberculosis agent. Bioorg. Med. Chem. Lett. 2022 71 128824 10.1016/j.bmcl.2022.128824 35636648
    [Google Scholar]
  77. Zheng L. Wang H. Qi X. Sudapyridine (WX-081) antibacterial activity against Mycobacterium avium, Mycobacterium abscessus, and Mycobacterium chelonae in vitro and in vivo. mSphere 2024 9 2 e0051823 10.1128/msphere.00518‑23 38240581
    [Google Scholar]
  78. Yao R. Wang B. Fu L. Sudapyridine (WX-081), a novel compound against Mycobacterium tuberculosis. Microbiol Spectr 2022 10 1 e0247721 10.1128/spectrum.02477‑21 35170994
    [Google Scholar]
  79. Xiao H. Yu X. Shang Y. Ren R. Xue Y. Dong L. Zhao L. Jiang G. Huang H. In vitro and intracellular antibacterial activity of sudapyridine (WX-081) against tuberculosis. Infect. Drug Resist. 2023 16 217 224 10.2147/IDR.S390187 36647451
    [Google Scholar]
  80. Yu C. Qian H. Wu Q. Zou Y. Ding Q. Cai Y. Liang L. Xu J. Li L. Zan B. Li Y. Liu Y. Safety, pharmacokinetics, and food effect of sudapyridine (WX-081), a novel anti-tuberculosis candidate in healthy Chinese subjects. Clin. Transl. Sci. 2024 17 2 13718 10.1111/cts.13718 39052984
    [Google Scholar]
  81. Almeida D. Converse P.J. Li S.Y. Upton A.M. Fotouhi N. Nuermberger E.L. Comparative efficacy of the novel diarylquinoline TBAJ-876 and bedaquiline against a resistant Rv0678 mutant in a mouse model of tuberculosis. Antimicrob. Agents Chemother. 2021 65 12 e01412-21 10.1128/AAC.01412‑21 34570644
    [Google Scholar]
  82. Shinabarger D. Mechanism of action of the oxazolidinone antibacterial agents. Expert Opin. Investig. Drugs 1999 8 8 1195 1202 10.1517/13543784.8.8.1195 15992144
    [Google Scholar]
  83. Wang C. Wang G. Huo F. Xue Y. Jia J. Dong L. Zhao L. Wang F. Huang H. Duan H. Novel oxazolidinones harbor potent in vitro activity against the clinical isolates of multidrug-resistant Mycobacterium tuberculosis in China. Front. Med. 2022 9 1067516 10.3389/fmed.2022.1067516 36523787
    [Google Scholar]
  84. Strydom N. Ernest J.P. Imperial M. Solans B.P. Wang Q. Tasneen R. Tyagi S. Soni H. Garcia A. Bigelow K. Gengenbacher M. Zimmerman M. Xie M. Sarathy J.P. Yang T.J. Dartois V. Nuermberger E.L. Savic R.M. Dose optimization of TBI-223 for enhanced therapeutic benefit compared to linezolid in antituberculosis regimen. Nat. Commun. 2024 15 1 7311 10.1038/s41467‑024‑50781‑4 39181887
    [Google Scholar]
  85. Almeida D. Li S.Y. Lee J. Contezolid can replace linezolid in a novel combination with bedaquiline and pretomanid in a murine model of tuberculosis. Antimicrob Agents Chemother 2023 67 12 e0078923 10.1128/aac.00789‑23 37966090
    [Google Scholar]
  86. An H. Sun W. Liu X. Wang T. Qiao J. Liang J. In vitro activities of contezolid (MRX-I) against drug-sensitive and drug-resistant Mycobacterium tuberculosis. Microbiol Spectr 2023 11 5 e0462722 10.1128/spectrum.04627‑22 37732805
    [Google Scholar]
  87. Wang J. Ma L. Tuberculosis patients with special clinical conditions treated with contezolid: Three case reports and a literature review. Front. Med. 2023 10 1265923 10.3389/fmed.2023.1265923 38162885
    [Google Scholar]
  88. Wang J. Nie W. Ma L. Li Q. Geng R. Shi W. Chu N. Clinical utility of contezolid-containing regimens in 25 cases of linezolid-intolerable tuberculosis patients. Infect. Drug Resist. 2023 16 6237 6245 10.2147/IDR.S425743 37745897
    [Google Scholar]
  89. Robertson G.T. Scherman M.S. Bruhn D.F. Liu J. Hastings C. McNeil M.R. Butler M.M. Bowlin T.L. Lee R.B. Lee R.E. Lenaerts A.J. Spectinamides are effective partner agents for the treatment of tuberculosis in multiple mouse infection models. J. Antimicrob. Chemother. 2016 72 3 dkw467 10.1093/jac/dkw467 27999020
    [Google Scholar]
  90. Bauman A.A. Sarathy J.P. Kaya F. Massoudi L.M. Scherman M.S. Hastings C. Liu J. Xie M. Brooks E.J. Ramey M.E. Jones I.L. Benedict N.D. Maclaughlin M.R. Miller-Dawson J.A. Waidyarachchi S.L. Butler M.M. Bowlin T.L. Zimmerman M.D. Lenaerts A.J. Meibohm B. Gonzalez-Juarrero M. Lyons M.A. Dartois V. Lee R.E. Robertson G.T. Spectinamide MBX-4888A exhibits favorable lesion and tissue distribution and promotes treatment shortening in advanced murine models of tuberculosis. Antimicrob. Agents Chemother. 2024 68 11 e00716-24 10.1128/aac.00716‑24 39345140
    [Google Scholar]
  91. Kim J.S. Kim Y. Lee S.H. Kim Y.H. Kim J. Kang J.Y. Kim S.K. Kim S.J. Kang Y.S. Kim T. Mok J. Byun M.K. Park H.J. Joh J. Park Y.B. Lim H.S. Choi H. Lee S.H. Kim H. Yang J. Kim H. Shen X. Alsultan A. Cho I. Geiter L. Shim T.S. Early bactericidal activity of delpazolid (LCB01-0371) in patients with pulmonary tuberculosis. Antimicrob. Agents Chemother. 2022 66 2 e01684-21 10.1128/aac.01684‑21 34871098
    [Google Scholar]
  92. Bruinenberg P. Nedelman J. Yang T.J. Pappas F. Everitt D. Single ascending-dose study to evaluate the safety, tolerability, and pharmacokinetics of sutezolid in healthy adult subjects. Antimicrob. Agents Chemother. 2022 66 4 e02108-21 10.1128/aac.02108‑21 35285241
    [Google Scholar]
  93. Diacon A.H. Barry C.E. III Carlton A. Chen R.Y. Davies M. de Jager V. Fletcher K. Koh G.C.K.W. Kontsevaya I. Heyckendorf J. Lange C. Reimann M. Penman S.L. Scott R. Maher-Edwards G. Tiberi S. Vlasakakis G. Upton C.M. Aguirre D.B. A first-in-class leucyl-tRNA synthetase inhibitor, ganfeborole, for rifampicin-susceptible tuberculosis: A phase 2a open-label, randomized trial. Nat. Med. 2024 30 3 896 904 10.1038/s41591‑024‑02829‑7 38365949
    [Google Scholar]
  94. Pieren M. Gutiérrez-Solana A. Arbós R.M. Boyle G.W. Davila M. Davy M. Gitzinger M. Husband L. Martínez-Martínez M.S. Mazarro D.O. Pefani E. Penman S.L. Remuiñán M.J. Vlasakakis G. Zeitlinger M. Dale G.E. First-in-human study of alpibectir (BVL-GSK098), a novel potent anti-TB drug. J. Antimicrob. Chemother. 2024 79 6 1353 1361 10.1093/jac/dkae107 38656557
    [Google Scholar]
  95. Heinrich N. de Jager V. Dreisbach J. Gross-Demel P. Schultz S. Gerbach S. Kloss F. Dawson R. Narunsky K. Matt L. Wildner L. McHugh T.D. Fuhr U. Aldana B.H. Mouhdad C. Brake L.T. Boeree M.J. Aarnoutse R.E. Svensson E.M. Gong X. P J Phillips P. Diacon A.H. Hoelscher M. Safety, bactericidal activity, and pharmacokinetics of the antituberculosis drug candidate BTZ-043 in South Africa (PanACEA-BTZ-043-02): An open-label, dose-expansion, randomised, controlled, phase 1b/2a trial. Lancet Microbe 2025 6 2 100952 10.1016/j.lanmic.2024.07.015 39793592
    [Google Scholar]
  96. Lupien A. Vocat A. Foo C.S.Y. Blattes E. Gillon J.Y. Makarov V. Cole S.T. Optimized background regimen for treatment of active tuberculosis with the next-generation benzothiazinone macozinone (PBTZ169). Antimicrob. Agents Chemother. 2018 62 11 e00840-18 10.1128/AAC.00840‑18 30126954
    [Google Scholar]
  97. Dawson R. Diacon A.H. Takuva S. Liu Y. Zheng B. Karwe V. Hafkin J. Quabodepistat in combination with delamanid and bedaquiline in participants with drug- susceptible pulmonary tuberculosis: Protocol for a multicenter, phase 2b/c, open-label, randomized, dose-finding trial to evaluate safety and efficacy. Trials 2024 25 1 70 10.1186/s13063‑024‑07912‑5 38243296
    [Google Scholar]
  98. Boeree M.J. Heinrich N. Aarnoutse R. Diacon A.H. Dawson R. Rehal S. Kibiki G.S. Churchyard G. Sanne I. Ntinginya N.E. Minja L.T. Hunt R.D. Charalambous S. Hanekom M. Semvua H.H. Mpagama S.G. Manyama C. Mtafya B. Reither K. Wallis R.S. Venter A. Narunsky K. Mekota A. Henne S. Colbers A. van Balen G.P. Gillespie S.H. Phillips P.P.J. Hoelscher M. High-dose rifampicin, moxifloxacin, and SQ109 for treating tuberculosis: A multi-arm, multi-stage randomised controlled trial. Lancet Infect. Dis. 2017 17 1 39 49 10.1016/S1473‑3099(16)30274‑2 28100438
    [Google Scholar]
  99. Imran M. Arora M.K. Chaudhary A. Khan S.A. Kamal M. Alshammari M.M. Alharbi R.M. Althomali N.A. Alzimam I.M. Alshammari A.A. Alharbi B.H. Alshengeti A. Alsaleh A.A. Alqahtani S.A. Rabaan A.A. MmpL3 inhibition as a promising approach to develop novel therapies against tuberculosis: A spotlight on SQ109, clinical studies, and patents literature. Biomedicines 2022 10 11 2793 10.3390/biomedicines10112793 36359313
    [Google Scholar]
  100. Kim J. Choi J. Kang H. Ahn J. Hutchings J. van Niekerk C. Park D. Kim J. Jeon Y. Nam K. Shin S. Shin B.S. Safety, tolerability, and pharmacokinetics of telacebec (Q203), a new antituberculosis agent, in healthy subjects. Antimicrob. Agents Chemother. 2022 66 1 e01436-21 10.1128/AAC.01436‑21 34694872
    [Google Scholar]
  101. Kim J. Choi J. Kang H. Ahn J. Hutchings J. Niekerk C. Kim J. Jeon Y. Nam K. Kim T.H. Shin B.S. Shin S. Safety, tolerability, pharmacokinetics, and metabolism of telacebec (Q203) for the treatment of tuberculosis: A randomized, placebo-controlled, multiple ascending dose phase 1b trial. Antimicrob. Agents Chemother. 2023 67 1 e01123-22 10.1128/aac.01123‑22 36507677
    [Google Scholar]
  102. Ding Y. Zhu H. Fu L. Zhang W. Wang B. Guo S. Chen X. Wang N. Liu H. Lu Y. Superior efficacy of a TBI-166, bedaquiline, and pyrazinamide combination regimen in a murine model of tuberculosis. Antimicrob. Agents Chemother. 2022 66 9 e00658-22 10.1128/aac.00658‑22 35924925
    [Google Scholar]
  103. Brown K.L. Wilburn K.M. Montague C.R. Grigg J.C. Sanz O. Pérez-Herrán E. Barros D. Ballell L. VanderVen B.C. Eltis L.D. Cyclic AMP–mediated inhibition of cholesterol catabolism in Mycobacterium tuberculosis by the novel drug candidate GSK2556286. Antimicrob. Agents Chemother. 2023 67 1 e01294-22 10.1128/aac.01294‑22 36602336
    [Google Scholar]
  104. Chakraborty S. Rhee K.Y. Tuberculosis drug development: History and evolution of the mechanism-based paradigm. Cold Spring Harb. Perspect. Med. 2015 5 8 a021147 10.1101/cshperspect.a021147 25877396
    [Google Scholar]
  105. Saukkonen J.J. Duarte R. Munsiff S.S. Winston C.A. Mammen M.J. Abubakar I. Acuña-Villaorduña C. Barry P.M. Bastos M.L. Carr W. Chami H. Chen L.L. Chorba T. Daley C.L. Garcia-Prats A.J. Holland K. Konstantinidis I. Lipman M. Battista Migliori G. Parvez F.M. Shapiro A.E. Sotgiu G. Starke J.R. Starks A.M. Thakore S. Wang S-H. Wortham J.M. Nahid P. Updates on the treatment of drug-susceptible and drug-resistant tuberculosis: An official ATS/CDC/ERS/IDSA clinical practice guideline. Am. J. Respir. Crit. Care Med. 2025 211 1 15 33 10.1164/rccm.202410‑2096ST
    [Google Scholar]
  106. Conradie F. Bagdasaryan T.R. Borisov S. Howell P. Mikiashvili L. Ngubane N. Samoilova A. Skornykova S. Tudor E. Variava E. Yablonskiy P. Everitt D. Wills G.H. Sun E. Olugbosi M. Egizi E. Li M. Holsta A. Timm J. Bateson A. Crook A.M. Fabiane S.M. Hunt R. McHugh T.D. Tweed C.D. Foraida S. Mendel C.M. Spigelman M. Bedaquiline–pretomanid–linezolid regimens for drug-resistant tuberculosis. N. Engl. J. Med. 2022 387 9 810 823 10.1056/NEJMoa2119430 36053506
    [Google Scholar]
  107. Shaw E.S. Stoker N.G. Potter J.L. Claassen H. Leslie A. Tweed C.D. Chiang C.Y. Conradie F. Esmail H. Lange C. Pinto L. Rucsineanu O. Sloan D.J. Theron G. Tisile P. Voo T.C. Warren R.M. Lebina L. Lipman M. Bedaquiline: What might the future hold? Lancet Microbe 2024 5 12 100909 10.1016/S2666‑5247(24)00149‑6 39074472
    [Google Scholar]
  108. Kaniga K. Hasan R. Jou R. Vasiliauskienė E. Chuchottaworn C. Ismail N. Metchock B. Miliauskas S. Viet Nhung N. Rodrigues C. Shin S. Simsek H. Smithtikarn S. Ngoc A.L.T. Boonyasopun J. Kazi M. Kim S. Kamolwat P. Musteikiene G. Sacopon C.A. Tahseen S. Vasiliauskaitė L. Wu M.H. Vally Omar S. Bedaquiline drug resistance emergence assessment in multidrug-resistant tuberculosis (MDR-TB): A 5-year prospective in vitro surveillance study of bedaquiline and other second-line drug susceptibility testing in MDR-TB isolates. J. Clin. Microbiol. 2022 60 1 e02919-20 10.1128/JCM.02919‑20 34705538
    [Google Scholar]
  109. Barilar I. Fernando T. Utpatel C. Abujate C. Madeira C.M. José B. Mutaquiha C. Kranzer K. Niemann T. Ismael N. de Araujo L. Wirth T. Niemann S. Viegas S. Emergence of bedaquiline-resistant tuberculosis and of multidrug-resistant and extensively drug-resistant Mycobacterium tuberculosis strains with rpoB Ile491Phe mutation not detected by Xpert MTB/RIF in Mozambique: A retrospective observational study. Lancet Infect. Dis. 2024 24 3 297 307 10.1016/S1473‑3099(23)00498‑X 37956677
    [Google Scholar]
  110. Unissa A.N. Doss C G.P. Kumar T. Sukumar S. Lakshmi A.R. Hanna L.E. Significance of catalase-peroxidase (KatG) mutations in mediating isoniazid resistance in clinical strains of Mycobacterium tuberculosis. J. Glob. Antimicrob. Resist. 2018 15 111 120 10.1016/j.jgar.2018.07.001 29990547
    [Google Scholar]
  111. Radhakrishnan A. Kumar N. Wright C.C. Chou T.H. Tringides M.L. Bolla J.R. Lei H.T. Rajashankar K.R. Su C.C. Purdy G.E. Yu E.W. Crystal structure of the transcriptional regulator Rv0678 of Mycobacterium tuberculosis. J. Biol. Chem. 2014 289 23 16526 16540 10.1074/jbc.M113.538959 24737322
    [Google Scholar]
  112. Jacobo-Delgado Y.M. Rodríguez-Carlos A. Serrano C.J. Rivas-Santiago B. Mycobacterium tuberculosis cell-wall and antimicrobial peptides: A mission impossible? Front. Immunol. 2023 14 1194923 10.3389/fimmu.2023.1194923 37266428
    [Google Scholar]
  113. Hartkoorn R.C. Uplekar S. Cole S.T. Cross-resistance between clofazimine and bedaquiline through upregulation of MmpL5 in Mycobacterium tuberculosis. Antimicrob. Agents Chemother. 2014 58 5 2979 2981 10.1128/AAC.00037‑14 24590481
    [Google Scholar]
  114. McLaren Z.M. Milliken A.A. Meyer A.J. Sharp A.R. Does directly observed therapy improve tuberculosis treatment? More evidence is needed to guide tuberculosis policy. BMC Infect. Dis. 2016 16 1 537 10.1186/s12879‑016‑1862‑y 27716104
    [Google Scholar]
  115. Alffenaar J.W.C. Stocker S.L. Forsman L.D. Garcia-Prats A. Heysell S.K. Aarnoutse R.E. Akkerman O.W. Aleksa A. van Altena R. de Oñata W.A. Bhavani P.K. van’t Boveneind-Vrubleuskaya N. Carvalho A.C.C. Centis R. Chakaya J.M. Cirillo D.M. Cho J.G. D´Ambrosio L. Dalcolmo M.P. Denti P. Dheda K. Fox G.J. Hesseling A.C. Kim H.Y. Köser C.U. Marais B.J. Margineanu I. Märtson A.G. Torrico M.M. Nataprawira H.M. Ong C.W.M. Otto-Knapp R. Peloquin C.A. Silva D.R. Ruslami R. Santoso P. Savic R.M. Singla R. Svensson E.M. Skrahina A. van Soolingen D. Srivastava S. Tadolini M. Tiberi S. Thomas T.A. Udwadia Z.F. Vu D.H. Zhang W. Mpagama S.G. Schön T. Migliori G.B. Clinical standards for the dosing and management of TB drugs. Int. J. Tuberc. Lung Dis. 2022 26 6 483 499 10.5588/ijtld.22.0188 35650702
    [Google Scholar]
  116. Wilson J.W. Nilsen D.M. Marks S.M. Multidrug-resistant tuberculosis in patients with human immunodeficiency virus: Management considerations within high-resourced settings. Ann. Am. Thorac. Soc. 2020 17 1 16 23 10.1513/AnnalsATS.201902‑185CME 31365831
    [Google Scholar]
  117. Otchere I.D. Asante-Poku A. Akpadja K.F. Diallo A.B. Sanou A. Asare P. Osei-Wusu S. Onyejepu N. Diarra B. Dagnra Y.A. Kehinde A. Antonio M. Yeboah-Manu D. Opinion review of drug resistant tuberculosis in West Africa: Tackling the challenges for effective control. Front. Public Health 2024 12 1374703 10.3389/fpubh.2024.1374703 38827613
    [Google Scholar]
  118. Cox V. Cox H. Pai M. Stillo J. Citro B. Brigden G. Health care gaps in the global burden of drug-resistant tuberculosis. Int. J. Tuberc. Lung Dis. 2019 23 2 125 135 10.5588/ijtld.18.0866 30808447
    [Google Scholar]
  119. Grosu-Creangă I.A. Trofor A.C. Crișan-Dabija R.A. Robu-Popa D. Ghiciuc C.M. Lupușoru E.C. Adverse effects induced by second- line antituberculosis drugs: An update based on last WHO treatment recommendations for drug-resistant tuberculosis. Pneumologia 2021 70 3 117 126 10.2478/pneum‑2022‑0029
    [Google Scholar]
  120. McIlleron H. Abdel-Rahman S. Dave J.A. Blockman M. Owen A. Special populations and pharmacogenetic issues in tuberculosis drug development and clinical research. J. Infect. Dis. 2015 211 Suppl. 3 S115 S125 10.1093/infdis/jiu600 26009615
    [Google Scholar]
  121. Zhao L. Fan K. Sun X. Li W. Qin F. Shi L. Gao F. Zheng C. Host-directed therapy against mycobacterium tuberculosis infections with diabetes mellitus. Front. Immunol. 2024 14 1305325 10.3389/fimmu.2023.1305325 38259491
    [Google Scholar]
  122. Cai Y. Yi J. Zhou C. Shen X. Pharmacogenetic study of drug-metabolising enzyme polymorphisms on the risk of anti-tuberculosis drug-induced liver injury: a meta-analysis. PLoS One 2012 7 10 47769 10.1371/journal.pone.0047769 23082213
    [Google Scholar]
  123. Alsultan A. Peloquin C.A. Therapeutic drug monitoring in the treatment of tuberculosis: An update. Drugs 2014 74 8 839 854 10.1007/s40265‑014‑0222‑8 24846578
    [Google Scholar]
  124. Srivastava S. Pasipanodya J.G. Meek C. Leff R. Gumbo T. Multidrug-resistant tuberculosis not due to noncompliance but to between-patient pharmacokinetic variability. J. Infect. Dis. 2011 204 12 1951 1959 10.1093/infdis/jir658 22021624
    [Google Scholar]
  125. Lange C. Aarnoutse R. Chesov D. van Crevel R. Gillespie S.H. Grobbel H.P. Kalsdorf B. Kontsevaya I. van Laarhoven A. Nishiguchi T. Mandalakas A. Merker M. Niemann S. Köhler N. Heyckendorf J. Reimann M. Ruhwald M. Sanchez-Carballo P. Schwudke D. Waldow F. DiNardo A.R. Perspective for precision medicine for tuberculosis. Front. Immunol. 2020 11 566608 10.3389/fimmu.2020.566608 33117351
    [Google Scholar]
/content/journals/crmr/10.2174/011573398X409282250823051901
Loading
/content/journals/crmr/10.2174/011573398X409282250823051901
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test