Skip to content
2000
Volume 21, Issue 5
  • ISSN: 1573-398X
  • E-ISSN: 1875-6387

Abstract

Introduction

Drug-resistant tuberculosis (TB), including multidrug-resistant (MDR-TB) and extensively drug-resistant TB (XDR-TB), poses major global health challenges. Conventional regimens achieve only 50-60% success rates compared to 85% in drug-susceptible TB. This review examines recent therapeutic advances in drug-resistant TB management, focusing on novel and repurposed agents, their mechanisms, clinical efficacy, and integration into optimized treatment regimens.

Methods

We conducted a systematic literature search of PubMed, Embase, Cochrane Library, and Web of Science databases from inception to December 2024. Search terms included “multidrug-resistant tuberculosis”, “bedaquiline”, “delamanid”, “pretomanid”, and “clinical trials”. We included peer-reviewed studies, systematic reviews, meta-analyses, and clinical trial reports, prioritizing high-quality evidence from randomized controlled trials and prospective cohort studies. Data extraction focused on drug mechanisms, clinical outcomes, safety profiles, and resistance patterns.

Results

Analysis of 125 studies and 15 ongoing clinical trials demonstrated substantial therapeutic improvements. Novel agents achieved treatment success rates of 73-90% compared to 50-60% with conventional second-line regimens. The BPaL regimen (bedaquiline, pretomanid, linezolid) showed 89-90% favorable outcomes within 6 months compared to traditional 18-24 month durations. Delamanid demonstrated a 73.1% success rate with culture conversion rates of 61-95%. However, bedaquiline resistance increased to 5.7% globally, reaching 14% in high-burden regions.

Discussion

Novel therapeutic agents represent transformative advances in drug-resistant TB management, enabling shortened all-oral regimens that address critical barriers, including adherence, toxicity, and healthcare burden. However, rising resistance underscores the need for stewardship and innovation.

Conclusion

Bedaquiline, delamanid, and pretomanid have revolutionized drug-resistant TB treatment outcomes, positioning the field toward effective universal treatment access and TB elimination goals.

This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/crmr/10.2174/011573398X409282250823051901
2025-08-29
2026-01-02
Loading full text...

Full text loading...

/deliver/fulltext/crmr/21/5/CRMR-21-5-07.html?itemId=/content/journals/crmr/10.2174/011573398X409282250823051901&mimeType=html&fmt=ahah

References

  1. Global Tuberculosis Report 2023.2023Available from: https://iris.who.int/handle/10665/373792
  2. OrensteinE.W. BasuS. ShahN.S. AndrewsJ.R. FriedlandG.H. MollA.P. GandhiN.R. GalvaniA.P. Treatment outcomes among patients with multidrug-resistant tuberculosis: Systematic review and meta-analysis.Lancet Infect. Dis.20099315316110.1016/S1473‑3099(09)70041‑619246019
    [Google Scholar]
  3. UdwadiaZ. FurinJ. Quality of drug-resistant tuberculosis care: Gaps and solutions.J. Clin. Tuberc. Other Mycobact. Dis.20191610010110.1016/j.jctube.2019.10010131720427
    [Google Scholar]
  4. MahajanR. Bedaquiline: First FDA-approved tuberculosis drug in 40 years.Int. J. Appl. Basic Med. Res.2013311210.4103/2229‑516X.11222823776831
    [Google Scholar]
  5. WHO Consolidated Guidelines on Tuberculosis: Module 4. Treatment – Drug-Resistant Tuberculosis Treatment.2022Available from: https://www.who.int/publications/i/item/9789240063129
  6. DiazJ.M. AbulfathiA.A. te BrakeL.H.M. van IngenJ. KuipersS. Magis-EscurraC. RaaijmakersJ. SvenssonE.M. BoereeM.J. New and repurposed drugs for the treatment of active tuberculosis: An update for clinicians.Respiration202310228310010.1159/00052827436516792
    [Google Scholar]
  7. SharmaK. AhmedF. SharmaT. GroverA. AgarwalM. GroverS. Potential repurposed drug candidates for tuberculosis treatment: Progress and update of drugs identified in over a decade.ACS Omega2023820173621738010.1021/acsomega.2c0551137251185
    [Google Scholar]
  8. KandiS. KandiT.K. KandiS.R. MathurN. DasariC.D. AdepuR. Study of treatment outcomes of multidrug-resistant tuberculosis under programmatic conditions and factors influencing the outcomes in Hyderabad district.Indian J. Tuberc.202168337938310.1016/j.ijtb.2020.12.00834099204
    [Google Scholar]
  9. OlaruI.D. von Groote-BidlingmaierF. HeyckendorfJ. YewW.W. LangeC. ChangK.C. Novel drugs against tuberculosis: A clinician’s perspective.Eur. Respir. J.20154541119113110.1183/09031936.0016231425431273
    [Google Scholar]
  10. KimD.H. KimH.J. ParkS.K. KongS.J. KimY.S. KimT.H. KimE.K. LeeK.M. LeeS.S. ParkJ.S. KohW.J. LeeC.H. KimJ.Y. ShimT.S. Treatment outcomes and long-term survival in patients with extensively drug-resistant tuberculosis.Am. J. Respir. Crit. Care Med.2008178101075108210.1164/rccm.200801‑132OC18703792
    [Google Scholar]
  11. StephanieF. SaragihM. TambunanU.S.F. Recent progress and challenges for drug-resistant tuberculosis treatment.Pharmaceutics202113559210.3390/pharmaceutics1305059233919204
    [Google Scholar]
  12. JaspardM. ButelN. El HelaliN. Marigot-OuttandyD. GuillotH. PeytavinG. VezirisN. BodaghiB. FlandreP. PetitjeanG. CaumesE. PourcherV. Linezolid-associated neurologic adverse events in patients with multidrug-resistant tuberculosis, France.Emerg. Infect. Dis.20202681792180010.3201/eid2608.19149932687026
    [Google Scholar]
  13. PontaliE. SotgiuG. TiberiS. D’AmbrosioL. CentisR. MiglioriG.B. Cardiac safety of bedaquiline: A systematic and critical analysis of the evidence.Eur. Respir. J.2017505170146210.1183/13993003.01462‑201729146605
    [Google Scholar]
  14. ShewadeH.D. ShringarpureK.S. ParmarM. PatelN. KuriyaS. ShihoraS. NinamaN. GosaiN. KhokhariyaR. PopatC. ThankiH. ModiB. DaveP. BaxiR.K. KumarA.M.V. Delay and attrition before treatment initiation among MDR-TB patients in five districts of Gujarat, India.Public Health Action201882596510.5588/pha.18.000329946521
    [Google Scholar]
  15. LangeC. AbubakarI. AlffenaarJ.W.C. BothamleyG. CamineroJ.A. CarvalhoA.C.C. ChangK.C. CodecasaL. CorreiaA. CruduV. DaviesP. DedicoatM. DrobniewskiF. DuarteR. EhlersC. ErkensC. GolettiD. GüntherG. IbraimE. KampmannB. KuksaL. de LangeW. van LethF. van LunzenJ. MatteelliA. MenziesD. MonederoI. RichterE. Rüsch-GerdesS. SandgrenA. ScardigliA. SkrahinaA. TortoliE. VolchenkovG. WagnerD. van der WerfM.J. WilliamsB. YewW.W. ZellwegerJ.P. CirilloD.M. Management of patients with multidrug-resistant/extensively drug-resistant tuberculosis in Europe: A TBNET consensus statement.Eur. Respir. J.2014441236310.1183/09031936.0018831324659544
    [Google Scholar]
  16. VishwakarmaD. GaidhaneA. SahuS. RathodA.S. Multi-drug resistance tuberculosis (MDR-TB) Challenges in India: A review.Cureus202315125022210.7759/cureus.5022238192967
    [Google Scholar]
  17. ZhangS. ChenJ. CuiP. ShiW. ShiX. NiuH. ChanD. YewW.W. ZhangW. ZhangY. Mycobacterium tuberculosis mutations associated with reduced susceptibility to linezolid.Antimicrob. Agents Chemother.20166042542254410.1128/AAC.02941‑1526810645
    [Google Scholar]
  18. ChatterjeeS. DasP. StallworthyG. BhambureG. MunjeR. VassallA. Catastrophic costs for tuberculosis patients in India: Impact of methodological choices.PLOS Glob. Public Health202444000307810.1371/journal.pgph.000307838669225
    [Google Scholar]
  19. ChandraA. KumarR. KantS. ParthasarathyR. KrishnanA. Direct and indirect patient costs of tuberculosis care in India.Trop. Med. Int. Health202025780381210.1111/tmi.1340232306481
    [Google Scholar]
  20. VasiliuA. SaktiawatiA.M.I. DuarteR. LangeC. CirilloD.M. Implementing molecular tuberculosis diagnostic methods in limited-resource and high-burden countries.Breathe202218422022610.1183/20734735.0226‑202236865933
    [Google Scholar]
  21. D’AmbrosioL. CentisR. TiberiS. TadoliniM. DalcolmoM. RendonA. EspositoS. MiglioriG.B. Delamanid and bedaquiline to treat multidrug-resistant and extensively drug-resistant tuberculosis in children: A systematic review.J. Thorac. Dis.2017972093210110.21037/jtd.2017.06.1628840010
    [Google Scholar]
  22. HardsK. RobsonJ.R. BerneyM. ShawL. BaldD. KoulA. AndriesK. CookG.M. Bactericidal mode of action of bedaquiline.J. Antimicrob. Chemother.20157072028203710.1093/jac/dkv05425754998
    [Google Scholar]
  23. SarathyJ.P. GruberG. DickT. Re-understanding the mechanisms of action of the anti-mycobacterial drug bedaquiline.Antibiotics20198426110.3390/antibiotics804026131835707
    [Google Scholar]
  24. GoelD. Bedaquiline: A novel drug to combat multiple drug-resistant tuberculosis.J. Pharmacol. Pharmacother.201451767810.4103/0976‑500X.12443524554919
    [Google Scholar]
  25. DiaconA.H. PymA. GrobuschM.P. de los RiosJ.M. GotuzzoE. VasilyevaI. LeimaneV. AndriesK. BakareN. De MarezT. Haxaire-TheeuwesM. LounisN. MeyvischP. De PaepeE. van HeeswijkR.P.G. DannemannB. Multidrug-resistant tuberculosis and culture conversion with bedaquiline.N. Engl. J. Med.2014371872373210.1056/NEJMoa131386525140958
    [Google Scholar]
  26. FoxG.J. MenziesD. A review of the evidence for using bedaquiline (TMC207) to treat multi-drug resistant tuberculosis.Infect. Dis. Ther.20132212314410.1007/s40121‑013‑0009‑325134476
    [Google Scholar]
  27. OlayanjuO. LimberisJ. EsmailA. OelofseS. GinaP. PietersenE. FadulM. WarrenR. DhedaK. Long-term bedaquiline-related treatment outcomes in patients with extensively drug-resistant tuberculosis from South Africa.Eur. Respir. J.2018515180054410.1183/13993003.00544‑201829700106
    [Google Scholar]
  28. BorisovS.E. DhedaK. EnweremM. Romero LeyetR. D’AmbrosioL. CentisR. SotgiuG. TiberiS. AlffenaarJ.W. MaryandyshevA. BelilovskiE. GanatraS. SkrahinaA. AkkermanO. AleksaA. AmaleR. ArtsukevichJ. BruchfeldJ. CamineroJ.A. Carpena MartinezI. CodecasaL. DalcolmoM. DenholmJ. DouglasP. DuarteR. EsmailA. FadulM. FilippovA. Davies ForsmanL. GagaM. Garcia-FuertesJ.A. García-GarcíaJ.M. GualanoG. JonssonJ. KunstH. LauJ.S. Lazaro MastrapaB. Teran TroyaJ.L. MangaS. ManikaK. González MontanerP. MullerpattanJ. OelofseS. OrtelliM. PalmeroD.J. PalmieriF. PapaliaA. PapavasileiouA. PayenM.C. PontaliE. Robalo CordeiroC. SaderiL. SadutshangT.D. SanukevichT. SolodovnikovaV. SpanevelloA. TopgyalS. ToscaniniF. TramontanaA.R. Farokh UdwadiaZ. ViggianiP. WhiteV. ZumlaA. MiglioriG.B. Effectiveness and safety of bedaquiline-containing regimens in the treatment of MDR- and XDR-TB: A multicentre study.Eur. Respir. J.2017495170038710.1183/13993003.00387‑201728529205
    [Google Scholar]
  29. NdjekaN. SchnippelK. MasterI. MeintjesG. MaartensG. RomeroR. PadanilamX. EnweremM. ChotooS. SinghN. HughesJ. VariavaE. FerreiraH. te RieleJ. IsmailN. MohrE. BantubaniN. ConradieF. High treatment success rate for multidrug-resistant and extensively drug-resistant tuberculosis using a bedaquiline-containing treatment regimen.Eur. Respir. J.2018526180152810.1183/13993003.01528‑201830361246
    [Google Scholar]
  30. MallickJ.S. NairP. AbbewE.T. Van DeunA. DecrooT. Acquired bedaquiline resistance during the treatment of drug-resistant tuberculosis: A systematic review.JAC Antimicrob. Resist.202242dlac02910.1093/jacamr/dlac02935356403
    [Google Scholar]
  31. DerendingerB. DippenaarA. de VosM. HuoS. AlbertsR. TadokeraR. LimberisJ. SirgelF. DolbyT. SpiesC. ReuterA. FolkertsM. AllenderC. LemmerD. Van RieA. GagneuxS. RigoutsL. te RieleJ. DhedaK. EngelthalerD.M. WarrenR. MetcalfeJ. CoxH. TheronG. Bedaquiline resistance in patients with drug-resistant tuberculosis in Cape Town, South Africa: A retrospective longitudinal cohort study.Lancet Microbe2023412e972e98210.1016/S2666‑5247(23)00172‑637931638
    [Google Scholar]
  32. PaiH. NdjekaN. MbuagbawL. KanigaK. BirminghamE. MaoG. AlquierL. DavisK. BodardA. WilliamsA. Van TongelM. Thoret-BauchetF. OmarS.V. BakareN. Bedaquiline safety, efficacy, utilization and emergence of resistance following treatment of multidrug-resistant tuberculosis patients in South Africa: A retrospective cohort analysis.BMC Infect. Dis.202222187010.1186/s12879‑022‑07861‑x36414938
    [Google Scholar]
  33. HuY. FanJ. ZhuD. LiuW. LiF. LiT. ZhengH. Investigation of bedaquiline resistance and genetic mutations in multi-drug resistant Mycobacterium tuberculosis clinical isolates in Chongqing, China.Ann. Clin. Microbiol. Antimicrob.20232211910.1186/s12941‑023‑00568‑036855179
    [Google Scholar]
  34. MillardJ. RimmerS. NimmoC. O’DonnellM. Therapeutic failure and acquired bedaquiline and delamanid resistance in treatment of drug-resistant TB.Emerg. Infect. Dis.20232951081108410.3201/eid2905.22171637081529
    [Google Scholar]
  35. RyanN.J. LoJ.H. Delamanid: First global approval.Drugs20147491041104510.1007/s40265‑014‑0241‑524923253
    [Google Scholar]
  36. BlairH.A. ScottL.J. Delamanid: A review of its use in patients with multidrug-resistant tuberculosis.Drugs20157519110010.1007/s40265‑014‑0331‑425404020
    [Google Scholar]
  37. AnwerR. Antimycobacterial drugs as a novel strategy to inhibit Pseudomonas aeruginosa virulence factors and combat antibiotic resistance: A molecular simulation study.Microbiol. Res.202415129031310.3390/microbiolres15010020
    [Google Scholar]
  38. HolmgaardF.B. GuglielmettiL. LillebaekT. AndersenÅ.B. WejseC. DahlV.N. Efficacy and tolerability of concomitant use of bedaquiline and delamanid for multidrug- and extensively drug-resistant tuberculosis: A systematic review and meta-analysis.Clin. Infect. Dis.20237671328133710.1093/cid/ciac87636331978
    [Google Scholar]
  39. HafkinJ. HittelN. MartinA. GuptaR. Compassionate use of delamanid in combination with bedaquiline for the treatment of multidrug-resistant tuberculosis.Eur. Respir. J.2019531180115410.1183/13993003.01154‑201830361253
    [Google Scholar]
  40. MiglioriG. PontaliE. SotgiuG. CentisR. D’AmbrosioL. TiberiS. TadoliniM. EspositoS. Combined use of delamanid and bedaquiline to treat multidrug-resistant and extensively drug-resistant tuberculosis: A systematic review.Int. J. Mol. Sci.201718234110.3390/ijms1802034128178199
    [Google Scholar]
  41. MokJ. KangH. KohW.J. JhunB.W. YimJ.J. KwakN. LeeT. KangB. JeonD. Final treatment outcomes of delamanid-containing regimens in patients with MDR-/XDR-TB in South Korea.Eur. Respir. J.2019545190081110.1183/13993003.00811‑201931285308
    [Google Scholar]
  42. SkripconokaV. DanilovitsM. PehmeL. TomsonT. SkendersG. KummikT. CiruleA. LeimaneV. KurveA. LevinaK. GeiterL.J. ManisseroD. WellsC.D. Delamanid improves outcomes and reduces mortality in multidrug-resistant tuberculosis.Eur. Respir. J.20134161393140010.1183/09031936.0012581223018916
    [Google Scholar]
  43. KhoshnoodS. TakiE. SadeghifardN. KaviarV.H. HaddadiM.H. FarshadzadehZ. KouhsariE. GoudarziM. HeidaryM. Mechanism of action, resistance, synergism, and clinical implications of delamanid against multidrug-resistant Mycobacterium tuberculosis . Front. Microbiol.20211271704510.3389/fmicb.2021.71704534690963
    [Google Scholar]
  44. YangJ.S. KimK.J. ChoiH. LeeS.H. Delamanid, bedaquiline, and linezolid minimum inhibitory concentration distributions and resistance-related gene mutations in multidrug-resistant and extensively drug-resistant tuberculosis in Korea.Ann. Lab. Med.201838656356810.3343/alm.2018.38.6.56330027700
    [Google Scholar]
  45. AbrahamsK.A. BattS.M. GurchaS.S. VeerapenN. BashiriG. BesraG.S. DprE2 is a molecular target of the anti-tubercular nitroimidazole compounds pretomanid and delamanid.Nat. Commun.2023141382810.1038/s41467‑023‑39300‑z37380634
    [Google Scholar]
  46. StancilS.L. MirzayevF. Abdel-RahmanS.M. Profiling pretomanid as a therapeutic option for TB infection: Evidence to date.Drug Des. Devel. Ther.2021152815283010.2147/DDDT.S28163934234413
    [Google Scholar]
  47. MuddeS.E. UptonA.M. LenaertsA. BaxH.I. De SteenwinkelJ.E.M. Delamanid or pretomanid? A Solomonic judgement!J. Antimicrob. Chemother.202277488090210.1093/jac/dkab50535089314
    [Google Scholar]
  48. ConradieF. DiaconA.H. NgubaneN. HowellP. EverittD. CrookA.M. MendelC.M. EgiziE. MoreiraJ. TimmJ. McHughT.D. WillsG.H. BatesonA. HuntR. Van NiekerkC. LiM. OlugbosiM. SpigelmanM. Treatment of highly drug-resistant pulmonary tuberculosis.N. Engl. J. Med.20203821089390210.1056/NEJMoa190181432130813
    [Google Scholar]
  49. TweedC.D. DawsonR. BurgerD.A. ConradieA. CrookA.M. MendelC.M. ConradieF. DiaconA.H. NtinginyaN.E. EverittD.E. HarakaF. LiM. van NiekerkC.H. OkweraA. RassoolM.S. ReitherK. SebeM.A. StaplesS. VariavaE. SpigelmanM. Bedaquiline, moxifloxacin, pretomanid, and pyrazinamide during the first 8 weeks of treatment of patients with drug-susceptible or drug-resistant pulmonary tuberculosis: A multicentre, open-label, partially randomised, phase 2b trial.Lancet Respir. Med.20197121048105810.1016/S2213‑2600(19)30366‑231732485
    [Google Scholar]
  50. RifatD. LiS.Y. IoergerT. ShahK. LanoixJ.P. LeeJ. BashiriG. SacchettiniJ. NuermbergerE. Mutations in fbiD (Rv2983) as a novel determinant of resistance to pretomanid and delamanid in Mycobacterium tuberculosis .Antimicrob. Agents Chemother.2020651e01948-2010.1128/AAC.01948‑2033077652
    [Google Scholar]
  51. ZhaoB. ZhengH. TimmJ. SongZ. PeiS. XingR. GuoY. MaL. LiF. LiQ. LiY. HuangL. TengC. WangN. GuptaA. JunejaS. HuangF. ZhaoY. OuX. Prevalence and genetic basis of Mycobacterium tuberculosis resistance to pretomanid in China.Ann. Clin. Microbiol. Antimicrob.20242314010.1186/s12941‑024‑00697‑038702782
    [Google Scholar]
  52. ManjunathaU.H. BoshoffH. DowdC.S. ZhangL. AlbertT.J. NortonJ.E. DanielsL. DickT. PangS.S. BarryC.E.III Identification of a nitroimidazo-oxazine-specific protein involved in PA-824 resistance in Mycobacterium tuberculosis.Proc. Natl. Acad. Sci. USA2006103243143610.1073/pnas.050839210316387854
    [Google Scholar]
  53. UshtanitA. KulaginaE. MikhailovaY. MakarovaM. SafonovaS. ZimenkovD. Molecular determinants of ethionamide resistance in clinical isolates of Mycobacterium tuberculosis .Antibiotics202211213310.3390/antibiotics1102013335203736
    [Google Scholar]
  54. TanY. SuB. ZhengH. SongY. WangY. PangY. Molecular characterization of prothionamide-resistant Mycobacterium tuberculosis isolates in southern China.Front. Microbiol.20178235810.3389/fmicb.2017.0235829250048
    [Google Scholar]
  55. DookieN. RambaranS. PadayatchiN. MahomedS. NaidooK. Evolution of drug resistance in Mycobacterium tuberculosis: A review on the molecular determinants of resistance and implications for personalized care.J. Antimicrob. Chemother.20187351138115110.1093/jac/dkx50629360989
    [Google Scholar]
  56. NguyenT.V.A. NguyenQ.H. NguyenT.N.T. AnthonyR.M. VuD.H. AlffenaarJ.W.C. Pretomanid resistance: An update on emergence, mechanisms and relevance for clinical practice.Int. J. Antimicrob. Agents202362410695310.1016/j.ijantimicag.2023.10695337595848
    [Google Scholar]
  57. SwaneyS.M. AokiH. GanozaM.C. ShinabargerD.L. The oxazolidinone linezolid inhibits initiation of protein synthesis in bacteria.Antimicrob. Agents Chemother.199842123251325510.1128/AAC.42.12.32519835522
    [Google Scholar]
  58. TangS. YaoL. HaoX. ZhangX. LiuG. LiuX. WuM. ZenL. SunH. LiuY. GuJ. LinF. WangX. ZhangZ. Efficacy, safety and tolerability of linezolid for the treatment of XDR-TB: A study in China.Eur. Respir. J.201545116117010.1183/09031936.0003511425234807
    [Google Scholar]
  59. LifanZ. SainanB. FengS. SiyanZ. XiaoqingL. Linezolid for the treatment of extensively drug-resistant tuberculosis: A systematic review and meta-analysis.Int. J. Tuberc. Lung Dis.201923121293130710.5588/ijtld.18.082231931914
    [Google Scholar]
  60. MaseA. LowenthalP. TrueL. HenryL. BarryP. FloodJ. Low- dose linezolid for treatment of patients with multidrug-resistant tuberculosis.Open Forum Infect. Dis.2022912ofac50010.1093/ofid/ofac50036601556
    [Google Scholar]
  61. SinglaR. CamineroJ.A. JaiswalA. SinglaN. GuptaS. BaliR.K. BeheraD. Linezolid: an effective, safe and cheap drug for patients failing multidrug-resistant tuberculosis treatment in India.Eur. Respir. J.201239495696210.1183/09031936.0007681121965225
    [Google Scholar]
  62. LechartierB. ColeS.T. Mode of action of clofazimine and combination therapy with benzothiazinones against Mycobacterium tuberculosis. Antimicrob. Agents Chemother.20155984457446310.1128/AAC.00395‑1525987624
    [Google Scholar]
  63. StadlerJ.A.M. MaartensG. MeintjesG. WassermanS. Clofazimine for the treatment of tuberculosis.Front. Pharmacol.202314110048810.3389/fphar.2023.110048836817137
    [Google Scholar]
  64. NugrahaR.V. YunivitaV. SantosoP. AarnoutseR.E. RuslamiR. Clofazimine as a treatment for multidrug-resistant tuberculosis: A review.Sci. Pharm.20218921910.3390/scipharm89020019
    [Google Scholar]
  65. GopalM. PadayatchiN. MetcalfeJ.Z. O’DonnellM.R. Systematic review of clofazimine for the treatment of drug-resistant tuberculosis.Int. J. Tuberc. Lung Dis.20131781001100710.5588/ijtld.12.014423541151
    [Google Scholar]
  66. ParkS. JungJ. KimJ. HanS.B. RyooS. Investigation of clofazimine resistance and genetic mutations in drug-resistant Mycobacterium tuberculosis isolates.J. Clin. Med.2022117192710.3390/jcm1107192735407536
    [Google Scholar]
  67. ZhangL. ZhangY. LiY. Rv1453 is associated with clofazimine resistance in Mycobacterium tuberculosis.Microbiol Spectr2023115e000022310.1128/spectrum.00002‑2337615440
    [Google Scholar]
  68. NimmoC. OrtizA.T. TanC.C.S. PangJ. AcmanM. MillardJ. PadayatchiN. GrantA.D. O’DonnellM. PymA. BrynildsrudO.B. EldholmV. GrandjeanL. DidelotX. BallouxF. van DorpL. Detection of a historic reservoir of bedaquiline/clofazimine resistance-associated variants in Mycobacterium tuberculosis. Genome Med.20241613410.1186/s13073‑024‑01289‑538374151
    [Google Scholar]
  69. TornheimJ.A. UdwadiaZ.F. AroraP.R. GajjarI. SharmaS. KaraneM. SawantN. KharatN. BlumA.J. ShivakumarS.V.B.Y. GupteA.N. GupteN. MullerpattanJ.B. PintoL.M. AshavaidT.F. GuptaA. RodriguesC. Increased moxifloxacin dosing among patients with multidrug-resistant tuberculosis with low-level resistance to moxifloxacin did not improve treatment outcomes in a tertiary care center in Mumbai, India.Open Forum Infect. Dis.202292ofab61510.1093/ofid/ofab61535097152
    [Google Scholar]
  70. GuanY. LiuY. Meta-analysis on effectiveness and safety of moxifloxacin in treatment of multidrug-resistant tuberculosis in adults.Medicine202099252064810.1097/MD.000000000002064832569195
    [Google Scholar]
  71. JingW. WangQ. WangJ. MaL. HuangM. WangJ. DuY. CaiB. ShiW. LiQ. LiX. ChuN. NieW. New all-oral short-term regimen for multidrug-resistant tuberculosis: A semi-randomized controlled trial conducted in China.Open Forum Infect. Dis.2025122ofaf02010.1093/ofid/ofaf02040041440
    [Google Scholar]
  72. El SahlyH.M. TeeterL.D. JostK.C.Jr DunbarD. LewJ. GravissE.A. Incidence of moxifloxacin resistance in clinical Mycobacterium tuberculosis isolates in Houston, Texas.J. Clin. Microbiol.20114982942294510.1128/JCM.00231‑1121653760
    [Google Scholar]
  73. XiaH. ZhengY. LiuD. WangS. HeW. ZhaoB. SongY. OuX. ZhouY. van den HofS. CobelensF. ZhaoY. Strong increase in moxifloxacin resistance rate among multidrug-resistant Mycobacterium tuberculosis isolates in China, 2007 to 2013.Microbiol. Spectr.202193e00409-2110.1128/Spectrum.00409‑2134851179
    [Google Scholar]
  74. GuglielmettiL. KhanU. VelasquezG.E. Nine-month, all-oral regimens for rifampin-resistant tuberculosis. medRxiv 2024: 2024.01.29.24301679.10.1101/2024.01.29.24301679
    [Google Scholar]
  75. SangsayunhP. SanchatT. ChuchottawornC. CheewakulK. RattanawaiS. The use of BPaL containing regimen in the MDR/PreXDR TB treatments in Thailand.J. Clin. Tuberc. Other Mycobact. Dis.20243410040810.1016/j.jctube.2023.10040838225943
    [Google Scholar]
  76. HuangZ. LuoW. XuD. GuoF. YangM. ZhuY. ShenL. ChenS. TangD. LiL. LiY. WangB. FranzblauS.G. DingC.Z. Discovery and preclinical profile of sudapyridine (WX-081), a novel anti-tuberculosis agent.Bioorg. Med. Chem. Lett.20227112882410.1016/j.bmcl.2022.12882435636648
    [Google Scholar]
  77. ZhengL. WangH. QiX. Sudapyridine (WX-081) antibacterial activity against Mycobacterium avium, Mycobacterium abscessus, and Mycobacterium chelonae in vitro and in vivo .mSphere202492e005182310.1128/msphere.00518‑2338240581
    [Google Scholar]
  78. YaoR. WangB. FuL. Sudapyridine (WX-081), a novel compound against Mycobacterium tuberculosis.Microbiol Spectr2022101e024772110.1128/spectrum.02477‑2135170994
    [Google Scholar]
  79. XiaoH. YuX. ShangY. RenR. XueY. DongL. ZhaoL. JiangG. HuangH. In vitro and intracellular antibacterial activity of sudapyridine (WX-081) against tuberculosis.Infect. Drug Resist.20231621722410.2147/IDR.S39018736647451
    [Google Scholar]
  80. YuC. QianH. WuQ. ZouY. DingQ. CaiY. LiangL. XuJ. LiL. ZanB. LiY. LiuY. Safety, pharmacokinetics, and food effect of sudapyridine (WX-081), a novel anti-tuberculosis candidate in healthy Chinese subjects.Clin. Transl. Sci.20241721371810.1111/cts.1371839052984
    [Google Scholar]
  81. AlmeidaD. ConverseP.J. LiS.Y. UptonA.M. FotouhiN. NuermbergerE.L. Comparative efficacy of the novel diarylquinoline TBAJ-876 and bedaquiline against a resistant Rv0678 mutant in a mouse model of tuberculosis.Antimicrob. Agents Chemother.20216512e01412-2110.1128/AAC.01412‑2134570644
    [Google Scholar]
  82. ShinabargerD. Mechanism of action of the oxazolidinone antibacterial agents.Expert Opin. Investig. Drugs1999881195120210.1517/13543784.8.8.119515992144
    [Google Scholar]
  83. WangC. WangG. HuoF. XueY. JiaJ. DongL. ZhaoL. WangF. HuangH. DuanH. Novel oxazolidinones harbor potent in vitro activity against the clinical isolates of multidrug-resistant Mycobacterium tuberculosis in China.Front. Med.20229106751610.3389/fmed.2022.106751636523787
    [Google Scholar]
  84. StrydomN. ErnestJ.P. ImperialM. SolansB.P. WangQ. TasneenR. TyagiS. SoniH. GarciaA. BigelowK. GengenbacherM. ZimmermanM. XieM. SarathyJ.P. YangT.J. DartoisV. NuermbergerE.L. SavicR.M. Dose optimization of TBI-223 for enhanced therapeutic benefit compared to linezolid in antituberculosis regimen.Nat. Commun.2024151731110.1038/s41467‑024‑50781‑439181887
    [Google Scholar]
  85. AlmeidaD. LiS.Y. LeeJ. Contezolid can replace linezolid in a novel combination with bedaquiline and pretomanid in a murine model of tuberculosis.Antimicrob Agents Chemother20236712e007892310.1128/aac.00789‑2337966090
    [Google Scholar]
  86. AnH. SunW. LiuX. WangT. QiaoJ. LiangJ. In vitro activities of contezolid (MRX-I) against drug-sensitive and drug-resistant Mycobacterium tuberculosis.Microbiol Spectr2023115e046272210.1128/spectrum.04627‑2237732805
    [Google Scholar]
  87. WangJ. MaL. Tuberculosis patients with special clinical conditions treated with contezolid: Three case reports and a literature review.Front. Med.202310126592310.3389/fmed.2023.126592338162885
    [Google Scholar]
  88. WangJ. NieW. MaL. LiQ. GengR. ShiW. ChuN. Clinical utility of contezolid-containing regimens in 25 cases of linezolid-intolerable tuberculosis patients.Infect. Drug Resist.2023166237624510.2147/IDR.S42574337745897
    [Google Scholar]
  89. RobertsonG.T. SchermanM.S. BruhnD.F. LiuJ. HastingsC. McNeilM.R. ButlerM.M. BowlinT.L. LeeR.B. LeeR.E. LenaertsA.J. Spectinamides are effective partner agents for the treatment of tuberculosis in multiple mouse infection models.J. Antimicrob. Chemother.2016723dkw46710.1093/jac/dkw46727999020
    [Google Scholar]
  90. BaumanA.A. SarathyJ.P. KayaF. MassoudiL.M. SchermanM.S. HastingsC. LiuJ. XieM. BrooksE.J. RameyM.E. JonesI.L. BenedictN.D. MaclaughlinM.R. Miller-DawsonJ.A. WaidyarachchiS.L. ButlerM.M. BowlinT.L. ZimmermanM.D. LenaertsA.J. MeibohmB. Gonzalez-JuarreroM. LyonsM.A. DartoisV. LeeR.E. RobertsonG.T. Spectinamide MBX-4888A exhibits favorable lesion and tissue distribution and promotes treatment shortening in advanced murine models of tuberculosis.Antimicrob. Agents Chemother.20246811e00716-2410.1128/aac.00716‑2439345140
    [Google Scholar]
  91. KimJ.S. KimY. LeeS.H. KimY.H. KimJ. KangJ.Y. KimS.K. KimS.J. KangY.S. KimT. MokJ. ByunM.K. ParkH.J. JohJ. ParkY.B. LimH.S. ChoiH. LeeS.H. KimH. YangJ. KimH. ShenX. AlsultanA. ChoI. GeiterL. ShimT.S. Early bactericidal activity of delpazolid (LCB01-0371) in patients with pulmonary tuberculosis.Antimicrob. Agents Chemother.2022662e01684-2110.1128/aac.01684‑2134871098
    [Google Scholar]
  92. BruinenbergP. NedelmanJ. YangT.J. PappasF. EverittD. Single ascending-dose study to evaluate the safety, tolerability, and pharmacokinetics of sutezolid in healthy adult subjects.Antimicrob. Agents Chemother.2022664e02108-2110.1128/aac.02108‑2135285241
    [Google Scholar]
  93. DiaconA.H. BarryC.E.III CarltonA. ChenR.Y. DaviesM. de JagerV. FletcherK. KohG.C.K.W. KontsevayaI. HeyckendorfJ. LangeC. ReimannM. PenmanS.L. ScottR. Maher-EdwardsG. TiberiS. VlasakakisG. UptonC.M. AguirreD.B. A first-in-class leucyl-tRNA synthetase inhibitor, ganfeborole, for rifampicin-susceptible tuberculosis: A phase 2a open-label, randomized trial.Nat. Med.202430389690410.1038/s41591‑024‑02829‑738365949
    [Google Scholar]
  94. PierenM. Gutiérrez-SolanaA. ArbósR.M. BoyleG.W. DavilaM. DavyM. GitzingerM. HusbandL. Martínez-MartínezM.S. MazarroD.O. PefaniE. PenmanS.L. RemuiñánM.J. VlasakakisG. ZeitlingerM. DaleG.E. First-in-human study of alpibectir (BVL-GSK098), a novel potent anti-TB drug.J. Antimicrob. Chemother.20247961353136110.1093/jac/dkae10738656557
    [Google Scholar]
  95. HeinrichN. de JagerV. DreisbachJ. Gross-DemelP. SchultzS. GerbachS. KlossF. DawsonR. NarunskyK. MattL. WildnerL. McHughT.D. FuhrU. AldanaB.H. MouhdadC. BrakeL.T. BoereeM.J. AarnoutseR.E. SvenssonE.M. GongX. P J PhillipsP. DiaconA.H. HoelscherM. Safety, bactericidal activity, and pharmacokinetics of the antituberculosis drug candidate BTZ-043 in South Africa (PanACEA-BTZ-043-02): An open-label, dose-expansion, randomised, controlled, phase 1b/2a trial.Lancet Microbe20256210095210.1016/j.lanmic.2024.07.01539793592
    [Google Scholar]
  96. LupienA. VocatA. FooC.S.Y. BlattesE. GillonJ.Y. MakarovV. ColeS.T. Optimized background regimen for treatment of active tuberculosis with the next-generation benzothiazinone macozinone (PBTZ169).Antimicrob. Agents Chemother.20186211e00840-1810.1128/AAC.00840‑1830126954
    [Google Scholar]
  97. DawsonR. DiaconA.H. TakuvaS. LiuY. ZhengB. KarweV. HafkinJ. Quabodepistat in combination with delamanid and bedaquiline in participants with drug- susceptible pulmonary tuberculosis: Protocol for a multicenter, phase 2b/c, open-label, randomized, dose-finding trial to evaluate safety and efficacy.Trials20242517010.1186/s13063‑024‑07912‑538243296
    [Google Scholar]
  98. BoereeM.J. HeinrichN. AarnoutseR. DiaconA.H. DawsonR. RehalS. KibikiG.S. ChurchyardG. SanneI. NtinginyaN.E. MinjaL.T. HuntR.D. CharalambousS. HanekomM. SemvuaH.H. MpagamaS.G. ManyamaC. MtafyaB. ReitherK. WallisR.S. VenterA. NarunskyK. MekotaA. HenneS. ColbersA. van BalenG.P. GillespieS.H. PhillipsP.P.J. HoelscherM. High-dose rifampicin, moxifloxacin, and SQ109 for treating tuberculosis: A multi-arm, multi-stage randomised controlled trial.Lancet Infect. Dis.2017171394910.1016/S1473‑3099(16)30274‑228100438
    [Google Scholar]
  99. ImranM. AroraM.K. ChaudharyA. KhanS.A. KamalM. AlshammariM.M. AlharbiR.M. AlthomaliN.A. AlzimamI.M. AlshammariA.A. AlharbiB.H. AlshengetiA. AlsalehA.A. AlqahtaniS.A. RabaanA.A. MmpL3 inhibition as a promising approach to develop novel therapies against tuberculosis: A spotlight on SQ109, clinical studies, and patents literature.Biomedicines20221011279310.3390/biomedicines1011279336359313
    [Google Scholar]
  100. KimJ. ChoiJ. KangH. AhnJ. HutchingsJ. van NiekerkC. ParkD. KimJ. JeonY. NamK. ShinS. ShinB.S. Safety, tolerability, and pharmacokinetics of telacebec (Q203), a new antituberculosis agent, in healthy subjects.Antimicrob. Agents Chemother.2022661e01436-2110.1128/AAC.01436‑2134694872
    [Google Scholar]
  101. KimJ. ChoiJ. KangH. AhnJ. HutchingsJ. NiekerkC. KimJ. JeonY. NamK. KimT.H. ShinB.S. ShinS. Safety, tolerability, pharmacokinetics, and metabolism of telacebec (Q203) for the treatment of tuberculosis: A randomized, placebo-controlled, multiple ascending dose phase 1b trial.Antimicrob. Agents Chemother.2023671e01123-2210.1128/aac.01123‑2236507677
    [Google Scholar]
  102. DingY. ZhuH. FuL. ZhangW. WangB. GuoS. ChenX. WangN. LiuH. LuY. Superior efficacy of a TBI-166, bedaquiline, and pyrazinamide combination regimen in a murine model of tuberculosis.Antimicrob. Agents Chemother.2022669e00658-2210.1128/aac.00658‑2235924925
    [Google Scholar]
  103. BrownK.L. WilburnK.M. MontagueC.R. GriggJ.C. SanzO. Pérez-HerránE. BarrosD. BallellL. VanderVenB.C. EltisL.D. Cyclic AMP–mediated inhibition of cholesterol catabolism in Mycobacterium tuberculosis by the novel drug candidate GSK2556286.Antimicrob. Agents Chemother.2023671e01294-2210.1128/aac.01294‑2236602336
    [Google Scholar]
  104. ChakrabortyS. RheeK.Y. Tuberculosis drug development: History and evolution of the mechanism-based paradigm.Cold Spring Harb. Perspect. Med.201558a02114710.1101/cshperspect.a02114725877396
    [Google Scholar]
  105. SaukkonenJ.J. DuarteR. MunsiffS.S. WinstonC.A. MammenM.J. AbubakarI. Acuña-VillaorduñaC. BarryP.M. BastosM.L. CarrW. ChamiH. ChenL.L. ChorbaT. DaleyC.L. Garcia-PratsA.J. HollandK. KonstantinidisI. LipmanM. Battista MiglioriG. ParvezF.M. ShapiroA.E. SotgiuG. StarkeJ.R. StarksA.M. ThakoreS. WangS-H. WorthamJ.M. NahidP. Updates on the treatment of drug-susceptible and drug-resistant tuberculosis: An official ATS/CDC/ERS/IDSA clinical practice guideline.Am. J. Respir. Crit. Care Med.20252111153310.1164/rccm.202410‑2096ST
    [Google Scholar]
  106. ConradieF. BagdasaryanT.R. BorisovS. HowellP. MikiashviliL. NgubaneN. SamoilovaA. SkornykovaS. TudorE. VariavaE. YablonskiyP. EverittD. WillsG.H. SunE. OlugbosiM. EgiziE. LiM. HolstaA. TimmJ. BatesonA. CrookA.M. FabianeS.M. HuntR. McHughT.D. TweedC.D. ForaidaS. MendelC.M. SpigelmanM. Bedaquiline–pretomanid–linezolid regimens for drug-resistant tuberculosis.N. Engl. J. Med.2022387981082310.1056/NEJMoa211943036053506
    [Google Scholar]
  107. ShawE.S. StokerN.G. PotterJ.L. ClaassenH. LeslieA. TweedC.D. ChiangC.Y. ConradieF. EsmailH. LangeC. PintoL. RucsineanuO. SloanD.J. TheronG. TisileP. VooT.C. WarrenR.M. LebinaL. LipmanM. Bedaquiline: What might the future hold?Lancet Microbe202451210090910.1016/S2666‑5247(24)00149‑639074472
    [Google Scholar]
  108. KanigaK. HasanR. JouR. VasiliauskienėE. ChuchottawornC. IsmailN. MetchockB. MiliauskasS. Viet NhungN. RodriguesC. ShinS. SimsekH. SmithtikarnS. NgocA.L.T. BoonyasopunJ. KaziM. KimS. KamolwatP. MusteikieneG. SacoponC.A. TahseenS. VasiliauskaitėL. WuM.H. Vally OmarS. Bedaquiline drug resistance emergence assessment in multidrug-resistant tuberculosis (MDR-TB): A 5-year prospective in vitro surveillance study of bedaquiline and other second-line drug susceptibility testing in MDR-TB isolates.J. Clin. Microbiol.2022601e02919-2010.1128/JCM.02919‑2034705538
    [Google Scholar]
  109. BarilarI. FernandoT. UtpatelC. AbujateC. MadeiraC.M. JoséB. MutaquihaC. KranzerK. NiemannT. IsmaelN. de AraujoL. WirthT. NiemannS. ViegasS. Emergence of bedaquiline-resistant tuberculosis and of multidrug-resistant and extensively drug-resistant Mycobacterium tuberculosis strains with rpoB Ile491Phe mutation not detected by Xpert MTB/RIF in Mozambique: A retrospective observational study.Lancet Infect. Dis.202424329730710.1016/S1473‑3099(23)00498‑X37956677
    [Google Scholar]
  110. UnissaA.N. Doss CG.P. KumarT. SukumarS. LakshmiA.R. HannaL.E. Significance of catalase-peroxidase (KatG) mutations in mediating isoniazid resistance in clinical strains of Mycobacterium tuberculosis. J. Glob. Antimicrob. Resist.20181511112010.1016/j.jgar.2018.07.00129990547
    [Google Scholar]
  111. RadhakrishnanA. KumarN. WrightC.C. ChouT.H. TringidesM.L. BollaJ.R. LeiH.T. RajashankarK.R. SuC.C. PurdyG.E. YuE.W. Crystal structure of the transcriptional regulator Rv0678 of Mycobacterium tuberculosis. J. Biol. Chem.201428923165261654010.1074/jbc.M113.53895924737322
    [Google Scholar]
  112. Jacobo-DelgadoY.M. Rodríguez-CarlosA. SerranoC.J. Rivas-SantiagoB. Mycobacterium tuberculosis cell-wall and antimicrobial peptides: A mission impossible?Front. Immunol.202314119492310.3389/fimmu.2023.119492337266428
    [Google Scholar]
  113. HartkoornR.C. UplekarS. ColeS.T. Cross-resistance between clofazimine and bedaquiline through upregulation of MmpL5 in Mycobacterium tuberculosis. Antimicrob. Agents Chemother.20145852979298110.1128/AAC.00037‑1424590481
    [Google Scholar]
  114. McLarenZ.M. MillikenA.A. MeyerA.J. SharpA.R. Does directly observed therapy improve tuberculosis treatment? More evidence is needed to guide tuberculosis policy.BMC Infect. Dis.201616153710.1186/s12879‑016‑1862‑y27716104
    [Google Scholar]
  115. AlffenaarJ.W.C. StockerS.L. ForsmanL.D. Garcia-PratsA. HeysellS.K. AarnoutseR.E. AkkermanO.W. AleksaA. van AltenaR. de OñataW.A. BhavaniP.K. van’t Boveneind-VrubleuskayaN. CarvalhoA.C.C. CentisR. ChakayaJ.M. CirilloD.M. ChoJ.G. D´AmbrosioL. DalcolmoM.P. DentiP. DhedaK. FoxG.J. HesselingA.C. KimH.Y. KöserC.U. MaraisB.J. MargineanuI. MärtsonA.G. TorricoM.M. NataprawiraH.M. OngC.W.M. Otto-KnappR. PeloquinC.A. SilvaD.R. RuslamiR. SantosoP. SavicR.M. SinglaR. SvenssonE.M. SkrahinaA. van SoolingenD. SrivastavaS. TadoliniM. TiberiS. ThomasT.A. UdwadiaZ.F. VuD.H. ZhangW. MpagamaS.G. SchönT. MiglioriG.B. Clinical standards for the dosing and management of TB drugs.Int. J. Tuberc. Lung Dis.202226648349910.5588/ijtld.22.018835650702
    [Google Scholar]
  116. WilsonJ.W. NilsenD.M. MarksS.M. Multidrug-resistant tuberculosis in patients with human immunodeficiency virus: Management considerations within high-resourced settings.Ann. Am. Thorac. Soc.2020171162310.1513/AnnalsATS.201902‑185CME31365831
    [Google Scholar]
  117. OtchereI.D. Asante-PokuA. AkpadjaK.F. DialloA.B. SanouA. AsareP. Osei-WusuS. OnyejepuN. DiarraB. DagnraY.A. KehindeA. AntonioM. Yeboah-ManuD. Opinion review of drug resistant tuberculosis in West Africa: Tackling the challenges for effective control.Front. Public Health202412137470310.3389/fpubh.2024.137470338827613
    [Google Scholar]
  118. CoxV. CoxH. PaiM. StilloJ. CitroB. BrigdenG. Health care gaps in the global burden of drug-resistant tuberculosis.Int. J. Tuberc. Lung Dis.201923212513510.5588/ijtld.18.086630808447
    [Google Scholar]
  119. Grosu-CreangăI.A. TroforA.C. Crișan-DabijaR.A. Robu-PopaD. GhiciucC.M. LupușoruE.C. Adverse effects induced by second- line antituberculosis drugs: An update based on last WHO treatment recommendations for drug-resistant tuberculosis.Pneumologia202170311712610.2478/pneum‑2022‑0029
    [Google Scholar]
  120. McIlleronH. Abdel-RahmanS. DaveJ.A. BlockmanM. OwenA. Special populations and pharmacogenetic issues in tuberculosis drug development and clinical research.J. Infect. Dis.2015211Suppl. 3S115S12510.1093/infdis/jiu60026009615
    [Google Scholar]
  121. ZhaoL. FanK. SunX. LiW. QinF. ShiL. GaoF. ZhengC. Host-directed therapy against mycobacterium tuberculosis infections with diabetes mellitus.Front. Immunol.202414130532510.3389/fimmu.2023.130532538259491
    [Google Scholar]
  122. CaiY. YiJ. ZhouC. ShenX. Pharmacogenetic study of drug-metabolising enzyme polymorphisms on the risk of anti-tuberculosis drug-induced liver injury: a meta-analysis.PLoS One20127104776910.1371/journal.pone.004776923082213
    [Google Scholar]
  123. AlsultanA. PeloquinC.A. Therapeutic drug monitoring in the treatment of tuberculosis: An update.Drugs201474883985410.1007/s40265‑014‑0222‑824846578
    [Google Scholar]
  124. SrivastavaS. PasipanodyaJ.G. MeekC. LeffR. GumboT. Multidrug-resistant tuberculosis not due to noncompliance but to between-patient pharmacokinetic variability.J. Infect. Dis.2011204121951195910.1093/infdis/jir65822021624
    [Google Scholar]
  125. LangeC. AarnoutseR. ChesovD. van CrevelR. GillespieS.H. GrobbelH.P. KalsdorfB. KontsevayaI. van LaarhovenA. NishiguchiT. MandalakasA. MerkerM. NiemannS. KöhlerN. HeyckendorfJ. ReimannM. RuhwaldM. Sanchez-CarballoP. SchwudkeD. WaldowF. DiNardoA.R. Perspective for precision medicine for tuberculosis.Front. Immunol.20201156660810.3389/fimmu.2020.56660833117351
    [Google Scholar]
/content/journals/crmr/10.2174/011573398X409282250823051901
Loading
/content/journals/crmr/10.2174/011573398X409282250823051901
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test