Skip to content
2000
image of Recent Advances in HMPV: The Silent Threat to Respiratory Health

Abstract

HMPV represents a major cause of respiratory illness particularly among vulnerable populations, first discovered in 2001 by Dutch researchers. Retrospective studies have revealed its silent circulation since the 1950s, with genetic evidence suggesting an ancestral link to avian metapneumovirus (AMPV) through a zoonotic transmission event. HMPV is a member of the Paramyxoviridae family and is genetically stable, with two primary lineages, A and B, circulating globally. It is a common cause of seasonal respiratory infections, particularly affecting infants, the elderly, and immunocompromised individuals, often leading to bronchiolitis, pneumonia, and hospitalization. The virus peaks in late winter and early spring, imposing a significant public health and economic burden. Current management involves supportive care, with no approved vaccines or antiviral treatments available. However, promising advancements in vaccine development and monoclonal antibody research provide hope for future prevention and therapeutic strategies. Increased surveillance, public health awareness, and continued research are essential for controlling HMPV's impact.

Loading

Article metrics loading...

/content/journals/crmr/10.2174/011573398X384589250617115624
2025-06-24
2025-09-03
Loading full text...

Full text loading...

References

  1. Parameshwari P. Akondi B.R. Mallamma T. Gowda J. Human metapneumovirus: A call for awareness. Asian J. Pharma. Res. Health Care 2024 16 4 339 343 10.4103/ajprhc.ajprhc_7_25
    [Google Scholar]
  2. Iragamreddy V. Human metapneumovirus (HMPV): A comprehensive review of its impact on pediatric and general populations. Inter. J. Multidiscipl. Res. 2025 7 1 1 7 10.36948/ijfmr.2025.v07i01.34972
    [Google Scholar]
  3. Jesse S.T. Ludlow M. Osterhaus A.D.M.E. Zoonotic origins of human metapneumovirus: A journey from birds to humans. Viruses 2022 14 4 677 10.3390/v14040677 35458407
    [Google Scholar]
  4. Schuster J.E. Williams J.V. Human metapneumovirus. Pediatr. Rev. 2013 34 12 558 565 10.1542/pir.34.12.558 24295817
    [Google Scholar]
  5. Devanathan N. Philomenadin F.S. Panachikuth G. Jayagandan S. Ramamurthy N. Ratchagadasse V.R. Chandrasekaran V. Dhodapkar R. Emerging lineages A2.2.1 and A2.2.2 of human metapneumovirus (hMPV) in pediatric respiratory infections: Insights from India. IJID Reg. 2025 14 100486 10.1016/j.ijregi.2024.100486 39717865
    [Google Scholar]
  6. Kinder J.T. Klimyte E.M. Chang A. Williams J.V. Dutch R.E. Human metapneumovirus fusion protein triggering: Increasing complexities by analysis of new HMPV fusion proteins. Virology 2019 531 248 254 10.1016/j.virol.2019.03.003 30946995
    [Google Scholar]
  7. Arnott A Vong S Sek M Naughtin M Beauté J Rith S Genetic variability of human metapneumovirus amongst an all ages population in Cambodia between 2007 and 2009. Infect. Genet. Evol. 2013 15 43 52 10.1016/j.meegid.2011.01.016
    [Google Scholar]
  8. Schildgen V. van den Hoogen B. Fouchier R. Tripp R.A. Alvarez R. Manoha C. Williams J. Schildgen O. Human metapneumovirus: Lessons learned over the first decade. Clin. Microbiol. Rev. 2011 24 4 734 754 10.1128/CMR.00015‑11 21976607
    [Google Scholar]
  9. Alfano F. Bigoni T. Caggiano F.P. Papi A. Respiratory syncytial virus infection in older adults: An update. Drugs Aging 2024 41 6 487 505 10.1007/s40266‑024‑01118‑9 38713299
    [Google Scholar]
  10. Bianchini S. Silvestri E. Argentiero A. Fainardi V. Pisi G. Esposito S. Role of respiratory syncytial virus in pediatric pneumonia. Microorganisms 2020 8 12 2048 10.3390/microorganisms8122048 33371276
    [Google Scholar]
  11. Barbier A.J. Jiang A.Y. Zhang P. Wooster R. Anderson D.G. The clinical progress of mRNA vaccines and immunotherapies. Nat. Biotechnol. 2022 40 6 840 854 10.1038/s41587‑022‑01294‑2 35534554
    [Google Scholar]
  12. Wang Y.S. Kumari M. Chen G.H. Hong M.H. Yuan J.P.Y. Tsai J.L. Wu H.C. mRNA-based vaccines and therapeutics: An in-depth survey of current and upcoming clinical applications. J. Biomed. Sci. 2023 30 1 84 10.1186/s12929‑023‑00977‑5 37805495
    [Google Scholar]
  13. Boivin G. Serres G.D. Hamelin M.E. Côté S. Argouin M. Tremblay G. Maranda-Aubut R. Sauvageau C. Ouakki M. Boulianne N. Couture C. An outbreak of severe respiratory tract infection due to human metapneumovirus in a long-term care facility. Clin. Infect. Dis. 2007 44 9 1152 1158 10.1086/513204 17407031
    [Google Scholar]
  14. Yang C.F. Wang C.K. Tollefson S.J. Piyaratna R. Lintao L.D. Chu M. Liem A. Mark M. Spaete R.R. Crowe J.E. Jr Williams J.V. Genetic diversity and evolution of human metapneumovirus fusion protein over twenty years. Virol. J. 2009 6 1 138 10.1186/1743‑422X‑6‑138 19740442
    [Google Scholar]
  15. Renner M. Paesen G.C. Grison C.M. Granier S. Grimes J.M. Leyrat C. Structural dissection of human metapneumovirus phosphoprotein using small angle x-ray scattering. Sci. Rep. 2017 7 1 14865 10.1038/s41598‑017‑14448‑z 29093501
    [Google Scholar]
  16. Cox R. Williams J. Breaking in: Human metapneumovirus fusion and entry. Viruses 2013 5 1 192 210 10.3390/v5010192 23325326
    [Google Scholar]
  17. Panda S. Mohakud N.K. Pena L. Kumar S. Human metapneumovirus: Review of an important respiratory pathogen. Int. J. Infect. Dis. 2014 25 45 52 10.1016/j.ijid.2014.03.1394 24841931
    [Google Scholar]
  18. Verma A Sulaiman A Jindal H Patel V Jaiswal U Parakh T Rising threat of human metapneumovirus (HMPV) infections. Clin. Infect. Pract. 2024 1 8
    [Google Scholar]
  19. Veronese A. Uršič T. Bizjak Vojinovič S. Rodman Berlot J. Exploring clinical predictors of severe human metapneumovirus respiratory tract infections in children: Insights from a recent outbreak. Microorganisms 2024 12 4 641 10.3390/microorganisms12040641 38674586
    [Google Scholar]
  20. Waghmode R. Jadhav S. Nema V. The burden of respiratory viruses and their prevalence in different geographical regions of india: 1970–2020. Front. Microbiol. 2021 12 723850 10.3389/fmicb.2021.723850 34531842
    [Google Scholar]
  21. Haas L. Thijsen S. Van Elden L. Heemstra K. Human metapneumovirus in adults. Viruses 2013 5 1 87 110 10.3390/v5010087 23299785
    [Google Scholar]
  22. Bastien N. Ward D. Van Caeseele P. Brandt K. Lee S.H.S. McNabb G. Klisko B. Chan E. Li Y. Human metapneumovirus infection in the Canadian population. J. Clin. Microbiol. 2003 41 10 4642 4646 10.1128/JCM.41.10.4642‑4646.2003 14532196
    [Google Scholar]
  23. Dropulic L.K. Lederman H.M. Overview of infections in the immunocompromised host. Microbiol. Spectr. 2016 4 4 4.4.43 10.1128/microbiolspec.DMIH2‑0026‑2016 27726779
    [Google Scholar]
  24. Ramamurthy M. Kannangai R. Abraham A.M. Sridharan G. Viral infections in immunocompromised hosts. Proc. Natl. Acad. Sci., India, Sect. B Biol. Sci. 2012 82 1 95 109 10.1007/s40011‑011‑0008‑7
    [Google Scholar]
  25. Papenburg J. Boivin G. The distinguishing features of human metapneumovirus and respiratory syncytial virus. Rev. Med. Virol. 2010 20 4 245 260 10.1002/rmv.651 20586081
    [Google Scholar]
  26. Kulkarni D. Cong B. Ranjini M.J.K. Balchandani G. Chen S. Liang J. González Gordon L. Sobanjo-ter Meulen A. Wang X. Li Y. Osei-Yeboah R. Templeton K. Nair H. The global burden of human metapneumovirus-associated acute respiratory infections in older adults: A systematic review and meta-analysis. Lancet Healthy Longev. 2025 6 2 100679 10.1016/j.lanhl.2024.100679 39954700
    [Google Scholar]
  27. Kuang L. Xu T. Wang C. Xie J. Zhang Y. Guo M. Liang Z. Zhu B. Changes in the epidemiological patterns of respiratory syncytial virus and human metapneumovirus infection among pediatric patients and their correlation with severe cases: A long-term retrospective study. Front. Cell. Infect. Microbiol. 2024 14 1435294 10.3389/fcimb.2024.1435294 39286815
    [Google Scholar]
  28. Bakkers M.J.G. Ritschel T. Tiemessen M. Dijkman J. Zuffianò A.A. Yu X. van Overveld D. Le L. Voorzaat R. van Haaren M.M. de Man M. Tamara S. van der Fits L. Zahn R. Juraszek J. Langedijk J.P.M. Efficacious human metapneumovirus vaccine based on AI-guided engineering of a closed prefusion trimer. Nat. Commun. 2024 15 1 6270 10.1038/s41467‑024‑50659‑5 39054318
    [Google Scholar]
  29. Papazisis G. Topalidou X. Gioula G. González P.A. Bueno S.M. Kalergis A.M. Respiratory syncytial virus vaccines: Analysis of pre-marketing clinical trials for immunogenicity in the population over 50 years of age. Vaccines 2024 12 4 353 10.3390/vaccines12040353 38675736
    [Google Scholar]
  30. Schuster J.E. Cox R.G. Hastings A.K. Boyd K.L. Wadia J. Chen Z. Burton D.R. Williamson R.A. Williams J.V. A broadly neutralizing human monoclonal antibody exhibits in vivo efficacy against both human metapneumovirus and respiratory syncytial virus. J. Infect. Dis. 2015 211 2 216 225 10.1093/infdis/jiu307 24864121
    [Google Scholar]
  31. Rappazzo C.G. Hsieh C.L. Rush S.A. Esterman E.S. Delgado T. Geoghegan J.C. Wec A.Z. Sakharkar M. Más V. McLellan J.S. Walker L.M. Potently neutralizing and protective anti-human metapneumovirus antibodies target diverse sites on the fusion glycoprotein. Immunity 2022 55 9 1710 1724.e8 10.1016/j.immuni.2022.07.003 35944529
    [Google Scholar]
  32. Márquez-Escobar V.A. Current developments and prospects on human metapneumovirus vaccines. Expert Rev. Vaccines 2017 16 5 419 431 10.1080/14760584.2017.1283223 28116910
    [Google Scholar]
  33. Fatima M. Park P.G. Hong K.J. Clinical advancements in mRNA vaccines against viral infections. Clin. Immunol. 2025 271 110424 10.1016/j.clim.2024.110424 39734036
    [Google Scholar]
  34. Fausther-Bovendo H. Hamelin M.E. Carbonneau J. Venable M.C. Checkmahomed L. Lavoie P.O. Ouellet M.È. Boivin G. D’Aoust M.A. Kobinger G.P. A candidate therapeutic monoclonal antibody inhibits both hrsv and hmpv replication in mice. Biomedicines 2022 10 10 2516 10.3390/biomedicines10102516 36289776
    [Google Scholar]
  35. Mokhtary P. Pourhashem Z. Mehrizi A.A. Sala C. Rappuoli R. Recent progress in the discovery and development of monoclonal antibodies against viral infections. Biomedicines 2022 10 8 1861 10.3390/biomedicines10081861 36009408
    [Google Scholar]
  36. Pelfrene E. Mura M. Sanches A. Cavaleri M. Monoclonal antibodies as anti-infective products: A promising future? Clin. Microbiol. Infect. 2018 25 29715552
    [Google Scholar]
/content/journals/crmr/10.2174/011573398X384589250617115624
Loading
/content/journals/crmr/10.2174/011573398X384589250617115624
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test