Skip to content
2000
Volume 21, Issue 5
  • ISSN: 1573-398X
  • E-ISSN: 1875-6387

Abstract

Cystic fibrosis (CF) is a chronic and incurable disease that mainly damages the lungs and digestive system. Variations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene cause CF, a genetic disease that requires medical intervention due to multi-organ effects, particularly on the lungs. There are over six classes of variations observed in CF until now. The treatment and management of CF have greatly improved due to recent genetic advancements, especially the development of CFTR modulators such as Ivacaftor, Lumacaftor, and Tezacaftor, which may eventually lead to a cure for this incurable condition. Nevertheless, despite these developments, additional studies are still needed to elucidate the complex molecular pathways involved in CF and to develop more focused and efficient therapeutic approaches. In terms of CF clinical care and research, this study intends to offer a thorough examination of CFTR genetic polymorphisms with an emphasis on the variation of F508del and CFTR modulator drugs along with their clinical characteristics and the possible long-term effects of new findings and treatment choices. Moreover, the main benefits of treatment techniques like gene therapy, CRISPR-Cas9 systems, and nanotechnology-driven strategies have been discussed in the current study. Furthermore, as early diagnosis of CF provides the opportunity to prevent and control the complications of this disease, so a particular focus on the current newborn screening techniques has been covered as well. The present study's data have been meticulously chosen by an extensive review of the literature and it comprises an overview of findings from comprehensive investigations and peer-reviewed research publications about CF and associated therapies. The present study will assist in the continuous improvement of clinical practice and the creation of more potent treatment plans for CF patients.

Loading

Article metrics loading...

/content/journals/crmr/10.2174/011573398X359962250527113134
2025-05-29
2025-12-14
Loading full text...

Full text loading...

References

  1. MyerH. ChupitaS. JnahA. Cystic fibrosis: Back to the basics.Neonatal Netw.2023421233010.1891/NN‑2022‑000736631257
    [Google Scholar]
  2. ShteinbergM. HaqI.J. PolineniD. DaviesJ.C. Cystic fibrosis.Lancet2021397102902195221110.1016/S0140‑6736(20)32542‑334090606
    [Google Scholar]
  3. GarciaLD, Petry LM, Germani PA, Translational research in cystic fibrosis: From bench to beside.Front. Pediatr.20221088147010.3389/FPED.2022.881470/BIBTEX
    [Google Scholar]
  4. DaviesJ.C. AltonE.W.F.W. BushA. Cystic fibrosis.BMJ200733576321255125910.1136/bmj.39391.713229.AD18079549
    [Google Scholar]
  5. ChenQ. ShenY. ZhengJ. A review of cystic fibrosis: Basic and clinical aspects.Animal Model. Exp. Med.20214322023210.1002/ame2.1218034557648
    [Google Scholar]
  6. DickinsonK.M. CollacoJ.M. Cystic fibrosis.Pediatr. Rev.2021422556710.1542/pir.2019‑021233526571
    [Google Scholar]
  7. JainR. KazmerskiT.M. ZuckerwiseL.C. WestN.E. MontemayorK. AitkenM.L. ChengE. RoeA.H. WilsonA. MannC. LadoresS. SjobergJ. PoranskiM. Taylor-CousarJ.L. Pregnancy in cystic fibrosis: Review of the literature and expert recommendations.J. Cyst. Fibros.202221338739510.1016/j.jcf.2021.07.01934456158
    [Google Scholar]
  8. TerlizziV. FarrellP.M. Update on advances in cystic fibrosis towards a cure and implications for primary care clinicians.Curr. Probl. Pediatr. Adolesc. Health Care202454610163710.1016/j.cppeds.2024.10163738811287
    [Google Scholar]
  9. ZhangZ. ChenJ. Atomic structure of the cystic fibrosis transmembrane conductance regulator.Cell2016167615861597.e910.1016/j.cell.2016.11.01427912062
    [Google Scholar]
  10. OgdenH.L. KimH. Wikenheiser-BrokampK.A. NarenA.P. MunK.S. Cystic fibrosis human organs-on-a-chip.Micromachines202112774710.3390/mi12070747
    [Google Scholar]
  11. TurciosN.L. Cystic fibrosis lung disease: An overview.Respir. Care202065223325110.4187/respcare.0669731772069
    [Google Scholar]
  12. SmithA.L. RamseyB. ReddingG. HaasJ. Endobronchial infection in cystic fibrosis.Acta Paediatr.198978S363313610.1111/apa.1989.78.s363.312701922
    [Google Scholar]
  13. LeC. McCraryH.C. ChangE. Cystic fibrosis sinusitis.Adv. Otorhinolaryngol.201679293710.1159/00044495927466844
    [Google Scholar]
  14. SafiC. ZhengZ. DimangoE. KeatingC. GudisD.A. Chronic rhinosinusitis in cystic fibrosis: Diagnosis and medical management.Med. Sci.2019723210.3390/medsci702003230813317
    [Google Scholar]
  15. LeyD. TurckD. Digestive outcomes in cystic fibrosis.Best Pract. Res. Clin. Gastroenterol.202256-5710178810.1016/j.bpg.2022.10178835331400
    [Google Scholar]
  16. LiL. SomersetS. Digestive system dysfunction in cystic fibrosis: Challenges for nutrition therapy.Dig. Liver Dis.2014461086587410.1016/j.dld.2014.06.01125053610
    [Google Scholar]
  17. HaackA. AragãoG.G. NovaesM.R.C.G. Pathophysiology of cystic fibrosis and drugs used in associated digestive tract diseases.World J. Gastroenterol.201319468552856110.3748/wjg.v19.i46.855224379572
    [Google Scholar]
  18. YuleA. SillsD. SmithS. SpillerR. SmythA.R. Thinking outside the box: A review of gastrointestinal symptoms and complications in cystic fibrosis.Expert Rev. Respir. Med.202317754756110.1080/17476348.2023.222819437345513
    [Google Scholar]
  19. WarnockL. GatesA. Chest physiotherapy compared to no chest physiotherapy for cystic fibrosis.Cochrane Libr.2015201512CD00140110.1002/14651858.CD001401.pub326688006
    [Google Scholar]
  20. Cystic fibrosis | johns hopkins medicine.2024Available from: https://www.hopkinsmedicine.org/health/conditions-and-diseases/cystic-fibrosis
  21. BetapudiB. AleemA. KothadiaJ.P. Cystic fibrosis and liver disease 2023Available from: https://www.ncbi.nlm.nih.gov/books/NBK556086/
  22. LeeJ.A. ChoA. HuangE.N. XuY. QuachH. HuJ. WongA.P. Gene therapy for cystic fibrosis: New tools for precision medicine.J. Transl. Med.202119145210.1186/s12967‑021‑03099‑434717671
    [Google Scholar]
  23. WilschanskiM. Class 1 CF mutations.Front. Pharmacol.2012311710.3389/fphar.2012.0011722723780
    [Google Scholar]
  24. PrankeI. GolecA. HinzpeterA. EdelmanA. Sermet-GaudelusI. Emerging therapeutic approaches for cystic fibrosis. From gene editing to personalized medicine.Front. Pharmacol.20191012110.3389/fphar.2019.0012130873022
    [Google Scholar]
  25. RafeeqM.M. MuradH.A.S. Cystic fibrosis: Current therapeutic targets and future approaches.J. Transl. Med.20171518410.1186/s12967‑017‑1193‑928449677
    [Google Scholar]
  26. LaselvaO. BartlettC. GunawardenaT.N.A. OuyangH. EckfordP.D.W. MoraesT.J. BearC.E. GonskaT. Rescue of multiple class II CFTR mutations by elexacaftor+tezacaftor+ivacaftor mediated in part by the dual activities of elexacaftor as both corrector and potentiator.Eur. Respir. J.2021576200277410.1183/13993003.02774‑202033303536
    [Google Scholar]
  27. YehJ.T. YuY.C. HwangT.C. Structural mechanisms for defective CFTR gating caused by the Q1412X mutation, a severe Class VI pathogenic mutation in cystic fibrosis.J. Physiol.2019597254356010.1113/JP27704230408177
    [Google Scholar]
  28. CFTR - Johns Hopkins Cystic Fibrosis Center.2024Available from: https://hopkinscf.org/knowledge/cftr/
  29. Types of CFTR mutations | cystic fibrosis foundation.2024Available from: https://www.cff.org/research-clinical-trials/types-cftr-mutations
  30. HakkakM.A. KeramatipourM. TalebiS. BrookA. Analysis of cftr gene mutations in children with cystic fibrosis, first report from north-east of iran.Iran J. Basic. Med. Sci.201316891792124106596
    [Google Scholar]
  31. VeitG. AvramescuR.G. ChiangA.N. HouckS.A. CaiZ. PetersK.W. HongJ.S. PollardH.B. GugginoW.B. BalchW.E. SkachW.R. CuttingG.R. FrizzellR.A. SheppardD.N. CyrD.M. SorscherE.J. BrodskyJ.L. LukacsG.L. From CFTR biology toward combinatorial pharmacotherapy: Expanded classification of cystic fibrosis mutations.Mol. Biol. Cell201627342443310.1091/mbc.e14‑04‑093526823392
    [Google Scholar]
  32. SchrijverI. PiqueL. GrahamS. PearlM. CherryA. KharraziM. The spectrum of CFTR variants in nonwhite cystic fibrosis patients.J. Mol. Diagn.2016181395010.1016/j.jmoldx.2015.07.00526708955
    [Google Scholar]
  33. MateuE. CalafellF. LaoO. Bonné-TamirB. KiddJ.R. PakstisA. KiddK.K. BertranpetitJ. Worldwide genetic analysis of the CFTR region.Am. J. Hum. Genet.200168110311710.1086/316940/ASSET/7A5A0F00‑8BEC‑409E‑9BB9‑3007E16D167D/MAIN.ASSETS/GR3.GIF11104661
    [Google Scholar]
  34. Cystic fibrosis (CF) - DynaMed.2024Available from: https://www.dynamed.com/condition/cystic-fibrosis-cf#GUID-4D3BFB60-7688-4474-925D-1F0C191C393C
  35. FarrellP.M. RockM.J. BakerM.W. The impact of the CFTR gene discovery on cystic fibrosis diagnosis, counseling, and preventive therapy.Genes202011440110.3390/genes1104040132276344
    [Google Scholar]
  36. JohanssonJ. VezzaliniM. VerzèG. CaldrerS. BologninS. BuffelliM. BellisolaG. TridelloG. AssaelB.M. MelottiP. SorioC. Detection of CFTR protein in human leukocytes by flow cytometry.Cytometry A201485761162010.1002/cyto.a.2245624623386
    [Google Scholar]
  37. LoukouI. MoustakiM. DourosK. Children with cystic fibrosis are still receiving inconclusive diagnosis despite undergoing newborn screening.Acta Paediatr.2023112102039204410.1111/apa.1694937602754
    [Google Scholar]
  38. Cystic Fibrosis, diagnosis and molecular testing | Fujirebio.2024Available from: https://www.fujirebio.com/en/insights/genetic-disorders/cystic-fibrosis-diagnosis-and-molecular-testing
  39. RatjenF. BellS.C. RoweS.M. GossC.H. QuittnerA.L. BushA. Cystic fibrosis.Nat. Rev. Dis. Primers2015111501010.1038/nrdp.2015.1027189798
    [Google Scholar]
  40. RockM.J. BakerM. AntosN. FarrellP.M. Refinement of newborn screening for cystic fibrosis with next generation sequencing.Pediatr. Pulmonol.202358377878710.1002/ppul.2625336416003
    [Google Scholar]
  41. SkovM. Bækvad-HansenM. HougaardD.M. SkogstrandK. LundA.M. PresslerT. OlesenH.V. DunoM. Cystic fibrosis newborn screening in denmark: Experience from the first 2 years.Pediatr. Pulmonol.202055254955510.1002/ppul.2456431682332
    [Google Scholar]
  42. MunckA. BergerD.O. SouthernK.W. CarducciC. Winter-de GrootD.K.M. GartnerS. KashirskayaN. LinnaneB. ProesmansM. SandsD. SommerburgO. CastellaniC. BarbenJ. RennerS. ZeydaM. WachterD.E. RegalL. VotavaF. HolubovaA. SkovM. MorganT. BregeautP. O’GradyL. BucciI. PantanoS. SimonettiS. VenutoD.D. SalvatoreD. PerrottiN. CaloieroM. CastaldoG. ToscoA. RighettiF. PisiG. BattistiniF. AngeloniA. CiminoG. FiocchiG. AngiolilloA. CassanelloM. AlbertiL. ClautL.E. BadolatoR. PavanelloE. FabrizziB. BignaminiE. CardilloA. LombardoM. CocciadiferroL. TerminiL. DolceD. TerlizziV. TamaniniA. PauroF. MarcaL.G. AleksejevaE. Gaidule-LoginaD. FustikS. AnastasovskaV. BouvaM. ReidA. CundickJ. LundmanE. BakkeheimE. ZybertK. OltarzewskiM. VilarinhoL. ShermanV. KondratyevaE. SmithS. DautovicG.V. KnapkovaM. MydlovaZ. LópezR.M. VelascoV. FloresF.D. MejerasC.C. PedersenE.S.L. OzcelikU. KaradagB. MakukhH. StuartM. European survey of newborn bloodspot screening for CF: Opportunity to address challenges and improve performance.J. Cyst. Fibros.202322348449510.1016/j.jcf.2022.09.01236372700
    [Google Scholar]
  43. CrossleJ.R. ElliotR.B. SmithP. Dried-blood spot screening for cystic fibrosis in the newborn.Lancet1979313811447247410.1016/S0140‑6736(79)90825‑085057
    [Google Scholar]
  44. ScotetV. GutierrezH. FarrellP.M. Neonatal screening review newborn screening for CF across the globe-where is it worthwhile?Int. J. Neonatal. Screen2020611810.3390/ijns6010018
    [Google Scholar]
  45. BergougnouxA. LopezM. GirodonE. The role of extended CFTR gene sequencing in newborn screening for cystic fibrosis.Int. J. Neonatal Screen.2020612310.3390/ijns601002333073020
    [Google Scholar]
  46. HarrisonP.T. CFTR RNA- and DNA-based therapies.Curr. Opin. Pharmacol.20226510224710.1016/j.coph.2022.10224735709547
    [Google Scholar]
  47. SanchezS.D.A. PaunovskaK. CristianA. DahlmanJ.E. Treating cystic fibrosis with mRNA and CRISPR.Hum. Gene Ther.20203117-1894095510.1089/hum.2020.13732799680
    [Google Scholar]
  48. MauleG. ArosioD. CeresetoA. Gene therapy for cystic fibrosis: Progress and challenges of genome editing.Int. J. Mol. Sci.20202111390310.3390/ijms2111390332486152
    [Google Scholar]
  49. ChoiS.H. EngelhardtJ.F. Gene therapy for cystic fibrosis: Lessons learned and paths forward.Mol. Ther.202129242843010.1016/j.ymthe.2021.01.01033472034
    [Google Scholar]
  50. WangD. TaiP.W.L. GaoG. Adeno-associated virus vector as a platform for gene therapy delivery.Nat. Rev. Drug Discov.201918535837810.1038/s41573‑019‑0012‑930710128
    [Google Scholar]
  51. KlinkD. SchindelhauerD. LanerA. TuckerT. Gene delivery systems—gene therapy vectors for cystic fibrosis.J. Cyst. Fibros.2004220321210.1016/j.jcf.2004.05.042
    [Google Scholar]
  52. HryhorowiczM. LipińskiD. ZeylandJ. SłomskiR. CRISPR/Cas9 immune system as a tool for genome engineering.Arch. Immunol. Ther. Exp.201765323324010.1007/s00005‑016‑0427‑527699445
    [Google Scholar]
  53. YanZ. McCrayP.B.Jr EngelhardtJ.F. Advances in gene therapy for cystic fibrosis lung disease.Hum. Mol. Genet.201928R1R88R9410.1093/hmg/ddz13931332440
    [Google Scholar]
  54. MarangiM. PistrittoG. Innovative therapeutic strategies for cystic fibrosis: Moving forward to CRISPR technique.Front. Pharmacol.20189APR39610.3389/fphar.2018.0039629731717
    [Google Scholar]
  55. LiH.Y. SevilleP.C. Novel pMDI formulations for pulmonary delivery of proteins.Int. J. Pharm.20103851-2737810.1016/j.ijpharm.2009.10.03219854252
    [Google Scholar]
  56. BainsB.K. BirchallJ.C. ToonR. TaylorG. In vitro reporter gene transfection via plasmid DNA delivered by metered dose inhaler.J. Pharm. Sci.20109973089309910.1002/jps.2208520166201
    [Google Scholar]
  57. ContiD.S. BharatwajB. BrewerD. RochaD.S.R.P. Propellant-based inhalers for the non-invasive delivery of genes via oral inhalation.J. Control. Release2012157340641710.1016/j.jconrel.2011.09.08921982899
    [Google Scholar]
  58. OmlorA.J. NguyenJ. BalsR. DinhQ.T. Nanotechnology in respiratory medicine.Respir. Res.20151616410.1186/s12931‑015‑0223‑526021823
    [Google Scholar]
  59. TrandafirL.M. LeonM.M. FrasinariuO. BaciuG. DodiG. CojocaruE. Current practices and potential nanotechnology perspectives for pain related to cystic fibrosis.J. Clin. Med.201987102310.3390/jcm807102331336857
    [Google Scholar]
  60. TrepotecZ. LichteneggerE. PlankC. AnejaM.K. RudolphC. Delivery of mRNA therapeutics for the treatment of hepatic diseases.Mol. Ther.201927479480210.1016/j.ymthe.2018.12.01230655211
    [Google Scholar]
  61. JafernikK. ŁadniakA. BlicharskaE. CzarnekK. EkiertH. WiącekA.E. SzopaA. Chitosan-based nanoparticles as effective drug delivery systems—a review.Molecules2023284196310.3390/molecules2804196336838951
    [Google Scholar]
  62. ConteG. CostabileG. BaldassiD. RondelliV. BassiR. ColomboD. LinardosG. FiscarelliE.V. SorrentinoR. MiroA. QuagliaF. BroccaP. d’AngeloI. MerkelO.M. UngaroF. Hybrid lipid/polymer nanoparticles to tackle the cystic fibrosis mucus barrier in sirna delivery to the lungs: Does PEGylation make the difference?ACS Appl. Mater. Interfaces20221467565757810.1021/ACSAMI.1C14975/ASSET/IMAGES/LARGE/AM1C14975_0012.JPEG35107987
    [Google Scholar]
  63. PorsioB. LentiniL. UngaroF. LeonardoD.A. QuagliaF. GiammonaG. CavallaroG. Inhalable nano into micro dry powders for ivacaftor delivery: The role of mannitol and cysteamine as mucus-active agents.Int. J. Pharm.202058211930410.1016/j.ijpharm.2020.11930432272167
    [Google Scholar]
  64. FernándezF.E. Santos-CarballalB. SantiD.C. RamseyJ. MacLoughlinR. CryanS.A. GreeneC. Biopolymer-based nanoparticles for cystic fibrosis lung gene therapy studies.Materials201811112210.3390/ma1101012229342838
    [Google Scholar]
  65. VelinoC. CarellaF. AdamianoA. SanguinettiM. VitaliA. CatalucciD. BugliF. IafiscoM. Nanomedicine approaches for the pulmonary treatment of cystic fibrosis.Front. Bioeng. Biotechnol.2019740610.3389/fbioe.2019.0040631921811
    [Google Scholar]
  66. PariharA. PrajapatiB.G. PaliwalH. ShuklaM. KhuntD. BahadureD.S. DyawanapellyS. JunnuthulaV. Advanced pulmonary drug delivery formulations for the treatment of cystic fibrosis.Drug Discov. Today2023281010372910.1016/j.drudis.2023.10372937532219
    [Google Scholar]
  67. CáceresD.L. Zamarrón de LucasE. Cystic fibrosis: Epidemiology, clinical manifestations, diagnosis and treatment.Med. Clín.2023161938939610.1016/j.medcli.2023.06.00637558605
    [Google Scholar]
  68. BierlaaghM.C. MuilwijkD. BeekmanJ.M. van der EntC.K. A new era for people with cystic fibrosis.Eur. J. Pediatr.202118092731273910.1007/s00431‑021‑04168‑y34213646
    [Google Scholar]
  69. HabibA.R.R. KajbafzadehM. DesaiS. YangC.L. SkolnikK. QuonB.S. A systematic review of the clinical efficacy and safety of CFTR modulators in cystic fibrosis.Sci. Rep.201991723410.1038/s41598‑019‑43652‑231076617
    [Google Scholar]
  70. RegardL. MartinC. BurnetE. SilvaD.J. BurgelP.R. CFTR modulators in people with cystic fibrosis: Real-world evidence in france.Cells20221111176910.3390/cells1111176935681464
    [Google Scholar]
  71. ZaherA. ElSayghJ. ElsoriD. ElSayghH. SanniA. A review of trikafta: Triple cystic fibrosis transmembrane conductance regulator (CFTR) modulator therapy.Cureus2021137e1614410.7759/cureus.1614434268058
    [Google Scholar]
  72. RibeiroC.M.P. GentzschM. Impact of airway inflammation on the efficacy of CFTR modulators.Cells20211011326010.3390/cells1011326034831482
    [Google Scholar]
  73. WainwrightC.E. ElbornJ.S. RamseyB.W. MarigowdaG. HuangX. CipolliM. ColomboC. DaviesJ.C. BoeckD.K. FlumeP.A. KonstanM.W. McColleyS.A. McCoyK. McKoneE.F. MunckA. RatjenF. RoweS.M. WaltzD. BoyleM.P. Lumacaftor–ivacaftor in patients with cystic fibrosis homozygous for Phe508del CFTR.N. Engl. J. Med.2015373322023110.1056/NEJMoa140954725981758
    [Google Scholar]
  74. MiddletonP.G. MallM.A. DřevínekP. LandsL.C. McKoneE.F. PolineniD. RamseyB.W. Taylor-CousarJ.L. TullisE. VermeulenF. MarigowdaG. McKeeC.M. MoskowitzS.M. NairN. SavageJ. SimardC. TianS. WaltzD. XuanF. RoweS.M. JainR. Elexacaftor–tezacaftor–ivacaftor for cystic fibrosis with a single phe508del allele.N. Engl. J. Med.2019381191809181910.1056/NEJMoa190863931697873
    [Google Scholar]
  75. RamseyB.W. DaviesJ. McElvaneyN.G. TullisE. BellS.C. DřevínekP. GrieseM. McKoneE.F. WainwrightC.E. KonstanM.W. MossR. RatjenF. Sermet-GaudelusI. RoweS.M. DongQ. RodriguezS. YenK. OrdoñezC. ElbornJ.S. A CFTR potentiator in patients with cystic fibrosis and the G551D mutation.N. Engl. J. Med.2011365181663167210.1056/NEJMoa110518522047557
    [Google Scholar]
  76. RehmanT. KarpP.H. TanP. GoodellB.J. PezzuloA.A. ThurmanA.L. ThornellI.M. DurfeyS.L. DuffeyM.E. StoltzD.A. McKoneE.F. SinghP.K. WelshM.J. Inflammatory cytokines TNF-α and IL-17 enhance the efficacy of cystic fibrosis transmembrane conductance regulator modulators.J. Clin. Invest.202113116e15039810.1172/JCI15039834166230
    [Google Scholar]
  77. CuttingG.R. Cystic fibrosis genetics: From molecular understanding to clinical application.Nat. Rev. Genet.2015161455610.1038/nrg384925404111
    [Google Scholar]
  78. ElphickH.E. MalloryG. Oxygen therapy for cystic fibrosis.Cochrane Libr.201320138CD00388410.1002/14651858.CD003884.pub423888484
    [Google Scholar]
  79. OsadnikC.R. RodriguesF.M.M. CamilloC.A. LoeckxM. JanssensW. DoomsC. TroostersT. Principles of rehabilitation and reactivation.Respiration201589121110.1159/00037024625591614
    [Google Scholar]
  80. BienvenuT. LopezM. GirodonE. Molecular diagnosis and genetic counseling of cystic fibrosis and related disorders: New challenges.Genes202011661910.3390/genes1106061932512765
    [Google Scholar]
/content/journals/crmr/10.2174/011573398X359962250527113134
Loading
/content/journals/crmr/10.2174/011573398X359962250527113134
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test