Skip to content
2000
image of A Paradigm Shift in Cystic Fibrosis: Insights into Molecular Diagnosis, Newborn Screening, and Nanotechnology-Based Drug Delivery for CF Treatment

Abstract

Cystic fibrosis (CF) is a chronic and incurable disease that mainly damages the lungs and digestive system. Variations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene cause CF, a genetic disease that requires medical intervention due to multi-organ effects, particularly on the lungs. There are over six classes of variations observed in CF until now. The treatment and management of CF have greatly improved due to recent genetic advancements, especially the development of CFTR modulators such as Ivacaftor, Lumacaftor, and Tezacaftor, which may eventually lead to a cure for this incurable condition. Nevertheless, despite these developments, additional studies are still needed to elucidate the complex molecular pathways involved in CF and to develop more focused and efficient therapeutic approaches. In terms of CF clinical care and research, this study intends to offer a thorough examination of CFTR genetic polymorphisms with an emphasis on the variation of F508del and CFTR modulator drugs along with their clinical characteristics and the possible long-term effects of new findings and treatment choices. Moreover, the main benefits of treatment techniques like gene therapy, CRISPR-Cas9 systems, and nanotechnology-driven strategies have been discussed in the current study. Furthermore, as early diagnosis of CF provides the opportunity to prevent and control the complications of this disease, so a particular focus on the current newborn screening techniques has been covered as well. The present study's data have been meticulously chosen by an extensive review of the literature and it comprises an overview of findings from comprehensive investigations and peer-reviewed research publications about CF and associated therapies. The present study will assist in the continuous improvement of clinical practice and the creation of more potent treatment plans for CF patients.

Loading

Article metrics loading...

/content/journals/crmr/10.2174/011573398X359962250527113134
2025-05-29
2025-10-02
Loading full text...

Full text loading...

References

  1. Myer H. Chupita S. Jnah A. Cystic fibrosis: Back to the basics. Neonatal Netw. 2023 42 1 23 30 10.1891/NN‑2022‑0007 36631257
    [Google Scholar]
  2. Shteinberg M. Haq I.J. Polineni D. Davies J.C. Cystic fibrosis. Lancet 2021 397 10290 2195 2211 10.1016/S0140‑6736(20)32542‑3 34090606
    [Google Scholar]
  3. Garcia LD, Petry LM, Germani PA, Translational research in cystic fibrosis: From bench to beside. Front. Pediatr. 2022 10 881470 10.3389/FPED.2022.881470/BIBTEX
    [Google Scholar]
  4. Davies J.C. Alton E.W.F.W. Bush A. Cystic fibrosis. BMJ 2007 335 7632 1255 1259 10.1136/bmj.39391.713229.AD 18079549
    [Google Scholar]
  5. Chen Q. Shen Y. Zheng J. A review of cystic fibrosis: Basic and clinical aspects. Animal Model. Exp. Med. 2021 4 3 220 232 10.1002/ame2.12180 34557648
    [Google Scholar]
  6. Dickinson K.M. Collaco J.M. Cystic fibrosis. Pediatr. Rev. 2021 42 2 55 67 10.1542/pir.2019‑0212 33526571
    [Google Scholar]
  7. Jain R. Kazmerski T.M. Zuckerwise L.C. West N.E. Montemayor K. Aitken M.L. Cheng E. Roe A.H. Wilson A. Mann C. Ladores S. Sjoberg J. Poranski M. Taylor-Cousar J.L. Pregnancy in cystic fibrosis: Review of the literature and expert recommendations. J. Cyst. Fibros. 2022 21 3 387 395 10.1016/j.jcf.2021.07.019 34456158
    [Google Scholar]
  8. Terlizzi V. Farrell P.M. Update on advances in cystic fibrosis towards a cure and implications for primary care clinicians. Curr. Probl. Pediatr. Adolesc. Health Care 2024 54 6 101637 10.1016/j.cppeds.2024.101637 38811287
    [Google Scholar]
  9. Zhang Z. Chen J. Atomic structure of the cystic fibrosis transmembrane conductance regulator. Cell 2016 167 6 1586 1597.e9 10.1016/j.cell.2016.11.014 27912062
    [Google Scholar]
  10. Ogden H.L. Kim H. Wikenheiser-Brokamp K.A. Naren A.P. Mun K.S. Cystic fibrosis human organs-on-a-chip. Micromachines 2021 12 7 747 10.3390/mi12070747
    [Google Scholar]
  11. Turcios N.L. Cystic fibrosis lung disease: An overview. Respir. Care 2020 65 2 233 251 10.4187/respcare.06697 31772069
    [Google Scholar]
  12. Smith A.L. Ramsey B. Redding G. Haas J. Endobronchial infection in cystic fibrosis. Acta Paediatr. 1989 78 S363 31 36 10.1111/apa.1989.78.s363.31 2701922
    [Google Scholar]
  13. Le C. McCrary H.C. Chang E. Cystic fibrosis sinusitis. Adv. Otorhinolaryngol. 2016 79 29 37 10.1159/000444959 27466844
    [Google Scholar]
  14. Safi C. Zheng Z. Dimango E. Keating C. Gudis D.A. Chronic rhinosinusitis in cystic fibrosis: Diagnosis and medical management. Med. Sci. 2019 7 2 32 10.3390/medsci7020032 30813317
    [Google Scholar]
  15. Ley D. Turck D. Digestive outcomes in cystic fibrosis. Best Pract. Res. Clin. Gastroenterol. 2022 56-57 101788 10.1016/j.bpg.2022.101788 35331400
    [Google Scholar]
  16. Li L. Somerset S. Digestive system dysfunction in cystic fibrosis: Challenges for nutrition therapy. Dig. Liver Dis. 2014 46 10 865 874 10.1016/j.dld.2014.06.011 25053610
    [Google Scholar]
  17. Haack A. Aragão G.G. Novaes M.R.C.G. Pathophysiology of cystic fibrosis and drugs used in associated digestive tract diseases. World J. Gastroenterol. 2013 19 46 8552 8561 10.3748/wjg.v19.i46.8552 24379572
    [Google Scholar]
  18. Yule A. Sills D. Smith S. Spiller R. Smyth A.R. Thinking outside the box: A review of gastrointestinal symptoms and complications in cystic fibrosis. Expert Rev. Respir. Med. 2023 17 7 547 561 10.1080/17476348.2023.2228194 37345513
    [Google Scholar]
  19. Warnock L. Gates A. Chest physiotherapy compared to no chest physiotherapy for cystic fibrosis. Cochrane Libr. 2015 2015 12 CD001401 10.1002/14651858.CD001401.pub3 26688006
    [Google Scholar]
  20. Cystic fibrosis | johns hopkins medicine. 2024 Available from: https://www.hopkinsmedicine.org/health/conditions-and-diseases/cystic-fibrosis
  21. Betapudi B. Aleem A. Kothadia J.P. Cystic fibrosis and liver disease 2023 Available from: https://www.ncbi.nlm.nih.gov/books/NBK556086/
  22. Lee J.A. Cho A. Huang E.N. Xu Y. Quach H. Hu J. Wong A.P. Gene therapy for cystic fibrosis: New tools for precision medicine. J. Transl. Med. 2021 19 1 452 10.1186/s12967‑021‑03099‑4 34717671
    [Google Scholar]
  23. Wilschanski M. Class 1 CF mutations. Front. Pharmacol. 2012 3 117 10.3389/fphar.2012.00117 22723780
    [Google Scholar]
  24. Pranke I. Golec A. Hinzpeter A. Edelman A. Sermet-Gaudelus I. Emerging therapeutic approaches for cystic fibrosis. From gene editing to personalized medicine. Front. Pharmacol. 2019 10 121 10.3389/fphar.2019.00121 30873022
    [Google Scholar]
  25. Rafeeq M.M. Murad H.A.S. Cystic fibrosis: Current therapeutic targets and future approaches. J. Transl. Med. 2017 15 1 84 10.1186/s12967‑017‑1193‑9 28449677
    [Google Scholar]
  26. Laselva O. Bartlett C. Gunawardena T.N.A. Ouyang H. Eckford P.D.W. Moraes T.J. Bear C.E. Gonska T. Rescue of multiple class II CFTR mutations by elexacaftor+tezacaftor+ivacaftor mediated in part by the dual activities of elexacaftor as both corrector and potentiator. Eur. Respir. J. 2021 57 6 2002774 10.1183/13993003.02774‑2020 33303536
    [Google Scholar]
  27. Yeh J.T. Yu Y.C. Hwang T.C. Structural mechanisms for defective CFTR gating caused by the Q1412X mutation, a severe Class VI pathogenic mutation in cystic fibrosis. J. Physiol. 2019 597 2 543 560 10.1113/JP277042 30408177
    [Google Scholar]
  28. CFTR - Johns Hopkins Cystic Fibrosis Center. 2024 Available from: https://hopkinscf.org/knowledge/cftr/ [Accessed: Jan. 23, 2024].
  29. Types of CFTR mutations | cystic fibrosis foundation. 2024 Available from: https://www.cff.org/research-clinical-trials/types-cftr-mutations [Accessed: Jan. 23, 2024].
  30. Hakkak M.A. Keramatipour M. Talebi S. Brook A. Analysis of cftr gene mutations in children with cystic fibrosis, first report from north-east of iran. Iran J. Basic. Med. Sci. 2013 16 8 917 921 24106596
    [Google Scholar]
  31. Veit G. Avramescu R.G. Chiang A.N. Houck S.A. Cai Z. Peters K.W. Hong J.S. Pollard H.B. Guggino W.B. Balch W.E. Skach W.R. Cutting G.R. Frizzell R.A. Sheppard D.N. Cyr D.M. Sorscher E.J. Brodsky J.L. Lukacs G.L. From CFTR biology toward combinatorial pharmacotherapy: Expanded classification of cystic fibrosis mutations. Mol. Biol. Cell 2016 27 3 424 433 10.1091/mbc.e14‑04‑0935 26823392
    [Google Scholar]
  32. Schrijver I. Pique L. Graham S. Pearl M. Cherry A. Kharrazi M. The spectrum of CFTR variants in nonwhite cystic fibrosis patients. J. Mol. Diagn. 2016 18 1 39 50 10.1016/j.jmoldx.2015.07.005 26708955
    [Google Scholar]
  33. Mateu E. Calafell F. Lao O. Bonné-Tamir B. Kidd J.R. Pakstis A. Kidd K.K. Bertranpetit J. Worldwide genetic analysis of the CFTR region. Am. J. Hum. Genet. 2001 68 1 103 117 10.1086/316940/ASSET/7A5A0F00‑8BEC‑409E‑9BB9‑3007E16D167D/MAIN.ASSETS/GR3.GIF 11104661
    [Google Scholar]
  34. Cystic fibrosis (CF) - DynaMed. 2024 Available from: https://www.dynamed.com/condition/cystic-fibrosis-cf#GUID-4D3BFB60-7688-4474-925D-1F0C191C393C [Accessed: Dec. 06, 2024].
  35. Farrell P.M. Rock M.J. Baker M.W. The impact of the CFTR gene discovery on cystic fibrosis diagnosis, counseling, and preventive therapy. Genes 2020 11 4 401 10.3390/genes11040401 32276344
    [Google Scholar]
  36. Johansson J. Vezzalini M. Verzè G. Caldrer S. Bolognin S. Buffelli M. Bellisola G. Tridello G. Assael B.M. Melotti P. Sorio C. Detection of CFTR protein in human leukocytes by flow cytometry. Cytometry A 2014 85 7 611 620 10.1002/cyto.a.22456 24623386
    [Google Scholar]
  37. Loukou I. Moustaki M. Douros K. Children with cystic fibrosis are still receiving inconclusive diagnosis despite undergoing newborn screening. Acta Paediatr. 2023 112 10 2039 2044 10.1111/apa.16949 37602754
    [Google Scholar]
  38. Cystic Fibrosis, diagnosis and molecular testing | Fujirebio. 2024 Available from: https://www.fujirebio.com/en/insights/genetic-disorders/cystic-fibrosis-diagnosis-and-molecular-testing [Accessed: Jan. 23, 2024].
  39. Ratjen F. Bell S.C. Rowe S.M. Goss C.H. Quittner A.L. Bush A. Cystic fibrosis. Nat. Rev. Dis. Primers 2015 1 1 15010 10.1038/nrdp.2015.10 27189798
    [Google Scholar]
  40. Rock M.J. Baker M. Antos N. Farrell P.M. Refinement of newborn screening for cystic fibrosis with next generation sequencing. Pediatr. Pulmonol. 2023 58 3 778 787 10.1002/ppul.26253 36416003
    [Google Scholar]
  41. Skov M. Bækvad-Hansen M. Hougaard D.M. Skogstrand K. Lund A.M. Pressler T. Olesen H.V. Duno M. Cystic fibrosis newborn screening in denmark: Experience from the first 2 years. Pediatr. Pulmonol. 2020 55 2 549 555 10.1002/ppul.24564 31682332
    [Google Scholar]
  42. Munck A. Berger D.O. Southern K.W. Carducci C. Winter-de Groot D.K.M. Gartner S. Kashirskaya N. Linnane B. Proesmans M. Sands D. Sommerburg O. Castellani C. Barben J. Renner S. Zeyda M. Wachter D.E. Regal L. Votava F. Holubova A. Skov M. Morgan T. Bregeaut P. O’Grady L. Bucci I. Pantano S. Simonetti S. Venuto D.D. Salvatore D. Perrotti N. Caloiero M. Castaldo G. Tosco A. Righetti F. Pisi G. Battistini F. Angeloni A. Cimino G. Fiocchi G. Angiolillo A. Cassanello M. Alberti L. Claut L.E. Badolato R. Pavanello E. Fabrizzi B. Bignamini E. Cardillo A. Lombardo M. Cocciadiferro L. Termini L. Dolce D. Terlizzi V. Tamanini A. Pauro F. Marca L.G. Aleksejeva E. Gaidule-Logina D. Fustik S. Anastasovska V. Bouva M. Reid A. Cundick J. Lundman E. Bakkeheim E. Zybert K. Oltarzewski M. Vilarinho L. Sherman V. Kondratyeva E. Smith S. Dautovic G.V. Knapkova M. Mydlova Z. López R.M. Velasco V. Flores F.D. Mejeras C.C. Pedersen E.S.L. Ozcelik U. Karadag B. Makukh H. Stuart M. European survey of newborn bloodspot screening for CF: Opportunity to address challenges and improve performance. J. Cyst. Fibros. 2023 22 3 484 495 10.1016/j.jcf.2022.09.012 36372700
    [Google Scholar]
  43. Crossle J.R. Elliot R.B. Smith P. Dried-blood spot screening for cystic fibrosis in the newborn. Lancet 1979 313 8114 472 474 10.1016/S0140‑6736(79)90825‑0 85057
    [Google Scholar]
  44. Scotet V. Gutierrez H. Farrell P.M. Neonatal screening review newborn screening for CF across the globe-where is it worthwhile? Int. J. Neonatal. Screen 2020 6 1 18 10.3390/ijns6010018
    [Google Scholar]
  45. Bergougnoux A. Lopez M. Girodon E. The role of extended CFTR gene sequencing in newborn screening for cystic fibrosis. Int. J. Neonatal Screen. 2020 6 1 23 10.3390/ijns6010023 33073020
    [Google Scholar]
  46. Harrison P.T. CFTR RNA- and DNA-based therapies. Curr. Opin. Pharmacol. 2022 65 102247 10.1016/j.coph.2022.102247 35709547
    [Google Scholar]
  47. Sanchez S.D.A. Paunovska K. Cristian A. Dahlman J.E. Treating cystic fibrosis with mRNA and CRISPR. Hum. Gene Ther. 2020 31 17-18 940 955 10.1089/hum.2020.137 32799680
    [Google Scholar]
  48. Maule G. Arosio D. Cereseto A. Gene therapy for cystic fibrosis: Progress and challenges of genome editing. Int. J. Mol. Sci. 2020 21 11 3903 10.3390/ijms21113903 32486152
    [Google Scholar]
  49. Choi S.H. Engelhardt J.F. Gene therapy for cystic fibrosis: Lessons learned and paths forward. Mol. Ther. 2021 29 2 428 430 10.1016/j.ymthe.2021.01.010 33472034
    [Google Scholar]
  50. Wang D. Tai P.W.L. Gao G. Adeno-associated virus vector as a platform for gene therapy delivery. Nat. Rev. Drug Discov. 2019 18 5 358 378 10.1038/s41573‑019‑0012‑9 30710128
    [Google Scholar]
  51. Klink D. Schindelhauer D. Laner A. Tucker T. Gene delivery systems—gene therapy vectors for cystic fibrosis. J. Cyst. Fibros. 2004 2 203 212 10.1016/j.jcf.2004.05.042
    [Google Scholar]
  52. Hryhorowicz M. Lipiński D. Zeyland J. Słomski R. CRISPR/Cas9 immune system as a tool for genome engineering. Arch. Immunol. Ther. Exp. 2017 65 3 233 240 10.1007/s00005‑016‑0427‑5 27699445
    [Google Scholar]
  53. Yan Z. McCray P.B. Jr Engelhardt J.F. Advances in gene therapy for cystic fibrosis lung disease. Hum. Mol. Genet. 2019 28 R1 R88 R94 10.1093/hmg/ddz139 31332440
    [Google Scholar]
  54. Marangi M. Pistritto G. Innovative therapeutic strategies for cystic fibrosis: Moving forward to CRISPR technique. Front. Pharmacol. 2018 9 APR 396 10.3389/fphar.2018.00396 29731717
    [Google Scholar]
  55. Li H.Y. Seville P.C. Novel pMDI formulations for pulmonary delivery of proteins. Int. J. Pharm. 2010 385 1-2 73 78 10.1016/j.ijpharm.2009.10.032 19854252
    [Google Scholar]
  56. Bains B.K. Birchall J.C. Toon R. Taylor G. In vitro reporter gene transfection via plasmid DNA delivered by metered dose inhaler. J. Pharm. Sci. 2010 99 7 3089 3099 10.1002/jps.22085 20166201
    [Google Scholar]
  57. Conti D.S. Bharatwaj B. Brewer D. Rocha D.S.R.P. Propellant-based inhalers for the non-invasive delivery of genes via oral inhalation. J. Control. Release 2012 157 3 406 417 10.1016/j.jconrel.2011.09.089 21982899
    [Google Scholar]
  58. Omlor A.J. Nguyen J. Bals R. Dinh Q.T. Nanotechnology in respiratory medicine. Respir. Res. 2015 16 1 64 10.1186/s12931‑015‑0223‑5 26021823
    [Google Scholar]
  59. Trandafir L.M. Leon M.M. Frasinariu O. Baciu G. Dodi G. Cojocaru E. Current practices and potential nanotechnology perspectives for pain related to cystic fibrosis. J. Clin. Med. 2019 8 7 1023 10.3390/jcm8071023 31336857
    [Google Scholar]
  60. Trepotec Z. Lichtenegger E. Plank C. Aneja M.K. Rudolph C. Delivery of mRNA therapeutics for the treatment of hepatic diseases. Mol. Ther. 2019 27 4 794 802 10.1016/j.ymthe.2018.12.012 30655211
    [Google Scholar]
  61. Jafernik K. Ładniak A. Blicharska E. Czarnek K. Ekiert H. Wiącek A.E. Szopa A. Chitosan-based nanoparticles as effective drug delivery systems—a review. Molecules 2023 28 4 1963 10.3390/molecules28041963 36838951
    [Google Scholar]
  62. Conte G. Costabile G. Baldassi D. Rondelli V. Bassi R. Colombo D. Linardos G. Fiscarelli E.V. Sorrentino R. Miro A. Quaglia F. Brocca P. d’Angelo I. Merkel O.M. Ungaro F. Hybrid lipid/polymer nanoparticles to tackle the cystic fibrosis mucus barrier in sirna delivery to the lungs: Does PEGylation make the difference? ACS Appl. Mater. Interfaces 2022 14 6 7565 7578 10.1021/ACSAMI.1C14975/ASSET/IMAGES/LARGE/AM1C14975_0012.JPEG 35107987
    [Google Scholar]
  63. Porsio B. Lentini L. Ungaro F. Leonardo D.A. Quaglia F. Giammona G. Cavallaro G. Inhalable nano into micro dry powders for ivacaftor delivery: The role of mannitol and cysteamine as mucus-active agents. Int. J. Pharm. 2020 582 119304 10.1016/j.ijpharm.2020.119304 32272167
    [Google Scholar]
  64. Fernández F.E. Santos-Carballal B. Santi D.C. Ramsey J. MacLoughlin R. Cryan S.A. Greene C. Biopolymer-based nanoparticles for cystic fibrosis lung gene therapy studies. Materials 2018 11 1 122 10.3390/ma11010122 29342838
    [Google Scholar]
  65. Velino C. Carella F. Adamiano A. Sanguinetti M. Vitali A. Catalucci D. Bugli F. Iafisco M. Nanomedicine approaches for the pulmonary treatment of cystic fibrosis. Front. Bioeng. Biotechnol. 2019 7 406 10.3389/fbioe.2019.00406 31921811
    [Google Scholar]
  66. Parihar A. Prajapati B.G. Paliwal H. Shukla M. Khunt D. Bahadure D.S. Dyawanapelly S. Junnuthula V. Advanced pulmonary drug delivery formulations for the treatment of cystic fibrosis. Drug Discov. Today 2023 28 10 103729 10.1016/j.drudis.2023.103729 37532219
    [Google Scholar]
  67. Cáceres D.L. Zamarrón de Lucas E. Cystic fibrosis: Epidemiology, clinical manifestations, diagnosis and treatment. Med. Clín. 2023 161 9 389 396 10.1016/j.medcli.2023.06.006 37558605
    [Google Scholar]
  68. Bierlaagh M.C. Muilwijk D. Beekman J.M. van der Ent C.K. A new era for people with cystic fibrosis. Eur. J. Pediatr. 2021 180 9 2731 2739 10.1007/s00431‑021‑04168‑y 34213646
    [Google Scholar]
  69. Habib A.R.R. Kajbafzadeh M. Desai S. Yang C.L. Skolnik K. Quon B.S. A systematic review of the clinical efficacy and safety of CFTR modulators in cystic fibrosis. Sci. Rep. 2019 9 1 7234 10.1038/s41598‑019‑43652‑2 31076617
    [Google Scholar]
  70. Regard L. Martin C. Burnet E. Silva D.J. Burgel P.R. CFTR modulators in people with cystic fibrosis: Real-world evidence in france. Cells 2022 11 11 1769 10.3390/cells11111769 35681464
    [Google Scholar]
  71. Zaher A. ElSaygh J. Elsori D. ElSaygh H. Sanni A. A review of trikafta: Triple cystic fibrosis transmembrane conductance regulator (CFTR) modulator therapy. Cureus 2021 13 7 e16144 10.7759/cureus.16144 34268058
    [Google Scholar]
  72. Ribeiro C.M.P. Gentzsch M. Impact of airway inflammation on the efficacy of CFTR modulators. Cells 2021 10 11 3260 10.3390/cells10113260 34831482
    [Google Scholar]
  73. Wainwright C.E. Elborn J.S. Ramsey B.W. Marigowda G. Huang X. Cipolli M. Colombo C. Davies J.C. Boeck D.K. Flume P.A. Konstan M.W. McColley S.A. McCoy K. McKone E.F. Munck A. Ratjen F. Rowe S.M. Waltz D. Boyle M.P. Lumacaftor–ivacaftor in patients with cystic fibrosis homozygous for Phe508del CFTR. N. Engl. J. Med. 2015 373 3 220 231 10.1056/NEJMoa1409547 25981758
    [Google Scholar]
  74. Middleton P.G. Mall M.A. Dřevínek P. Lands L.C. McKone E.F. Polineni D. Ramsey B.W. Taylor-Cousar J.L. Tullis E. Vermeulen F. Marigowda G. McKee C.M. Moskowitz S.M. Nair N. Savage J. Simard C. Tian S. Waltz D. Xuan F. Rowe S.M. Jain R. Elexacaftor–tezacaftor–ivacaftor for cystic fibrosis with a single phe508del allele. N. Engl. J. Med. 2019 381 19 1809 1819 10.1056/NEJMoa1908639 31697873
    [Google Scholar]
  75. Ramsey B.W. Davies J. McElvaney N.G. Tullis E. Bell S.C. Dřevínek P. Griese M. McKone E.F. Wainwright C.E. Konstan M.W. Moss R. Ratjen F. Sermet-Gaudelus I. Rowe S.M. Dong Q. Rodriguez S. Yen K. Ordoñez C. Elborn J.S. A CFTR potentiator in patients with cystic fibrosis and the G551D mutation. N. Engl. J. Med. 2011 365 18 1663 1672 10.1056/NEJMoa1105185 22047557
    [Google Scholar]
  76. Rehman T. Karp P.H. Tan P. Goodell B.J. Pezzulo A.A. Thurman A.L. Thornell I.M. Durfey S.L. Duffey M.E. Stoltz D.A. McKone E.F. Singh P.K. Welsh M.J. Inflammatory cytokines TNF-α and IL-17 enhance the efficacy of cystic fibrosis transmembrane conductance regulator modulators. J. Clin. Invest. 2021 131 16 e150398 10.1172/JCI150398 34166230
    [Google Scholar]
  77. Cutting G.R. Cystic fibrosis genetics: From molecular understanding to clinical application. Nat. Rev. Genet. 2015 16 1 45 56 10.1038/nrg3849 25404111
    [Google Scholar]
  78. Elphick H.E. Mallory G. Oxygen therapy for cystic fibrosis. Cochrane Libr. 2013 2013 8 CD003884 10.1002/14651858.CD003884.pub4 23888484
    [Google Scholar]
  79. Osadnik C.R. Rodrigues F.M.M. Camillo C.A. Loeckx M. Janssens W. Dooms C. Troosters T. Principles of rehabilitation and reactivation. Respiration 2015 89 1 2 11 10.1159/000370246 25591614
    [Google Scholar]
  80. Bienvenu T. Lopez M. Girodon E. Molecular diagnosis and genetic counseling of cystic fibrosis and related disorders: New challenges. Genes 2020 11 6 619 10.3390/genes11060619 32512765
    [Google Scholar]
/content/journals/crmr/10.2174/011573398X359962250527113134
Loading
/content/journals/crmr/10.2174/011573398X359962250527113134
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: clinical features ; drug delivery ; Cystic fibrosis ; CFTR modulators ; therapy ; digestive system
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test