Skip to content
2000
image of Pulmonary Fibrosis: Causes, Development, Diagnosis, and Treatment with Emphasis on Murine and In vitro Models

Abstract

Excessive extracellular matrix accumulation characterizes pulmonary fibrosis (PF), a degenerative disease of the interstitial lung that worsens with time and leads to respiratory failure. The current review emphasizes the complicated etiology of PF, which includes environmental exposures, genetic predispositions, and concomitant conditions such as autoimmune diseases, followed by its pathophysiology, diagnosis, and treatment strategies. Murine models have significantly improved our understanding of the pathogenesis of PF. For example, studies of bleomycin-induced lung fibrosis in mice have improved our understanding of the inflammation-fibrosis nexus and revealed new treatment targets. Genetic animal models that lack certain cytokines or signaling pathways (, TGF-γ, IL-13) have helped clarify the role of these mediators in fibrosis formation. studies with fibroblasts and lung epithelial cells have supplemented these findings by allowing for the analysis of cellular responses to fibrogenic stimuli as well as medication screening. The primary methods for diagnosing PF include histopathological exams, imaging examinations, and pulmonary function testing. New non-invasive biomarkers have the potential to improve early monitoring and identification. Antifibrotic drugs, as well as lung transplantation in severe cases, are the only therapy options available at this time. To improve outcomes for patients with pulmonary fibrosis, this review highlights the need for novel therapies that target key pathophysiological processes and are supported by preclinical models.

Loading

Article metrics loading...

/content/journals/crmr/10.2174/011573398X365726250423074014
2025-05-02
2025-09-04
Loading full text...

Full text loading...

References

  1. Giacomelli C. Piccarducci R. Marchetti L. Romei C. Martini C. Pulmonary fibrosis from molecular mechanisms to therapeutic interventions: Lessons from post-COVID-19 patients. Biochem. Pharmacol. 2021 193 114812 10.1016/j.bcp.2021.114812 34687672
    [Google Scholar]
  2. Girón M.R.M. García-Clemente M. Diab-Cáceres L. Martínez-Vergara A. Martínez-García M.Á. Gómez-Punter R.M. Treatment of pulmonary disease of cystic fibrosis: A comprehensive review. Antibiotics 2021 10 5 486 10.3390/antibiotics10050486 33922413
    [Google Scholar]
  3. You M. Liu B. Jing A. Zhang M. Qian Q. Ji J. Xu Y. Tang Y. Curcumin as a promising treatment for pulmonary fibrosis: Mechanism and therapeutic potential. Pharmacol. Res. Mod. Chin. Med. 2024 10 100404 10.1016/j.prmcm.2024.100404
    [Google Scholar]
  4. Tian Y. Song H. Jin D. Hu N. Sun L. MST1-Hippo pathway regulates inflammation response following myocardial infarction through inhibiting HO-1 signaling pathway. J. Recept. Signal Transduct. Res. 2020 40 3 231 236 10.1080/10799893.2020.1726954 32054389
    [Google Scholar]
  5. Santos CS Antolín SC De la Calle Lorenzo J Garay CL Morales CM de Miguel EB Guerrero MR Herránz LS Álvarez ED KL6 and IL-18 levels are negatively correlated with respiratory function tests and ILD extent assessed on HRCT in patients with systemic sclerosis-related interstitial lung disease (SSc-ILD). Semin Arthritis Rheum 2024 65 152366 10.1016/j.semarthrit.2024.152366.
    [Google Scholar]
  6. Ruaro B. Baratella E. Confalonieri P. Wade B. Marrocchio C. Geri P. Busca A. Pozzan R. Andrisano A.G. Cova M.A. Confalonieri M. Salton F. High-resolution computed Tomography: Lights and shadows in improving care for SSc-ILD patients. Diagnostics 2021 11 11 1960 10.3390/diagnostics11111960 34829307
    [Google Scholar]
  7. Wijsenbeek M. Cottin V. Spectrum of fibrotic lung diseases. N. Engl. J. Med. 2020 383 10 958 968 10.1056/NEJMra2005230 32877584
    [Google Scholar]
  8. Maher T.M. Wells A.U. Laurent G.J. Idiopathic pulmonary fibrosis: Multiple causes and multiple mechanisms? Eur. Respir. J. 2007 30 5 835 839 10.1183/09031936.00069307 17978154
    [Google Scholar]
  9. Finnerty J.P. Ponnuswamy A. Dutta P. Abdelaziz A. Kamil H. Efficacy of antifibrotic drugs, nintedanib and pirfenidone, in treatment of progressive pulmonary fibrosis in both idiopathic pulmonary fibrosis (IPF) and non-IPF: A systematic review and meta-analysis. BMC Pulm. Med. 2021 21 1 411 10.1186/s12890‑021‑01783‑1 34895203
    [Google Scholar]
  10. Chianese M. Screm G. Salton F. Confalonieri P. Trotta L. Barbieri M. Ruggero L. Mari M. Reccardini N. Geri P. Hughes M. Lerda S. Confalonieri M. Mondini L. Ruaro B. Pirfenidone and Nintedanib in pulmonary fibrosis: Lights and shadows. Pharmaceuticals 2024 17 6 709 10.3390/ph17060709 38931376
    [Google Scholar]
  11. Noble P.W. Barkauskas C.E. Jiang D. Pulmonary fibrosis: Patterns and perpetrators. J. Clin. Invest. 2012 122 8 2756 2762 10.1172/JCI60323 22850886
    [Google Scholar]
  12. Wohlin C. Guidelines for snowballing in systematic literature studies and a replication in software engineering. 18th International Conference on Evaluation and Assessment in Software Engineering England, London, United Kingdom, May 13-14, 2014, pp. 1-10 10.1145/2601248.2601268.
    [Google Scholar]
  13. Navaratnam V. Fleming K.M. West J. Smith C.J.P. Jenkins R.G. Fogarty A. Hubbard R.B. The rising incidence of idiopathic pulmonary fibrosis in the UK. Thorax 2011 66 6 462 467 10.1136/thx.2010.148031 21525528
    [Google Scholar]
  14. Naureckas E.T. Solway J. Disturbances of respiratory function. Harrison’s Principles of Internal Medicine. McGraw Hill. 2012 2 2093
    [Google Scholar]
  15. Fauci A.S. Hauser S.L. Jameson J.L. Kasper D.L. Longo D.L. Loscalzo J. Harrison? Principles of Internal Medicine. McGraw-Hill Education LLC 2012
    [Google Scholar]
  16. Snijder J. Peraza J. Padilla M. Capaccione K. Salvatore M.M. Pulmonary fibrosis: A disease of alveolar collapse and collagen deposition. Expert Rev. Respir. Med. 2019 13 7 615 619 10.1080/17476348.2019.1623028 31117843
    [Google Scholar]
  17. Rajan S.K. Cottin V. Dhar R. Danoff S. Flaherty K.R. Brown K.K. Mohan A. Renzoni E. Mohan M. Udwadia Z. Shenoy P. Currow D. Devraj A. Jankharia B. Kulshrestha R. Jones S. Ravaglia C. Quadrelli S. Iyer R. Dhooria S. Kolb M. Wells A.U. Progressive pulmonary fibrosis: An expert group consensus statement. Eur. Respir. J. 2023 61 3 2103187 10.1183/13993003.03187‑2021 36517177
    [Google Scholar]
  18. Raghu G. Selman M. Nintedanib and pirfenidone. New antifibrotic treatments indicated for idiopathic pulmonary fibrosis offer hopes and raises questions. Am. J. Respir. Crit. Care Med. 2015 191 3 252 254 10.1164/rccm.201411‑2044ED 25635489
    [Google Scholar]
  19. Ma J. Li G. Wang H. Mo C. Comprehensive review of potential drugs with anti-pulmonary fibrosis properties. Biomed. Pharmacother. 2024 173 116282 10.1016/j.biopha.2024.116282 38401514
    [Google Scholar]
  20. Zhang T. Liu M. Gao Y. Li H. Song L. Hou H. Chen T. Ma L. Zhang G. Ye Z. Salvianolic acid B inhalation solution enhances antifibrotic and anticoagulant effects in a rat model of pulmonary fibrosis. Biomed. Pharmacother. 2021 138 111475 10.1016/j.biopha.2021.111475 33774314
    [Google Scholar]
  21. Zhang K Gharaee-Kermani M Jones ML Warren JS Phan SH Lung monocyte chemoattractant protein-1 gene expression in bleomycin-induced pulmonary fibrosis. J. Immunol 1994 153 10 4733 10.4049/jimmunol.153.10.4733
    [Google Scholar]
  22. Han D. Gong H. Wei Y. Xu Y. Zhou X. Wang Z. Feng F. Hesperidin inhibits lung fibroblast senescence via IL-6/STAT3 signaling pathway to suppress pulmonary fibrosis. Phytomedicine 2023 112 154680 10.1016/j.phymed.2023.154680 36736168
    [Google Scholar]
  23. Nguyen N. Xu S. Lam T.Y.W. Liao W. Wong W.S.F. Ge R. ISM1 suppresses LPS-induced acute lung injury and post-injury lung fibrosis in mice. Mol. Med. 2022 28 1 72 10.1186/s10020‑022‑00500‑w 35752760
    [Google Scholar]
  24. Yan M. Li H. Xu S. Wu J. Li J. Xiao C. Mo C. Ding B.S. Targeting endothelial necroptosis disrupts profibrotic endothelial–hepatic stellate cells crosstalk to alleviate liver fibrosis in nonalcoholic steatohepatitis. Int. J. Mol. Sci. 2023 24 14 11313 10.3390/ijms241411313 37511074
    [Google Scholar]
  25. Yanagihara T. Tsubouchi K. Gholiof M. Chong S.G. Lipson K.E. Zhou Q. Scallan C. Upagupta C. Tikkanen J. Keshavjee S. Ask K. Kolb M.R.J. Connective-tissue growth factor contributes to TGF-β1–induced lung fibrosis. Am. J. Respir. Cell Mol. Biol. 2022 66 3 260 270 10.1165/rcmb.2020‑0504OC 34797990
    [Google Scholar]
  26. Wei P. Xie Y. Abel P.W. Huang Y. Ma Q. Li L. Hao J. Wolff D.W. Wei T. Tu Y. Transforming growth factor (TGF)-β1-induced miR-133a inhibits myofibroblast differentiation and pulmonary fibrosis. Cell Death Dis. 2019 10 9 670 10.1038/s41419‑019‑1873‑x 31511493
    [Google Scholar]
  27. Xiong Y. Zhang J. Shi L. Ning Y. Zhu Y. Chen S. Yang M. Chen J. Zhou G.W. Li Q. NOGO-B promotes EMT in lung fibrosis via MMP14 mediates free TGF-beta1 formation. Oncotarget 2017 8 41 71024 71037 10.18632/oncotarget.20297 29050340
    [Google Scholar]
  28. Liu S. Liu C. Lv X. Cui B. Yan J. Li Y. Li K. Hua F. Zhang X. Yu J. Yu J. Wang F. Shang S. Li P. Zhou Z. Xiao Y. Hu Z. The chemokine CCL1 triggers an AMFR-SPRY1 pathway that promotes differentiation of lung fibroblasts into myofibroblasts and drives pulmonary fibrosis. Immunity 2021 54 9 2042 2056.e8 10.1016/j.immuni.2021.06.008 34407391
    [Google Scholar]
  29. Murray L.A. Argentieri R.L. Farrell F.X. Bracht M. Sheng H. Whitaker B. Beck H. Tsui P. Cochlin K. Evanoff H.L. Hogaboam C.M. Das A.M. Hyper-responsiveness of IPF/UIP fibroblasts: Interplay between TGFβ1, IL-13 and CCL2. Int. J. Biochem. Cell Biol. 2008 40 10 2174 2182 10.1016/j.biocel.2008.02.016 18395486
    [Google Scholar]
  30. Martinez F.J. Chisholm A. Collard H.R. Flaherty K.R. Myers J. Raghu G. Walsh S.L.F. White E.S. Richeldi L. The diagnosis of idiopathic pulmonary fibrosis: Current and future approaches. Lancet Respir. Med. 2017 5 1 61 71 10.1016/S2213‑2600(16)30325‑3 27932290
    [Google Scholar]
  31. Behr J. Günther A. Bonella F. Dinkel J. Fink L. Geiser T. Geissler K. Gläser S. Handzhiev S. Jonigk D. Koschel D. Kreuter M. Leuschner G. Markart P. Prasse A. Schönfeld N. Schupp J.C. Sitter H. Müller-Quernheim J. Costabel U. S2K guideline for diagnosis of idiopathic pulmonary fibrosis. Respiration 2021 100 3 238 271 10.1159/000512315 33486500
    [Google Scholar]
  32. Bartold K. Iskierko Z. Sharma P.S. Lin H.Y. Kutner W. Idiopathic pulmonary fibrosis (IPF): Diagnostic routes using novel biomarkers. Biomed. J. 2024 47 4 100729 10.1016/j.bj.2024.100729 38657859
    [Google Scholar]
  33. Zheng Z Peng F Zhou Y Biomarkers in idiopathic pulmonary fibrosis: Current insight and future direction. Chin. Med. J. Pulm Crit Care Med. 2024 2 2 72 10.1016/j.pccm.2024.04.003.
    [Google Scholar]
  34. Martinez F.J. Collard H.R. Pardo A. Raghu G. Richeldi L. Selman M. Swigris J.J. Taniguchi H. Wells A.U. Idiopathic pulmonary fibrosis. Nat. Rev. Dis. Primers 2017 3 1 17074 10.1038/nrdp.2017.74 29052582
    [Google Scholar]
  35. Stainer A. Faverio P. Busnelli S. Catalano M. Della Zoppa M. Marruchella A. Pesci A. Luppi F. Molecular biomarkers in idiopathic pulmonary fibrosis: State of the art and future directions. Int. J. Mol. Sci. 2021 22 12 6255 10.3390/ijms22126255 34200784
    [Google Scholar]
  36. Zhang Y. Kaminski N. Biomarkers in idiopathic pulmonary fibrosis. Curr. Opin. Pulm. Med. 2012 18 5 441 446 10.1097/MCP.0b013e328356d03c 22847105
    [Google Scholar]
  37. Kharitonov S.A. Barnes P.J. Exhaled markers of pulmonary disease. Am. J. Respir. Crit. Care Med. 2001 163 7 1693 1722 10.1164/ajrccm.163.7.2009041 11401895
    [Google Scholar]
  38. Fireman E. Lerman Y. Induced sputum in interstitial lung diseases. Curr. Opin. Pulm. Med. 2006 12 5 318 322 10.1097/01.mcp.0000239547.62949.82 16926645
    [Google Scholar]
  39. DePianto D.J. Chandriani S. Abbas A.R. Jia G. N’Diaye E.N. Caplazi P. Kauder S.E. Biswas S. Karnik S.K. Ha C. Modrusan Z. Matthay M.A. Kukreja J. Collard H.R. Egen J.G. Wolters P.J. Arron J.R. Heterogeneous gene expression signatures correspond to distinct lung pathologies and biomarkers of disease severity in idiopathic pulmonary fibrosis. Thorax 2015 70 1 48 56 10.1136/thoraxjnl‑2013‑204596 25217476
    [Google Scholar]
  40. Hutchinson J. Fogarty A. Hubbard R. McKeever T. Global incidence and mortality of idiopathic pulmonary fibrosis: A systematic review. Eur. Respir. J. 2015 46 3 795 806 10.1183/09031936.00185114 25976683
    [Google Scholar]
  41. Ximendes E. Benayas A. Jaque D. Marin R. Quo vadis, nanoparticle-enabled in vivo fluorescence imaging? ACS Nano 2021 15 2 1917 1941 10.1021/acsnano.0c08349 33465306
    [Google Scholar]
  42. Karampitsakos T. Torrisi S. Antoniou K. Manali E. Korbila I. Papaioannou O. Sampsonas F. Katsaras M. Vasarmidi E. Papakosta D. Domvri K. Fouka E. Organtzis I. Daniil Z. Dimeas I. Kirgou P. Gourgoulianis K.I. Papanikolaou I.C. Markopoulou K. Kounti G. Tsapakidou E. Papadopoulou E. Tatsis K. Gogali A. Kostikas K. Tzilas V. Chrysikos S. Papiris S. Bouros D. Kreuter M. Tzouvelekis A. Increased monocyte count and red cell distribution width as prognostic biomarkers in patients with Idiopathic Pulmonary Fibrosis. Respir. Res. 2021 22 1 140 10.1186/s12931‑021‑01725‑9 33952261
    [Google Scholar]
  43. Zhang X. Deng X. Zhang L. Wang P. Tong X. Mo Y. Zhang Y. Zhang Y. Mo C. Zhang L. Single-cell RNA sequencing analysis of lung cells in COVID-19 patients with diabetes, hypertension, and comorbid diabetes-hypertension. Front. Endocrinol. (Lausanne) 2023 14 1258646 10.3389/fendo.2023.1258646 38144556
    [Google Scholar]
  44. Thong L. McElduff E.J. Henry M.T. Trials and treatments: An update on pharmacotherapy for idiopathic pulmonary fibrosis. Life 2023 13 2 486 10.3390/life13020486 36836843
    [Google Scholar]
  45. Nureki S.I. Tomer Y. Venosa A. Katzen J. Russo S.J. Jamil S. Barrett M. Nguyen V. Kopp M. Mulugeta S. Beers M.F. Expression of mutant Sftpc in murine alveolar epithelia drives spontaneous lung fibrosis. J. Clin. Invest. 2018 128 9 4008 4024 10.1172/JCI99287 29920187
    [Google Scholar]
  46. Ishida Y. Kuninaka Y. Mukaida N. Kondo T. Immune mechanisms of pulmonary fibrosis with bleomycin. Int. J. Mol. Sci. 2023 24 4 3149 10.3390/ijms24043149 36834561
    [Google Scholar]
  47. Fukushima K. Akira S. Novel insights into the pathogenesis of lung fibrosis: the RBM7–NEAT1–CXCL12–SatM axis at fibrosis onset. Int. Immunol. 2021 33 12 659 663 10.1093/intimm/dxab034 34165514
    [Google Scholar]
  48. Tashiro J. Rubio G.A. Limper A.H. Williams K. Elliot S.J. Ninou I. Aidinis V. Tzouvelekis A. Glassberg M.K. Exploring animal models that resemble idiopathic pulmonary fibrosis. Front. Med. (Lausanne) 2017 4 118 10.3389/fmed.2017.00118 28804709
    [Google Scholar]
  49. Moore B.B. Hogaboam C.M. Murine models of pulmonary fibrosis. Am. J. Physiol. Lung Cell. Mol. Physiol. 2008 294 2 L152 L160 10.1152/ajplung.00313.2007 17993587
    [Google Scholar]
  50. Savin I.A. Zenkova M.A. Sen’kova A.V. Pulmonary fibrosis as a result of acute lung inflammation: molecular mechanisms, relevant in vivo models, prognostic and therapeutic approaches. Int. J. Mol. Sci. 2022 23 23 14959 10.3390/ijms232314959 36499287
    [Google Scholar]
  51. Degryse A.L. Lawson W.E. Progress toward improving animal models for idiopathic pulmonary fibrosis. Am. J. Med. Sci. 2011 341 6 444 449 10.1097/MAJ.0b013e31821aa000 21613932
    [Google Scholar]
  52. Moeller A. Ask K. Warburton D. Gauldie J. Kolb M. The bleomycin animal model: A useful tool to investigate treatment options for idiopathic pulmonary fibrosis? Int. J. Biochem. Cell Biol. 2008 40 3 362 382 10.1016/j.biocel.2007.08.011 17936056
    [Google Scholar]
  53. Umezawa H. Chemistry and mechanism of action of bleomycin. Fed Proc. 1974 33 11 2296 4139043
    [Google Scholar]
  54. Umezawa H. Ishizuka M. Maeda K. Takeuchi T. Studies on bleomycin. Cancer 1967 20 5 891 895 10.1002/1097‑0142(1967)20:5<891::AID‑CNCR2820200550>3.0.CO;2‑V 5337399
    [Google Scholar]
  55. Muggia F.M. Louie A.C. Sikic B.I. Pulmonary toxicity of antitumor agents. Cancer Treat. Rev. 1983 10 4 221 243 10.1016/0305‑7372(83)90012‑9 6198083
    [Google Scholar]
  56. Izbicki G. Segel M.J. Christensen T.G. Conner M.W. Breuer R. Time course of bleomycin-induced lung fibrosis. Int. J. Exp. Pathol. 2002 83 3 111 119 10.1046/j.1365‑2613.2002.00220.x 12383190
    [Google Scholar]
  57. Phan S.H. Armstrong G. Sulavik M.C. Schrier D. Johnson K.J. Ward P.A. A comparative study of pulmonary fibrosis induced by bleomycin and an O2 metabolite producing enzyme system. Chest 1983 83 5 44S 45S 10.1378/chest.83.5_Supplement.44S 6188582
    [Google Scholar]
  58. Gharaee-Kermani M. Hatano K. Nozaki Y. Phan S.H. Gender-based differences in bleomycin-induced pulmonary fibrosis. Am. J. Pathol. 2005 166 6 1593 1606 10.1016/S0002‑9440(10)62470‑4 15920145
    [Google Scholar]
  59. Goldstein R.H. Lucey E.C. Franzblau C. Snider G.L. Failure of mechanical properties to parallel changes in lung connective tissue composition in bleomycin-induced pulmonary fibrosis in hamsters. Am. Rev. Respir. Dis. 1979 120 1 67 73 88916
    [Google Scholar]
  60. Lardot C.G. Huaux F.A. Broeckaert F.R. Declerck P.J. Delos M. Fubini B. Lison D.F. Role of urokinase in the fibrogenic response of the lung to mineral particles. Am. J. Respir. Crit. Care Med. 1998 157 2 617 628 10.1164/ajrccm.157.2.9707052 9476881
    [Google Scholar]
  61. Thrall R.S. McCormick J.R. Jack R.M. McReynolds R.A. Ward P.A. Bleomycin-induced pulmonary fibrosis in the rat: inhibition by indomethacin. Am. J. Pathol. 1979 95 1 117 130 86304
    [Google Scholar]
  62. Schrier D.J. Kunkel R.G. Phan S.H. The role of strain variation in murine bleomycin-induced pulmonary fibrosis. Am. Rev. Respir. Dis. 1983 127 1 63 66 10.1164/arrd.1983.127.1.63 6185026
    [Google Scholar]
  63. William Lown J. Sim S.K. The mechanism of the bleomycin-induced cleavage of DNA. Biochem. Biophys. Res. Commun. 1977 77 4 1150 1157 10.1016/S0006‑291X(77)80099‑5 71149
    [Google Scholar]
  64. Sausville E.A. Peisach J. Horwitz S.B. A role for ferrous ion and oxygen in the degradation of DNA by bleomycin. Biochem. Biophys. Res. Commun. 1976 73 3 814 822 10.1016/0006‑291X(76)90882‑2 64249
    [Google Scholar]
  65. Inoshima I. Kuwano K. Hamada N. Hagimoto N. Yoshimi M. Maeyama T. Takeshita A. Kitamoto S. Egashira K. Hara N. Anti-monocyte chemoattractant protein-1 gene therapy attenuates pulmonary fibrosis in mice. Am. J. Physiol. Lung Cell. Mol. Physiol. 2004 286 5 L1038 L1044 10.1152/ajplung.00167.2003 15064241
    [Google Scholar]
  66. Moore B.B. Paine R. III Christensen P.J. Moore T.A. Sitterding S. Ngan R. Wilke C.A. Kuziel W.A. Toews G.B. Protection from pulmonary fibrosis in the absence of CCR2 signaling. J. Immunol. 2001 167 8 4368 4377 10.4049/jimmunol.167.8.4368 11591761
    [Google Scholar]
  67. Kuroki M. Noguchi Y. Shimono M. Tomono K. Tashiro T. Obata Y. Nakayama E. Kohno S. Repression of bleomycin-induced pneumopathy by TNF. J. Immunol. 2003 170 1 567 574 10.4049/jimmunol.170.1.567 12496444
    [Google Scholar]
  68. Roberts S.N. Howie S.E.M. Wallace W.A.H. Brown D.M. Lamb D. Ramage E.A. Donaldson K. A novel model for human interstitial lung disease: Hapten-driven lung fibrosis in rodents. J. Pathol. 1995 176 3 309 318 10.1002/path.1711760313 7674093
    [Google Scholar]
  69. Christensen P.J. Goodman R.E. Pastoriza L. Moore B. Toews G.B. Induction of lung fibrosis in the mouse by intratracheal instillation of fluorescein isothiocyanate is not T-cell-dependent. Am. J. Pathol. 1999 155 5 1773 1779 10.1016/S0002‑9440(10)65493‑4 10550334
    [Google Scholar]
  70. McDonald S. Rubin P. Chang A.Y.C. Penney D.P. Finkelstein J.N. Grossberg S. Feins R. Gregory P.K. Pulmonary changes induced by combined mouse β-interferon (rMuIFN-β) and irradiation in normal mice - toxic versus protective effects. Radiother. Oncol. 1993 26 3 212 218 10.1016/0167‑8140(93)90262‑7 8316650
    [Google Scholar]
  71. Rübe CE Uthe D Schmid KW Richter KD Wessel J Schuck A Willich N Rübe C Dose-dependent induction of transforming growth factor beta (TGF-beta) in the lung tissue of fibrosis-prone mice after thoracic irradiation. Int. J. Radiat. Oncol. Biol Phys. 2000 47z 4 1033 10.1016/s0360‑3016(00)00482‑x.
    [Google Scholar]
  72. Wang J. Wang Y. Han J. Mei H. Yu D. Ding Q. Zhang T. Wu G. Peng G. Lin Z. Metformin attenuates radiation-induced pulmonary fibrosis in a murine model. Radiat. Res. 2017 188 1 105 113 10.1667/RR14708.1 28437189
    [Google Scholar]
  73. Li W. Lu L. Liu B. Qin S. Effects of phycocyanin on pulmonary and gut microbiota in a radiation-induced pulmonary fibrosis model. Biomed. Pharmacother. 2020 132 110826 10.1016/j.biopha.2020.110826 33068929
    [Google Scholar]
  74. Johnston C.J. Williams J.P. Okunieff P. Finkelstein J.N. Radiation-induced pulmonary fibrosis: Examination of chemokine and chemokine receptor families. Radiat. Res. 2002 157 3 256 265 10.1667/0033‑7587(2002)157[0256:RIPFEO]2.0.CO;2 11839087
    [Google Scholar]
  75. Chiang CS Liu WC Jung SM Chen FH Wu CR McBride WH Lee CC Hong JH Compartmental responses after thoracic irradiation of mice: strain differences. Int J Radiat Oncol Biol Phys. 2005 62 3 862 10.1016/j.ijrobp.2005.02.037
    [Google Scholar]
  76. Epperly M.W. Guo H. Gretton J.E. Greenberger J.S. Bone marrow origin of myofibroblasts in irradiation pulmonary fibrosis. Am. J. Respir. Cell Mol. Biol. 2003 29 2 213 224 10.1165/rcmb.2002‑0069OC 12649121
    [Google Scholar]
  77. Oberdorster G. Significance of particle parameters in the evaluation of exposure-dose-response relationships of inhaled particles. Inhal. Toxicol. 1996 8 73 89 11542496
    [Google Scholar]
  78. Davis GS Leslie KO Hemenway DR Silicosis in mice: Effects of dose, time, and genetic strain. J Environ Pathol Toxicol Oncol 1998 17Z 2 9546745
    [Google Scholar]
  79. Li C. Lu Y. Du S. Li S. Zhang Y. Liu F. Chen Y. Weng D. Chen J. Dioscin exerts protective effects against crystalline silica-induced pulmonary fibrosis in mice. Theranostics 2017 7 17 4255 4275 10.7150/thno.20270 29158824
    [Google Scholar]
  80. Barbarin V. Nihoul A. Misson P. Arras M. Delos M. Leclercq I. Lison D. Huaux F. The role of pro- and anti-inflammatory responses in silica-induced lung fibrosis. Respir. Res. 2005 6 1 112 10.1186/1465‑9921‑6‑112 16212659
    [Google Scholar]
  81. D’Armiento J. Dalal S.S. Okada Y. Berg R.A. Chada K. Collagenase expression in the lungs of transgenic mice causes pulmonary emphysema. Cell 1992 71 6 955 961 10.1016/0092‑8674(92)90391‑O 1458541
    [Google Scholar]
  82. Idell S. James K.K. Gillies C. Fair D.S. Thrall R.S. Abnormalities of pathways of fibrin turnover in lung lavage of rats with oleic acid and bleomycin-induced lung injury support alveolar fibrin deposition. Am. J. Pathol. 1989 135 2 387 399 2476934
    [Google Scholar]
  83. Kang H.R. Lee C.G. Homer R.J. Elias J.A. Semaphorin 7A plays a critical role in TGF-β1–induced pulmonary fibrosis. J. Exp. Med. 2007 204 5 1083 1093 10.1084/jem.20061273 17485510
    [Google Scholar]
  84. Engelhardt J.F. Litzky L. Wilson J.M. Prolonged transgene expression in cotton rat lung with recombinant adenoviruses defective in E2a. Hum. Gene Ther. 1994 5 10 1217 1229 10.1089/hum.1994.5.10‑1217 7849095
    [Google Scholar]
  85. Xing Z. Braciak T. Ohkawar Y. Sallenave J.M. Foley R. Sime P.J. Jordana M. Graham F.L. Gauldie J. Gene transfer for cytokine functional studies in the lung: The multifunctional role of GM-CSF in pulmonary inflammation. J. Leukoc. Biol. 1996 59 4 481 488 10.1002/jlb.59.4.481 8613693
    [Google Scholar]
  86. Xing Z. Tremblay G.M. Sime P.J. Gauldie J. Overexpression of granulocyte-macrophage colony-stimulating factor induces pulmonary granulation tissue formation and fibrosis by induction of transforming growth factor-beta 1 and myofibroblast accumulation. Am. J. Pathol. 1997 150 1 59 66 9006322
    [Google Scholar]
  87. Miyazaki Y. Araki K. Vesin C. Garcia I. Kapanci Y. Whitsett J.A. Piguet P.F. Vassalli P. Expression of a tumor necrosis factor-alpha transgene in murine lung causes lymphocytic and fibrosing alveolitis. A mouse model of progressive pulmonary fibrosis. J. Clin. Invest. 1995 96 1 250 259 10.1172/JCI118029 7542280
    [Google Scholar]
  88. Sime P.J. Xing Z. Graham F.L. Csaky K.G. Gauldie J. Adenovector-mediated gene transfer of active transforming growth factor-beta1 induces prolonged severe fibrosis in rat lung. J. Clin. Invest. 1997 100 4 768 776 10.1172/JCI119590 9259574
    [Google Scholar]
  89. Kolb M. Margetts P.J. Anthony D.C. Pitossi F. Gauldie J. Transient expression of IL-1β induces acute lung injury and chronic repair leading to pulmonary fibrosis. J. Clin. Invest. 2001 107 12 1529 1536 10.1172/JCI12568 11413160
    [Google Scholar]
  90. Bucala R. Spiegel L.A. Chesney J. Hogan M. Cerami A. Circulating fibrocytes define a new leukocyte subpopulation that mediates tissue repair. Mol. Med. 1994 1 1 71 81 10.1007/BF03403533 8790603
    [Google Scholar]
  91. Phillips R.J. Burdick M.D. Hong K. Lutz M.A. Murray L.A. Xue Y.Y. Belperio J.A. Keane M.P. Strieter R.M. Circulating fibrocytes traffic to the lungs in response to CXCL12 and mediate fibrosis. J. Clin. Invest. 2004 114 3 438 446 10.1172/JCI200420997 15286810
    [Google Scholar]
  92. Moore B.B. Murray L. Das A. Wilke C.A. Herrygers A.B. Toews G.B. The role of CCL12 in the recruitment of fibrocytes and lung fibrosis. Am. J. Respir. Cell Mol. Biol. 2006 35 2 175 181 10.1165/rcmb.2005‑0239OC 16543609
    [Google Scholar]
  93. Cigana C. Lorè N.I. Riva C. De Fino I. Spagnuolo L. Sipione B. Rossi G. Nonis A. Cabrini G. Bragonzi A. Tracking the immunopathological response to Pseudomonas aeruginosa during respiratory infections. Sci. Rep. 2016 6 1 21465 10.1038/srep21465 26883959
    [Google Scholar]
  94. Henderson A.G. Davis J.M. Keith J.D. Green M.E. Oden A.M. Rowe S.M. Birket S.E. Static mucus impairs bacterial clearance and allows chronic infection with Pseudomonas aeruginosa in the cystic fibrosis rat. Eur. Respir. J. 2022 60 3 2101032 10.1183/13993003.01032‑2021 35115338
    [Google Scholar]
  95. Riordan J.R. Rommens J.M. Kerem B.S. Alon N. Rozmahel R. Grzelczak Z. Zielenski J. Lok S. Plavsic N. Chou J.L. Drumm M.L. Iannuzzi M.C. Collins F.S. Tsui L-C. Identification of the cystic fibrosis gene: Cloning and characterization of complementary DNA. Science 1989 245 4922 1066 1073 10.1126/science.2475911 2475911
    [Google Scholar]
  96. Ledermann B. Embryonic stem cells and gene targeting. Exp. Physiol. 2000 85 6 603 613 10.1111/j.1469‑445X.2000.02105.x 11187956
    [Google Scholar]
  97. Bruscia E.M. Zhang P.X. Barone C. Scholte B.J. Homer R. Krause D.S. Egan M.E. Increased susceptibility of Cftr −/− mice to LPS-induced lung remodeling. Am. J. Physiol. Lung Cell. Mol. Physiol. 2016 310 8 L711 L719 10.1152/ajplung.00284.2015 26851259
    [Google Scholar]
  98. Scholte B.J. Davidson D.J. Wilke M. de Jonge H.R. Animal models of cystic fibrosis. J. Cyst. Fibros. 2004 3 Suppl. 2 183 190 10.1016/j.jcf.2004.05.039 15463956
    [Google Scholar]
  99. Snouwaert J.N. Brigman K.K. Latour A.M. Malouf N.N. Boucher R.C. Smithies O. Koller B.H. An animal model for cystic fibrosis made by gene targeting. Science 1992 257 5073 1083 1088 10.1126/science.257.5073.1083 1380723
    [Google Scholar]
  100. Ratcliff R. Evans M.J. Cuthbert A.W. MacVinish L.J. Foster D. Anderson J.R. Colledge W.H. Production of a severe cystic fibrosis mutation in mice by gene targeting. Nat. Genet. 1993 4 1 35 41 10.1038/ng0593‑35 7685652
    [Google Scholar]
  101. Rozmahe R. Wilschanski M. Matin A. Plyte S. Oliver M. Auerbach W. Moore A. Forstner J. Durie P. Nadeau J. Bear C. Tsui L.C. Modulation of disease severity in cystic fibrosis transmembrane conductance regulator deficient mice by a secondary genetic factor. Nat. Genet. 1996 12 3 280 287 10.1038/ng0396‑280 8589719
    [Google Scholar]
  102. Hasty P. O’Neal W.K. Liu K.Q. Morris A.P. Bebok Z. Shumyatsky G.B. Jilling T. Sorscher E.J. Bradley A. Beaudet A.L. Severe phenotype in mice with termination mutation in exon 2 of cystic fibrosis gene. Somat. Cell Mol. Genet. 1995 21 3 177 187 10.1007/BF02254769 7482032
    [Google Scholar]
  103. Dorin J.R. Dickinson P. Emslie E. Clarke A.R. Dobbie L. Hooper M.L. Halford S. Wainwright B.J. Porteous D.J. Successful targeting of the mouse cystic fibrosis transmembrane conductance regulator gene in embryonal stem cells. Transgenic Res. 1992 1 2 101 105 10.1007/BF02513027 1284480
    [Google Scholar]
  104. O’Neal W.K. Hasty P. McCray P.B. Jr Casey B. RiveraPérez J. Welsh M.J. Beaudet A.L. Bradley A. A severe phenotype in mice with a duplication of exon 3 in the cystic fibrosis locus. Hum. Mol. Genet. 1993 2 10 1561 1569 10.1093/hmg/2.10.1561 7505691
    [Google Scholar]
  105. Colledge W.H. Abella B.S. Southern K.W. Ratcliff R. Jiang C. Cheng S.H. MacVinish L.J. Anderson J.R. Cuthbert A.W. Evans M.J. Generation and characterization of a ΔF508 cystic fibrosis mouse model. Nat. Genet. 1995 10 4 445 452 10.1038/ng0895‑445 7545494
    [Google Scholar]
  106. Zeiher B.G. Eichwald E. Zabner J. Smith J.J. Puga A.P. McCray P.B. Jr Capecchi M.R. Welsh M.J. Thomas K.R. A mouse model for the delta F508 allele of cystic fibrosis. J. Clin. Invest. 1995 96 4 2051 2064 10.1172/JCI118253 7560099
    [Google Scholar]
  107. van Doorninck J.H. French P.J. Verbeek E. Peters R.H. Morreau H. Bijman J. Scholte B.J. A mouse model for the cystic fibrosis delta F508 mutation. EMBO J. 1995 14 18 4403 4411 10.1002/j.1460‑2075.1995.tb00119.x 7556083
    [Google Scholar]
  108. French P.J. van Doorninck J.H. Peters R.H. Verbeek E. Ameen N.A. Marino C.R. de Jonge H.R. Bijman J. Scholte B.J. A delta F508 mutation in mouse cystic fibrosis transmembrane conductance regulator results in a temperature-sensitive processing defect in vivo. J. Clin. Invest. 1996 98 6 1304 1312 10.1172/JCI118917 8823295
    [Google Scholar]
  109. Haston C.K. McKerlie C. Newbigging S. Corey M. Rozmahel R. Tsui L.C. Detection of modifier loci influencing the lung phenotype of cystic fibrosis knockout mice. Mamm. Genome 2002 13 11 605 613 10.1007/s00335‑002‑2190‑7 12461645
    [Google Scholar]
  110. Kolanko E. Cargnoni A. Papait A. Silini A.R. Czekaj P. Parolini O. The evolution of in vitro models of lung fibrosis: Promising prospects for drug discovery. Eur. Respir. Rev. 2024 33 171 230127 10.1183/16000617.0127‑2023 38232990
    [Google Scholar]
  111. Kendall R.T. Feghali-Bostwick C.A. Fibroblasts in fibrosis: Novel roles and mediators. Front. Pharmacol. 2014 5 123 10.3389/fphar.2014.00123 24904424
    [Google Scholar]
  112. Weigle S. Martin E. Voegtle A. Wahl B. Schuler M. Primary cell-based phenotypic assays to pharmacologically and genetically study fibrotic diseases in vitro. J. Biol. Methods 2019 6 2 1 10.14440/jbm.2019.285 31453262
    [Google Scholar]
  113. Lehtonen S.T. Veijola A. Karvonen H. Lappi-Blanco E. Sormunen R. Korpela S. Zagai U. Sköld M.C. Kaarteenaho R. Pirfenidone and nintedanib modulate properties of fibroblasts and myofibroblasts in idiopathic pulmonary fibrosis. Respir. Res. 2016 17 1 14 10.1186/s12931‑016‑0328‑5 26846335
    [Google Scholar]
  114. Dunkern T.R. Feurstein D. Rossi G.A. Sabatini F. Hatzelmann A. Inhibition of TGF-β induced lung fibroblast to myofibroblast conversion by phosphodiesterase inhibiting drugs and activators of soluble guanylyl cyclase. Eur. J. Pharmacol. 2007 572 1 12 22 10.1016/j.ejphar.2007.06.036 17659276
    [Google Scholar]
  115. Nemeth J. Schundner A. Quast K. Winkelmann V.E. Frick M. A novel fibroblast reporter cell line for in vitro studies of pulmonary fibrosis. Front. Physiol. 2020 11 567675 10.3389/fphys.2020.567675 33162897
    [Google Scholar]
  116. Xu Y. Mizuno T. Sridharan A. Du Y. Guo M. Tang J. Wikenheiser-Brokamp K.A. Perl A.K.T. Funari V.A. Gokey J.J. Stripp B.R. Whitsett J.A. Single-cell RNA sequencing identifies diverse roles of epithelial cells in idiopathic pulmonary fibrosis. JCI Insight 2016 1 20 e90558 10.1172/jci.insight.90558 27942595
    [Google Scholar]
  117. Tan Q. Ma X.Y. Liu W. Meridew J.A. Jones D.L. Haak A.J. Sicard D. Ligresti G. Tschumperlin D.J. Nascent lung organoids reveal epithelium-and bone morphogenetic protein–mediated suppression of fibroblast activation. Am. J. Respir. Cell Mol. Biol. 2019 61 5 607 619 10.1165/rcmb.2018‑0390OC 31050552
    [Google Scholar]
  118. Wettlaufer S.H. Scott J.P. McEachin R.C. Peters-Golden M. Huang S.K. Reversal of the transcriptome by prostaglandin E2 during myofibroblast dedifferentiation. Am. J. Respir. Cell Mol. Biol. 2016 54 1 114 127 10.1165/rcmb.2014‑0468OC 26098591
    [Google Scholar]
  119. Willis B.C. Liebler J.M. Luby-Phelps K. Nicholson A.G. Crandall E.D. du Bois R.M. Borok Z. Induction of epithelial-mesenchymal transition in alveolar epithelial cells by transforming growth factor-β1: potential role in idiopathic pulmonary fibrosis. Am. J. Pathol. 2005 166 5 1321 1332 10.1016/S0002‑9440(10)62351‑6 15855634
    [Google Scholar]
  120. Kasai H. Allen J.T. Mason R.M. Kamimura T. Zhang Z. TGF-β1 induces human alveolar epithelial to mesenchymal cell transition (EMT). Respir. Res. 2005 6 1 56 10.1186/1465‑9921‑6‑56 15946381
    [Google Scholar]
  121. Zheng S. Wang Q. D’Souza V. Bartis D. Dancer R. Parekh D. Gao F. Lian Q. Jin S. Thickett D.R. ResolvinD1 stimulates epithelial wound repair and inhibits TGF-β-induced EMT whilst reducing fibroproliferation and collagen production. Lab. Invest. 2018 98 1 130 140 10.1038/labinvest.2017.114 29083412
    [Google Scholar]
  122. Quaresma M.C. Pankonien I. Clarke L.A. Sousa L.S. Silva I.A.L. Railean V. Doušová T. Fuxe J. Amaral M.D. Mutant CFTR drives TWIST1 mediated epithelial–mesenchymal transition. Cell Death Dis. 2020 11 10 920 10.1038/s41419‑020‑03119‑z 33106471
    [Google Scholar]
  123. Hosper N.A. van den Berg P.P. de Rond S. Popa E.R. Wilmer M.J. Masereeuw R. Bank R.A. Epithelial-to-mesenchymal transition in fibrosis: Collagen type I expression is highly upregulated after EMT, but does not contribute to collagen deposition. Exp. Cell Res. 2013 319 19 3000 3009 10.1016/j.yexcr.2013.07.014 23906925
    [Google Scholar]
  124. Prasad S. Hogaboam C.M. Jarai G. Deficient repair response of IPF fibroblasts in a co-culture model of epithelial injury and repair. Fibrogenesis Tissue Repair 2014 7 1 7 10.1186/1755‑1536‑7‑7 24834127
    [Google Scholar]
  125. Asmani M. Velumani S. Li Y. Wawrzyniak N. Hsia I. Chen Z. Hinz B. Zhao R. Fibrotic microtissue array to predict anti-fibrosis drug efficacy. Nat. Commun. 2018 9 1 2066 10.1038/s41467‑018‑04336‑z 29802256
    [Google Scholar]
  126. Matera D.L. DiLillo K.M. Smith M.R. Davidson C.D. Parikh R. Said M. Wilke C.A. Lombaert I.M. Arnold K.B. Moore B.B. Baker B.M. Microengineered 3D pulmonary interstitial mimetics highlight a critical role for matrix degradation in myofibroblast differentiation. Sci. Adv. 2020 6 37 eabb5069 10.1126/sciadv.abb5069 32917680
    [Google Scholar]
  127. Kabadi P.K. Rodd A.L. Simmons A.E. Messier N.J. Hurt R.H. Kane A.B. A novel human 3D lung microtissue model for nanoparticle-induced cell-matrix alterations. Part. Fibre Toxicol. 2019 16 1 15 10.1186/s12989‑019‑0298‑0 30943996
    [Google Scholar]
  128. Xu H. Jiao Y. Qin S. Zhao W. Chu Q. Wu K. Organoid technology in disease modelling, drug development, personalized treatment and regeneration medicine. Exp. Hematol. Oncol. 2018 7 1 30 10.1186/s40164‑018‑0122‑9 30534474
    [Google Scholar]
  129. Hu W. Lazar M.A. Modelling metabolic diseases and drug response using stem cells and organoids. Nat. Rev. Endocrinol. 2022 18 12 744 759 10.1038/s41574‑022‑00733‑z 36071283
    [Google Scholar]
  130. Clevers H. Modeling development and disease with organoids. Cell 2016 165 7 1586 1597 10.1016/j.cell.2016.05.082 27315476
    [Google Scholar]
  131. Asmani M. Zhao R. Fibrosis on a chip for screening of anti-fibrosis drugs. Myofibroblasts: Methods and Protocols. New York, NY Springer US 2021 263 274
    [Google Scholar]
  132. Mejías J.C. Nelson M.R. Liseth O. Roy K. A 96-well format microvascularized human lung-on-a-chip platform for microphysiological modeling of fibrotic diseases. Lab Chip 2020 20 19 3601 3611 10.1039/D0LC00644K 32990704
    [Google Scholar]
  133. Huh D. Matthews B.D. Mammoto A. Montoya-Zavala M. Hsin H.Y. Ingber D.E. Reconstituting organ-level lung functions on a chip. Science 2010 328 5986 1662 1668 10.1126/science.1188302 20576885
    [Google Scholar]
  134. Danku A.E. Dulf E.H. Braicu C. Jurj A. Berindan-Neagoe I. Organ-on-a-chip: A survey of technical results and problems. Front. Bioeng. Biotechnol. 2022 10 840674 10.3389/fbioe.2022.840674 35223800
    [Google Scholar]
  135. Sundarakrishnan A. Chen Y. Black L.D. Aldridge B.B. Kaplan D.L. Engineered cell and tissue models of pulmonary fibrosis. Adv. Drug Deliv. Rev. 2018 129 78 94 10.1016/j.addr.2017.12.013 29269274
    [Google Scholar]
/content/journals/crmr/10.2174/011573398X365726250423074014
Loading
/content/journals/crmr/10.2174/011573398X365726250423074014
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test