Skip to content
2000
Volume 21, Issue 4
  • ISSN: 1573-398X
  • E-ISSN: 1875-6387

Abstract

Asthma is a chronic inflammatory disorder of the respiratory airways that is characterized by narrowing of airways, wheezing, difficulty in respiration, shortness of breath, stiffness in the chest region, and sometimes cough. In some cases, mucus secretion is enhanced. Several factors precipitate asthma. These factors may contribute individually or collectively to the pathophysiology of asthma. The objective of this review is to compile a detailed description of pathways involved in asthma. This compilation helps provide a better understanding of the disease. The information provided in this review may be used for planning a personalized therapy. Besides pathways, this review includes the current therapy used for asthma management. New combinations of drugs targeting multiple pathways can be developed to better manage the disease.

Loading

Article metrics loading...

/content/journals/crmr/10.2174/011573398X322807241009103428
2024-10-15
2025-12-15
Loading full text...

Full text loading...

References

  1. KaplanA.G. BalterM.S. BellA.D. KimH. McIvorR.A. Diagnosis of asthma in adults.CMAJ200918110E210E22010.1503/cmaj.08000619770241
    [Google Scholar]
  2. DiPiro, J.T.; Talbert, R.L.; Yee, G.C.; Matzke, G.R.; Wells, B.G.; Posey, L.M., Eds. Pharmacotherapy: A Pathophysiologic Approach, 9th ed.; McGraw-Hill Medical: New York, 2014.
  3. KharabaZ. FeghaliE. El HusseiniF. SacreH. Abou SelwanC. SaadehS. HallitS. JirjeesF. AlObaidiH. SalamehP. MalaebD. An assessment of quality of life in patients with asthma through physical, emotional, social, and occupational aspects. A cross-sectional study.Front. Public Health20221088378410.3389/fpubh.2022.88378436117601
    [Google Scholar]
  4. GambadauroA. GallettaF. Li PomiA. MantiS. PiedimonteG. Immune response to respiratory viral infections.Int. J. Mol. Sci.20242511617810.3390/ijms2511617838892370
    [Google Scholar]
  5. SteinkeJ.W. BorishL. Th2 cytokines and asthma — Interleukin-4: Its role in the pathogenesis of asthma, and targeting it for asthma treatment with interleukin-4 receptor antagonists.Respir. Res.200122667010.1186/rr4011686867
    [Google Scholar]
  6. MantiS. PiedimonteG. An overview on the RSV-mediated mechanisms in the onset of non-allergic asthma.Front Pediatr.20221099829610.3389/fped.2022.99829636204661
    [Google Scholar]
  7. SinyorB. PerezL. Pathophysiology of asthma.StatPearlsTreasure Island (FL): StatPearls Publishing2023
    [Google Scholar]
  8. PelaiaC. HefflerE. CrimiC. MaglioA. VatrellaA. PelaiaG. CanonicaG.W. Interleukins 4 and 13 in asthma: Key pathophysiologic cytokines and druggable molecular targets.Front. Pharmacol.20221385194010.3389/fphar.2022.85194035350765
    [Google Scholar]
  9. AthariS.S. AthariS.M. BeyzayF. MovassaghiM. MortazE. TaghaviM. Critical role of Toll-like receptors in pathophysiology of allergic asthma.Eur. J. Pharmacol.2017808212710.1016/j.ejphar.2016.11.04727894811
    [Google Scholar]
  10. ZakeriA. RussoM. Dual role of toll-like receptors in human and experimental asthma models.Front. Immunol.201891027102710.3389/fimmu.2018.0102729867994
    [Google Scholar]
  11. KoschinskiA. ZaccoloM. Activation of PKA in cell requires higher concentration of cAMP than in vitro : implications for compartmentalization of cAMP signalling.Sci. Rep.2017711409010.1038/s41598‑017‑13021‑y29074866
    [Google Scholar]
  12. AthariS.S. Targeting cell signaling in allergic asthma.Signal Transduct. Target. Ther.2019414510.1038/s41392‑019‑0079‑031637021
    [Google Scholar]
  13. LiuJ. XiaoQ. XiaoJ. NiuC. LiY. ZhangX. ZhouZ. ShuG. YinG. Wnt/β-catenin signalling: function, biological mechanisms, and therapeutic opportunities.Signal Transduct. Target. Ther.202271310.1038/s41392‑021‑00762‑634980884
    [Google Scholar]
  14. LeeH. BaeS. ChoiB.W. YoonY. WNT/β-catenin pathway is modulated in asthma patients and LPS-stimulated RAW264.7 macrophage cell line.Immunopharmacol. Immunotoxicol.2012341566510.3109/08923973.2011.57470421699440
    [Google Scholar]
  15. KumarA. SinghU.K. KiniS.G. GargV. AgrawalS. TomarP.K. PathakP. ChaudharyA. GuptaP. MalikA. JNK pathway signaling: a novel and smarter therapeutic targets for various biological diseases.Future Med. Chem.20157152065208610.4155/fmc.15.13226505831
    [Google Scholar]
  16. AudoussetC. McGovernT. MartinJ.G. Role of Nrf2 in disease: Novel molecular mechanisms and therapeutic approaches – pulmonary disease/asthma.Front. Physiol.20211272780610.3389/fphys.2021.72780634658913
    [Google Scholar]
  17. LiN. NelA.E. Role of the Nrf2-mediated signaling pathway as a negative regulator of inflammation: implications for the impact of particulate pollutants on asthma.Antioxid. Redox Signal.200681-2889810.1089/ars.2006.8.8816487041
    [Google Scholar]
  18. LiuQ. GaoY. CiX. Role of Nrf2 and its activators in respiratory diseases.Oxid. Med. Cell. Longev.2019201911710.1155/2019/709053430728889
    [Google Scholar]
  19. ClaphamDE Calcium signaling.Cell2007131610475810.1016/j.cell.2007.11.028
    [Google Scholar]
  20. DruilheA. WallaertB. TsicopoulosA. e SilvaJ-R.L. Tillie-LeblondI. TonnelA.B. PretolaniM. Apoptosis, proliferation, and expression of Bcl-2, Fas, and Fas ligand in bronchial biopsies from asthmatics.Am. J. Respir. Cell Mol. Biol.199819574775710.1165/ajrcmb.19.5.31669806739
    [Google Scholar]
  21. PirzadG. JafariM. TavanaS. SadrayeeH. GhavamiS. ShajieiA. GhaneiM. The role of fas-fasl signaling pathway in induction of apoptosis in patients with sulfur mustard-induced chronic bronchiolitis.J. Toxicol.201020101710.1155/2010/37361221317984
    [Google Scholar]
  22. ZhuL. ChenX. ChongL. KongL. WenS. ZhangH. ZhangW. LiC. Adiponectin alleviates exacerbation of airway inflammation and oxidative stress in obesity-related asthma mice partly through AMPK signaling pathway.Int. Immunopharmacol.20196739640710.1016/j.intimp.2018.12.03030584969
    [Google Scholar]
  23. RehanV.K. Dargan-BatraS.K. WangY. CernyL. SakuraiR. SantosJ. BelooseskyR. GayleD. TordayJ.S. A paradoxical temporal response of the PTHrP/PPARγ signaling pathway to lipopolysaccharide in an in vitro model of the developing rat lung.Am. J. Physiol. Lung Cell. Mol. Physiol.20072931L182L19010.1152/ajplung.00319.200617435078
    [Google Scholar]
  24. DomingoC. PalomaresO. SandhamD.A. ErpenbeckV.J. AltmanP. The prostaglandin D2 receptor 2 pathway in asthma: a key player in airway inflammation.Respir. Res.201819118910.1186/s12931‑018‑0893‑x30268119
    [Google Scholar]
  25. SolerX. RamsdellJ. Anticholinergics/antimuscarinic drugs in asthma.Curr. Allergy Asthma Rep.2014141248410.1007/s11882‑014‑0484‑y25283149
    [Google Scholar]
  26. TrinhH.K.T. SuhD.H. NguyenT.V.T. ChoiY. ParkH.S. ShinY.S. Characterization of cysteinyl leukotriene-related receptors and their interactions in a mouse model of asthma.Prostaglandins Leukot. Essent. Fatty Acids2019141172310.1016/j.plefa.2018.12.00230661601
    [Google Scholar]
  27. KochS. FinottoS. Role of interferon-λ in allergic asthma.J. Innate Immun.20157322423010.1159/00036945925592858
    [Google Scholar]
  28. Sanchez-CuellarS. de la FuenteH. Cruz-AdaliaA. LamanaA. CibrianD. GironR.M. VaraA. Sanchez-MadridF. AncocheaJ. Reduced expression of galectin-1 and galectin-9 by leucocytes in asthma patients.Clin. Exp. Immunol.2012170336537410.1111/j.1365‑2249.2012.04665.x23121677
    [Google Scholar]
  29. EdwardsM.R. BartlettN.W. ClarkeD. BirrellM. BelvisiM. JohnstonS.L. Targeting the NF-κB pathway in asthma and chronic obstructive pulmonary disease.Pharmacol. Ther.2009121111310.1016/j.pharmthera.2008.09.00318950657
    [Google Scholar]
  30. LiuY. MiaoY. GaoX. WangY.Y. WangH. ZhengY.W. ZhaoZ.Y. MicroRNA-200a affects the proliferation of airway smooth muscle cells and airway remodeling by targeting FOXC1 via the PI3K/AKT signaling pathway in ovalbumin-induced asthmatic mice.Cell. Physiol. Biochem.20185062365238910.1159/00049509730423573
    [Google Scholar]
  31. ZhuX. ChenQ. LiuZ. LuoD. LiL. ZhongY. Low expression and hypermethylation of FOXP3 in regulatory T cells are associated with asthma in children.Exp. Ther. Med.20201932045205210.3892/etm.2020.844332104264
    [Google Scholar]
  32. NagataY. SuzukiR. FcεR.I. FcεRI: A master regulator of mast cell functions.Cells202211462210.3390/cells1104062235203273
    [Google Scholar]
  33. ZhaoS. WangC. Regulatory T cells and asthma.J. Zhejiang Univ. Sci. B201819966367310.1631/jzus.B170034630178633
    [Google Scholar]
  34. MaZ. PaekD. OhC.K. Plasminogen activator inhibitor-1 and asthma: role in the pathogenesis and molecular regulation.Clin. Exp. Allergy20093981136114410.1111/j.1365‑2222.2009.03272.x19438580
    [Google Scholar]
  35. TripathiK.D. Essentials of Medical Pharmacology. 7th ed. New Delhi: Jaypee Brothers Medical Publishers; 2013.
  36. HsuE. BajajT. Beta 2 Agonists.StatPearls.Treasure Island, FLStatPearls Publishing2023
    [Google Scholar]
  37. TripathiK.D. Drugs for cough and bronchial asthma. In: Essentials of Medical Pharmacology. 8th ed. New Delhi: Jaypee Brothers Medical Publishers; 2021.
  38. PicciottoM.R. HigleyM.J. MineurY.S. Acetylcholine as a neuromodulator: cholinergic signaling shapes nervous system function and behavior.Neuron201276111612910.1016/j.neuron.2012.08.03623040810
    [Google Scholar]
  39. FujiiT. MashimoM. MoriwakiY. MisawaH. OnoS. HoriguchiK. KawashimaK. Expression and function of the cholinergic system in immune cells.Front. Immunol.20178108510.3389/fimmu.2017.0108528932225
    [Google Scholar]
  40. GosensR. GrossN. The mode of action of anticholinergics in asthma.Eur. Respir. J.2018524170124710.1183/13993003.01247‑201730115613
    [Google Scholar]
  41. BrightlingC.E. BrusselleG. AltmanP. The impact of the prostaglandin D 2 receptor 2 and its downstream effects on the pathophysiology of asthma.Allergy202075476176810.1111/all.1400131355946
    [Google Scholar]
  42. CampbellA.P. SmrckaA.V. Targeting G protein-coupled receptor signalling by blocking G proteins.Nat. Rev. Drug Discov.2018171178980310.1038/nrd.2018.13530262890
    [Google Scholar]
  43. HerediaJ.L. Tiotropium bromide: an update.Open Respir. Med. J.200931435210.2174/187430640090301004319461900
    [Google Scholar]
  44. GhosseinN. KangM. LakhkarA.D. Anticholinergic Medications.StatPearls.Treasure Island, FLStatPearls Publishing2023
    [Google Scholar]
  45. GerretsenP. PollockB.G. Drugs with anticholinergic properties: a current perspective on use and safety.Expert Opin. Drug Saf.201110575176510.1517/14740338.2011.57989921635190
    [Google Scholar]
  46. SaberiF. O’DonnellD.E. The role of tiotropium bromide, a long-acting anticholinergic bronchodilator, in the management of COPD.Treat. Respir. Med.20054427528110.2165/00151829‑200504040‑0000516086600
    [Google Scholar]
  47. PatelP. SaabH. AboeedA. Ipratropium.StatPearlsTreasure Island (FL): StatPearls Publishing2023
    [Google Scholar]
  48. Ritter JM, Flower RJ, Henderson G, et al. Rang & Dale's Pharmacology E-Book. 10th ed. Amsterdam: Elsevier; 2023.
  49. GrayS.L. AndersonM.L. DublinS. HanlonJ.T. HubbardR. WalkerR. YuO. CraneP.K. LarsonE.B. Cumulative use of strong anticholinergics and incident dementia: a prospective cohort study.JAMA Intern. Med.2015175340140710.1001/jamainternmed.2014.766325621434
    [Google Scholar]
  50. DelgadoB.J. BajajT. Tiotropium.StatPearlsTreasure Island (FL): StatPearls Publishing2023
    [Google Scholar]
  51. MonteiroJ. AlvesM. OliveiraP. SilvaB. Structure-bioactivity relationships of methylxanthines: Trying to make sense of all the promises and the drawbacks.Molecules201621897410.3390/molecules2108097427472311
    [Google Scholar]
  52. GottwaltB. TadiP. Methylxanthines.StatPearlsTreasure Island (FL): StatPearls Publishing2023
    [Google Scholar]
  53. JacksonE.K. The 2′,3′-cAMP-adenosine pathway.Am. J. Physiol. Renal Physiol.20113016F1160F116710.1152/ajprenal.00450.201121937608
    [Google Scholar]
  54. PellegA. PolosaR. Adenosine receptors in the lungs.Receptors20183446147010.1007/978‑3‑319‑90808‑3_18
    [Google Scholar]
  55. WilsonC.N. NadeemA. SpinaD. BrownR. PageC.P. MustafaS.J. Adenosine receptors and asthma.Handb. Exp. Pharmacol.200919319332936210.1007/978‑3‑540‑89615‑9_1119639287
    [Google Scholar]
  56. SuttonB.J. DaviesA.M. BaxH.J. KaragiannisS.N. IgE antibodies: From structure to function and clinical translation.Antibodies (Basel)2019811910.3390/antib801001931544825
    [Google Scholar]
  57. BergheaE.C. BalgradeanM. PavelescuC. CirstoveanuC.G. TomaC.L. IonescuM.D. BumbaceaR.S. Clinical experience with anti-ige monoclonal antibody (omalizumab) in pediatric severe allergic asthma—a romanian perspective.Children (Basel)2021812114110.3390/children812114134943337
    [Google Scholar]
  58. HumbertM. TailléC. MalaL. Le GrosV. JustJ. MolimardM. STELLAIR investigators Omalizumab effectiveness in patients with severe allergic asthma according to blood eosinophil count: the STELLAIR study.Eur. Respir. J.2018515170252310.1183/13993003.02523‑201729545284
    [Google Scholar]
  59. KumarC. ZitoP.M. Omalizumab.StatPearls.Treasure Island, FLStatPearls Publishing2023
    [Google Scholar]
  60. PoddigheD, Brambilla I, Licari A, Gian L, Marseglia. Omalizumab in the therapy of pediatric Asthma.Recent Pat Inflamm Allergy Drug Discov201812210310910.2174/1872213X1266618043016135129714140
    [Google Scholar]
  61. NormansellR. WalkerS. MilanS.J. WaltersE.H. NairP. Omalizumab for asthma in adults and children.Cochrane Libr.201420141CD00355910.1002/14651858.CD003559.pub424414989
    [Google Scholar]
  62. GonY. MaruokaS. MizumuraK. Omalizumab and IgE in the control of severe allergic asthma.Front. Pharmacol.2022131383901110.3389/fphar.2022.83901135359867
    [Google Scholar]
  63. ThomsonNC ChaudhuriR Omalizumab: clinical use for the management of asthma.Clin Med Insights Circ Respir Pulm Med.20126274010.4137/CCRPM.S7793
    [Google Scholar]
  64. Pazdernik TL. Lippincott's Illustrated Reviews: Pharmacology, 4th Edition.Med Sci Sports Exerc.2009417146410.1249/MSS.0b013e3181a21294
    [Google Scholar]
  65. GilfillanA.M. AustinS.J. MetcalfeD.D. Mast cell biology: introduction and overview.Adv. Exp. Med. Biol.201171621210.1007/978‑1‑4419‑9533‑9_121713648
    [Google Scholar]
  66. FinnD.F. WalshJ.J. Twenty-first century mast cell stabilizers.Br. J. Pharmacol.20131701233710.1111/bph.1213823441583
    [Google Scholar]
  67. PundirP. KulkaM. The role of G protein-coupled receptors in mast cell activation by antimicrobial peptides: is there a connection?Immunol. Cell Biol.201088663264010.1038/icb.2010.2720309008
    [Google Scholar]
  68. BanafeaG.H. BakhashabS. AlshaibiH.F. NatesanP.P. RasoolM. The role of human mast cells in allergy and asthma.Bioengineered20221337049706410.1080/21655979.2022.204427835266441
    [Google Scholar]
  69. ZhangT. FinnD.F. BarlowJ.W. WalshJ.J. Mast cell stabilisers.Eur. J. Pharmacol.201677815816810.1016/j.ejphar.2015.05.07126130122
    [Google Scholar]
  70. AgierJ. PastwińskaJ. Brzezińska-BłaszczykE. An overview of mast cell pattern recognition receptors.Inflamm. Res.201867973774610.1007/s00011‑018‑1164‑529909493
    [Google Scholar]
  71. MonticelliS. LeoniC. Epigenetic and transcriptional control of mast cell responses.F1000Res.20176206410.12688/f1000research.12384.1
    [Google Scholar]
  72. BrooksC.R. van DalenC.J. HermansI.F. GibsonP.G. SimpsonJ.L. DouwesJ. Sputum basophils are increased in eosinophilic asthma compared with non-eosinophilic asthma phenotypes.Allergy201772101583158610.1111/all.1318528426171
    [Google Scholar]
  73. PoddigheD. MathiasC.B. BrambillaI. MarsegliaG.L. OettgenH.C. Importance of basophils in eosinophilic asthma: the murine counterpart.J. Biol. Regul. Homeost. Agents201832233533929685015
    [Google Scholar]
  74. ChoiJ. AzmatC.E. Leukotriene Receptor Antagonists.StatPearls.Treasure Island, FLStatPearls Publishing2023
    [Google Scholar]
  75. TrinhH.K.T. LeeS.H. CaoT.B.T. ParkH.S. Asthma pharmacotherapy: an update on leukotriene treatments.Expert Rev. Respir. Med.201913121169117810.1080/17476348.2019.167064031544544
    [Google Scholar]
  76. BergerA. Science commentary: What are leukotrienes and how do they work in asthma?BMJ199931972029010.1136/bmj.319.7202.9010398630
    [Google Scholar]
  77. PyasiK. TufvessonE. MoitraS. Evaluating the role of leukotriene-modifying drugs in asthma management: Are their benefits ‘losing in translation’?Pulm. Pharmacol. Ther.201641525910.1016/j.pupt.2016.09.00627651322
    [Google Scholar]
  78. CuzzoB. LappinS.L. Physiology, Leukotrienes.StatPearls.Treasure Island, FLStatPearls Publishing2023
    [Google Scholar]
  79. Peters-GoldenM. CanettiC. MancusoP. CoffeyM.J. Leukotrienes: underappreciated mediators of innate immune responses.J. Immunol.2005174258959410.4049/jimmunol.174.2.58915634873
    [Google Scholar]
  80. Peters-GoldenM. HendersonW.R.Jr Leukotrienes.N. Engl. J. Med.2007357181841185410.1056/NEJMra071371
    [Google Scholar]
  81. RamamoorthyS. CidlowskiJ.A. Corticosteroids.Rheum. Dis. Clin. North Am.2016421153110.1016/j.rdc.2015.08.00226611548
    [Google Scholar]
  82. BarnesP.J. Corticosteroid effects on cell signalling.Eur. Respir. J.200627241342610.1183/09031936.06.0012540416452600
    [Google Scholar]
  83. HodgensA. SharmanT. Corticosteroids.StatPearls.Treasure Island, FLStatPearls Publishing2023
    [Google Scholar]
  84. BarnesPJ Inhaled corticosteroids.Pharmaceuticals20103351454010.3390/ph3030514
    [Google Scholar]
  85. TranchantC. BraunS. WarterJ.M. Mechanisms of action of glucocorticoids: role of lipocortins.Neurological Review1989145813818
    [Google Scholar]
  86. KragballeK. Topical corticosteroids: mechanisms of action.Acta Derm. Venereol. Suppl. (Stockh.)1989151710https://pubmed.ncbi.nlm.nih.gov/2533778/2533778
    [Google Scholar]
  87. Herrera-LuisE. Hernandez-PachecoN. VijverbergS.J. FloresC. Pino-YanesM. Role of genomics in asthma exacerbations.Curr. Opin. Pulm. Med.201925110111210.1097/MCP.000000000000053330334825
    [Google Scholar]
  88. NtontsiP. PhotiadesA. ZervasE. XanthouG. SamitasK. Genetics and epigenetics in asthma.Int. J. Mol. Sci.2021225241210.3390/ijms2205241233673725
    [Google Scholar]
  89. AkhabirL. SandfordA.J. Genome-wide association studies for discovery of genes involved in asthma.Respirology201116339640610.1111/j.1440‑1843.2011.01939.x21276132
    [Google Scholar]
  90. TripathiP. AwasthiS. GaoP. ADAM metallopeptidase domain 33 (ADAM33): a promising target for asthma.Mediators Inflamm.201420141810.1155/2014/57202524817794
    [Google Scholar]
  91. HolgateS.T. DaviesD.E. RorkeS. CakebreadJ. MurphyG. PowellR.M. HollowayJ.W. ADAM 33 and its association with airway remodeling and hyperresponsiveness in asthma.Clin. Rev. Allergy Immunol.200427102303410.1385/CRIAI:27:1:02315347848
    [Google Scholar]
  92. BabuKS DaviesDE HolgateST Role of tumor necrosis factor alpha in asthma.Immunol Allergy Clin North Am.20042445839710.1016/j.iac.2004.06.010
    [Google Scholar]
  93. KimS-H. ChoB-Y. ParkC-S. ShinE-S. ChoE-Y. YangE-M. KimC-W. HongC-S. LeeJ-E. ParkH-S. Alpha-T-catenin ( CTNNA3 ) gene was identified as a risk variant for toluene diisocyanate-induced asthma by genome-wide association analysis.Clin. Exp. Allergy200939220321210.1111/j.1365‑2222.2008.03117.x19187332
    [Google Scholar]
  94. McGeachieM.J. WuA.C. TseS.M. ClemmerG.L. SordilloJ. HimesB.E. Lasky-SuJ. ChaseR.P. MartinezF.D. WeekeP. ShafferC.M. XuH. DennyJ.C. RodenD.M. PanettieriR.A.Jr RabyB.A. WeissS.T. TantisiraK.G. CTNNA3 and SEMA3D: Promising loci for asthma exacerbation identified through multiple genome-wide association studies.J. Allergy Clin. Immunol.201513661503151010.1016/j.jaci.2015.04.03926073756
    [Google Scholar]
  95. LabudaM. LabergeS. BrièreJ. BérubéD. BeaulieuP. PastinenT. KrajinovicM. Phosphodiesterase type 4D gene polymorphism: association with the response to short-acting bronchodilators in paediatric asthma patients.Mediators Inflamm.201120111610.1155/2011/30169521876611
    [Google Scholar]
  96. HimesB.E. HunninghakeG.M. BaurleyJ.W. RafaelsN.M. SleimanP. StrachanD.P. WilkJ.B. Willis-OwenS.A.G. KlandermanB. Lasky-SuJ. LazarusR. MurphyA.J. Soto-QuirosM.E. AvilaL. BeatyT. MathiasR.A. RuczinskiI. BarnesK.C. CeledónJ.C. CooksonW.O.C. GaudermanW.J. GillilandF.D. HakonarsonH. LangeC. MoffattM.F. O’ConnorG.T. RabyB.A. SilvermanE.K. WeissS.T. Genome-wide association analysis identifies PDE4D as an asthma-susceptibility gene.Am. J. Hum. Genet.200984558159310.1016/j.ajhg.2009.04.00619426955
    [Google Scholar]
  97. KimS.H. ChoiH. YoonM.G. YeY.M. ParkH.S. Dipeptidyl-peptidase 10 as a genetic biomarker for the aspirin-exacerbated respiratory disease phenotype.Ann. Allergy Asthma Immunol.2015114320821310.1016/j.anai.2014.12.00325592153
    [Google Scholar]
  98. ZhangY. PoobalasingamT. YatesL.L. WalkerS.A. TaylorM.S. ChessumL. HarrisonJ. TsaprouniL. AdcockI.M. LloydC.M. CooksonW.O. MoffattM.F. DeanC.H. Manipulation of dipeptidylpeptidase 10 in mouse and human in vivo and in vitro models indicates a protective role in asthma.Dis. Model. Mech.2018111dmm03136910.1242/dmm.03136929361513
    [Google Scholar]
  99. MurkW. WalshK. HsuL.I. ZhaoL. BrackenM.B. DeWanA.T. Attempted replication of 50 reported asthma risk genes identifies a SNP in RAD50 as associated with childhood atopic asthma.Hum. Hered.20117129710510.1159/00031953621734400
    [Google Scholar]
  100. LiX. HowardT.D. ZhengS.L. HaselkornT. PetersS.P. MeyersD.A. BleeckerE.R. Genome-wide association study of asthma identifies RAD50-IL13 and HLA-DR/DQ regions.J. Allergy Clin. Immunol.20101252328335.e1110.1016/j.jaci.2009.11.01820159242
    [Google Scholar]
  101. ThomsenS.F. Genetics of asthma: an introduction for the clinician.Eur. Clin. Respir. J.2015212464310.3402/ecrj.v2.2464326557257
    [Google Scholar]
  102. BønnelykkeK. PipperC.B. TavendaleR. PalmerC.N.A. BisgaardH. Filaggrin gene variants and atopic diseases in early childhood assessed longitudinally from birth.Pediatr. Allergy Immunol.201021695496110.1111/j.1399‑3038.2010.01073.x20573035
    [Google Scholar]
  103. OsawaR. AkiyamaM. ShimizuH. Filaggrin gene defects and the risk of developing allergic disorders.Allergol. Int.20116011910.2332/allergolint.10‑RAI‑027021173567
    [Google Scholar]
  104. LiuQ XiaY ZhangW A functional polymorphism in the SPINK5 gene is associated with asthma in a Chinese Han Population.BMC Med Genet.2009105910.1186/1471‑2350‑10‑59
    [Google Scholar]
  105. BirbenE. SackesenC. TurgutoğluN. KalayciÖ. The role of SPINK5 in asthma related physiological events in the airway epithelium.Respir. Med.2012106334935510.1016/j.rmed.2011.11.00722133475
    [Google Scholar]
  106. LiJ. HaoY. LiW. LvX. GaoP. HLA-G in asthma and its potential as an effective therapeutic agent.Allergol. Immunopathol. (Madr.)2023511222910.15586/aei.v51i1.65036617818
    [Google Scholar]
  107. NaidooD. WuA.C. BrilliantM.H. DennyJ. IngramC. KitchnerT.E. LinnemanJ.G. McGeachieM.J. RodenD.M. ShafferC.M. ShahA. WeekeP. WeissS.T. XuH. MedinaM.W. A polymorphism in HLA-G modifies statin benefit in asthma.Pharmacogenomics J.201515327227710.1038/tpj.2014.5525266681
    [Google Scholar]
  108. GuW. LeiJ. ZhuH. XiaoY. ZhangZ. ZhaoL. Effect of the BMPR-II-SMAD3/MRTF pathway on proliferation and migration of ASMCs and the mechanism in asthma.Mol. Biol. Rep.202249109283929610.1007/s11033‑022‑07764‑936008606
    [Google Scholar]
  109. AnthoniM. WangG. LeinoM.S. LauermaA.I. AleniusH.T. WolffH.J. Smad3-signalling and Th2 cytokines in normal mouse airways and in a mouse model of asthma.Int. J. Biol. Sci.20073747748510.7150/ijbs.3.47718071588
    [Google Scholar]
  110. GaoJ. LinY. QiuC. LiuY. MaY. LiuY. Association between HLA-DQA1, -DQB1 gene polymorphisms and susceptibility to asthma in northern Chinese subjects.Chin. Med. J. (Engl.)2003116710781082https://pubmed.ncbi.nlm.nih.gov/12890388/12890388
    [Google Scholar]
  111. GuoX. NiP. LiL. Association between asthma and the polymorphism of HLA-DQ genes.Zhonghua Jie He He Hu Xi Za Zhi.200124313941
    [Google Scholar]
  112. GodavaM. VrtelR. VodickaR. STAT6 - polymorphisms, haplotypes and epistasis in relation to atopy and asthma.Biomed. Pap. Med. Fac. Univ. Palacky Olomouc Czech Repub.2013157217218010.5507/bp.2013.04323752766
    [Google Scholar]
  113. WalfordH.H. DohertyT.A. STAT6 and lung inflammation.JAK-STAT201324e2530110.4161/jkst.2530124416647
    [Google Scholar]
  114. RaelEL LockeyRF Interleukin-13 signaling and its role in asthma.World Allergy Organ J.201143546410.1097/WOX.0b013e31821188e0
    [Google Scholar]
  115. CorrenJ. Role of interleukin-13 in asthma.Curr. Allergy Asthma Rep.201313541542010.1007/s11882‑013‑0373‑924026573
    [Google Scholar]
  116. EderW. KlimeckiW. YuL. von MutiusE. RiedlerJ. Braun-FahrländerC. NowakD. MartinezF.D. Toll-like receptor 2 as a major gene for asthma in children of European farmers.J. Allergy Clin. Immunol.2004113348248810.1016/j.jaci.2003.12.37415007351
    [Google Scholar]
  117. ZuoL. LucasK. FortunaC.A. ChuangC.C. BestT.M. Molecular regulation of toll-like receptors in asthma and COPD.Front. Physiol.2015631210.3389/fphys.2015.0031226617525
    [Google Scholar]
  118. MoreiraA.P. CavassaniK.A. IsmailogluU.B. HullingerR. DunleavyM.P. KnightD.A. KunkelS.L. UematsuS. AkiraS. HogaboamC.M. The protective role of TLR6 in a mouse model of asthma is mediated by IL-23 and IL-17A.J. Clin. Invest.2011121114420443210.1172/JCI4499922005301
    [Google Scholar]
  119. MurakamiY. IshiiT. NunokawaH. KurataK. NaritaT. YamashitaN. TLR9–IL-2 axis exacerbates allergic asthma by preventing IL-17A hyperproduction.Sci. Rep.20201011811010.1038/s41598‑020‑75153‑y33093516
    [Google Scholar]
  120. LazarusR. RabyB.A. LangeC. SilvermanE.K. KwiatkowskiD.J. VercelliD. KlimeckiW.J. MartinezF.D. WeissS.T. TOLL-like receptor 10 genetic variation is associated with asthma in two independent samples.Am. J. Respir. Crit. Care Med.2004170659460010.1164/rccm.200404‑491OC15201134
    [Google Scholar]
  121. DijkF.N. VijverbergS.J. Hernandez-PachecoN. RepnikK. KarimiL. MitratzaM. FarzanN. NawijnM.C. Burcharde.g. EngelkesM. VerhammeK.M. PotočnikU. Pino-YanesM. PostmaD.S. Maitland-van der ZeeA.H. KoppelmanG.H. IL1RL1 gene variations are associated with asthma exacerbations in children and adolescents using inhaled corticosteroids.Allergy202075498498910.1111/all.1412531755552
    [Google Scholar]
  122. GordonE.D. PalandraJ. Wesolowska-AndersenA. RingelL. RiosC.L. Lachowicz-ScrogginsM.E. SharpL.Z. EvermanJ.L. MacLeodH.J. LeeJ.W. MasonR.J. MatthayM.A. SheldonR.T. PetersM.C. NockaK.H. FahyJ.V. SeiboldM.A. IL1RL1 asthma risk variants regulate airway type 2 inflammation.JCI Insight2016114e8787110.1172/jci.insight.8787127699235
    [Google Scholar]
  123. KilicM. EcinS. TaskinE. SenA. KaraM. The vitamin D receptor gene polymorphisms in asthmatic children: A case-control study.Pediatr. Allergy Immunol. Pulmonol.2019322636910.1089/ped.2018.094831508258
    [Google Scholar]
  124. ZhouY. LiS. Meta-analysis of vitamin D receptor gene polymorphisms in childhood asthma.Front Pediatr.20221084369110.3389/fped.2022.84369135433530
    [Google Scholar]
  125. ZhouL. DingY. Effect of montelukast combined with terbutaline on tiffeneau-pinelli index and clinical efficacy in patients with chronic obstructive pulmonary disease.Lat. Am. J. Pharm.2021403620625http://www.latamjpharm.org/resumenes/40/3/LAJOP_40_3_1_27
    [Google Scholar]
  126. JinW. ZhaoZ. ZhouD. Effect of Montelukast sodium combined with Budesonide aerosol on airway function and T lymphocytes in asthmatic children.Pak. J. Med. Sci.20223851265127010.12669/pjms.38.5.574935799724
    [Google Scholar]
  127. HambletonG WeinbergerM TaylorJ Comparison of cromoglycate (cromolyn) and theophylline in controlling symptoms of chronic asthma. A collaborative study.Lancet197718008381510.1016/S0140‑6736(77)92601‑0
    [Google Scholar]
  128. KarpelJ.P. KotchA. ZinnyM. PesinJ. AlleyneW. A comparison of inhaled ipratropium, oral theophylline plus inhaled β-agonist, and the combination of all three in patients with COPD.Chest199410541089109410.1378/chest.105.4.10898162730
    [Google Scholar]
/content/journals/crmr/10.2174/011573398X322807241009103428
Loading
/content/journals/crmr/10.2174/011573398X322807241009103428
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test