Skip to content
2000
image of Anti-obesity Treatments with Anti-inflammatory and Antioxidant Potential and their Effects on Obesity-related Metabolic and Cardiovascular Disorders: A Narrative Review

Abstract

Introduction

Obesity is a condition that affects a large part of the global population, and especially in the Western world, leading to a significant systemic inflammatory response in the body, characterized by modification of the secretory inflammatory cytokines and adipokines. The combination of fat accumulation and inflammation can lead to concomitant conditions, such as Insulin Resistance (IR) and increased production and release of fatty acids, ultimately enhancing the occurrence of conditions like metabolic and cardiovascular disorders, with inflammation and oxidative stress being implicated in these phenomena and appearing as important interconnecting factors. In this review, an attempt is made to analyze, in terms of their full scope of action, the pharmaceutical approaches against obesity, which affect fats, sugars, adipokines, and also the central nervous system.

Methods

Using data from experimental animal procedures and clinical trials, the involvement of anti-obesity drugs against systemic chronic inflammation and oxidative stress, as well as in obesity-related cardiometabolic disorders, is analyzed.

Results

Anti-obesity treatments targeting more than one factor at the mechanistic level and limiting the body's inflammatory responses could contribute in multiple ways to improving metabolic and cardiovascular conditions and derangements. However, they carry a high risk of adverse effects, which may be reduced with the combination of such treatments, leading to a more favorable activity-to-hazard ratio and elucidation of the complete mechanistic properties of these treatments.

Discussion

Until now, many gaps in the literature remain concerning one or more of these aspects for all these treatments. Through the prism of the multi-functional nature of these compounds, an attempt is made to clarify the multi-level nature of action of these substances against obesity, potentially allowing limiting the multi-drug treatment of these conditions, leading to the limitation of interactions, and the multiple side effects related to the drug combination.

Conclusion

In order to achieve the above-mentioned objectives, in addition to investigating the full range of action of these anti-obesity drug treatments, the full history of their dose-dependent side effects and contraindications is required, through further clinical studies and analyses. These findings will shed light on the complete anti-inflammatory, antioxidant, and metabolic changes that anti-obesity treatments could offer, and the clinical manipulation of conditions associated with obesity, since the current misalignment and, in some cases, the mixed results between the already existing research groups lead to less definite conclusions.

Loading

Article metrics loading...

/content/journals/crcep/10.2174/0127724328392698250818071803
2025-08-25
2025-09-29
Loading full text...

Full text loading...

References

  1. de Heredia F.P. Gómez-Martínez S. Marcos A. Obesity, inflammation and the immune system. Proc. Nutr. Soc. 2012 71 2 332 338 10.1017/S0029665112000092 22429824
    [Google Scholar]
  2. Okunogbe A. Nugent R. Spencer G. Powis J. Ralston J. Wilding J. Economic impacts of overweight and obesity: Current and future estimates for 161 countries. BMJ Glob. Health 2022 7 9 009773 10.1136/bmjgh‑2022‑009773 36130777
    [Google Scholar]
  3. Obesity and overweight. 2024 Available from: https://www. who.int/news-room/fact-sheets/detail/obesity-and-overweight
  4. Safiri S. Grieger J.A. Ghaffari Jolfayi A. Burden of diseases attributable to excess body weight in 204 countries and territories, 1990–2019. Nutr. J. 2025 24 1 23 10.1186/s12937‑025‑01082‑z 39905517
    [Google Scholar]
  5. Ng M. Gakidou E. Lo J. Global, regional, and national prevalence of adult overweight and obesity, 1990–2021, with forecasts to 2050: A forecasting study for the Global Burden of Disease Study 2021. Lancet 2025 405 10481 813 838 10.1016/S0140‑6736(25)00355‑1 40049186
    [Google Scholar]
  6. Khanna D. Khanna S. Khanna P. Kahar P. Patel B.M. Obesity: A chronic low-grade inflammation and its markers. Cureus 2022 14 2 22711 10.7759/cureus.22711 35386146
    [Google Scholar]
  7. Osborn O. Olefsky J.M. The cellular and signaling networks linking the immune system and metabolism in disease. Nat. Med. 2012 18 3 363 374 10.1038/nm.2627 22395709
    [Google Scholar]
  8. Varra F.N. Varras M. Varra V.K. Theodosis-Nobelos P. Molecular and pathophysiological relationship between obesity and chronic inflammation in the manifestation of metabolic dysfunctions and their inflammation mediating treatment options. Mol. Med. Rep. 2024 29 6 95 [Review 10.3892/mmr.2024.13219 38606791
    [Google Scholar]
  9. Ellulu M.S. Patimah I. Khaza’ai H. Rahmat A. Abed Y. Obesity and inflammation: The linking mechanism and the complications. Arch. Med. Sci. 2017 4 4 851 863 10.5114/aoms.2016.58928 28721154
    [Google Scholar]
  10. Rheinheimer J. de Souza B.M. Cardoso N.S. Bauer A.C. Crispim D. Current role of the NLRP3 inflammasome on obesity and insulin resistance: A systematic review. Metabolism 2017 74 1 9 10.1016/j.metabol.2017.06.002 28764843
    [Google Scholar]
  11. Savini I. Gasperi V. Catani M.V. Oxidative stress and obesity. Obesity. Cham Springer 2016 10.1007/978‑3‑319‑19821‑7_6
    [Google Scholar]
  12. Ghazizadeh H. Mansoori A. Sahranavard T. The associations of oxidative stress and inflammatory markers with obesity in Iranian population: MASHAD cohort study. BMC Endocr. Disord. 2024 24 1 56 10.1186/s12902‑024‑01590‑9 38685027
    [Google Scholar]
  13. Li H. Ren J. Li Y. Wu Q. Wei J. Oxidative stress: The nexus of obesity and cognitive dysfunction in diabetes. Front. Endocrinol. 2023 14 1134025 10.3389/fendo.2023.1134025 37077347
    [Google Scholar]
  14. Varra F.N. Gkouzgos S. Varras M. Theodosis-Nobelos P. Efficacy of antioxidant compounds in obesity and its associated comorbidities. Pharmakeftiki 2024 36 2 2 19 10.60988/p.v36i2.38
    [Google Scholar]
  15. Zhou Y. Li H. Xia N. The interplay between adipose tissue and vasculature: Role of oxidative stress in obesity. Front. Cardiovasc. Med. 2021 8 650214 10.3389/fcvm.2021.650214 33748199
    [Google Scholar]
  16. Theodosis-Nobelos P. Rekka E.A. The antioxidant potential of vitamins and their implication in metabolic abnormalities. Nutrients 2024 16 16 2740 10.3390/nu16162740 39203876
    [Google Scholar]
  17. Cross L. Management of obesity. Am. J. Health Syst. Pharm. 2025 82 2 48 59 10.1093/ajhp/zxae273 39325384
    [Google Scholar]
  18. Kloock S. Ziegler C.G. Dischinger U. Obesity and its comorbidities, current treatment options and future perspectives: Challenging bariatric surgery? Pharmacol. Ther. 2023 251 108549 10.1016/j.pharmthera.2023.108549 37879540
    [Google Scholar]
  19. Vergès B. Do anti-obesity medical treatments have a direct effect on adipose tissue? Ann. Endocrinol. 2024 85 3 179 183 10.1016/j.ando.2024.05.021 38871515
    [Google Scholar]
  20. Kristensen M. Juul S.R. Sørensen K.V. Lorenzen J.K. Astrup A. Supplementation with dairy calcium and/or flaxseed fibers in conjunction with orlistat augments fecal fat excretion without altering rating of gastrointestinal comfort. Nutr. Metab. 2017 14 13 10.1186/s12986‑017‑0164‑8
    [Google Scholar]
  21. Jandacek R. Liu M. Tso P. Interactions of body weight loss with lipophilic toxin storage. J. Nutr. 2024 154 3 801 803 10.1016/j.tjnut.2024.01.018 38244860
    [Google Scholar]
  22. Melia A.T. Koss-Twardy S.G. Zhi J. The effect of orlistat, an inhibitor of dietary fat absorption, on the absorption of vitamins A and E in healthy volunteers. J. Clin. Pharmacol. 1996 36 7 647 653 10.1002/j.1552‑4604.1996.tb04230.x 8844448
    [Google Scholar]
  23. Walmsley R. Sumithran P. Current and emerging medications for the management of obesity in adults. Med. J. Aust. 2023 218 6 276 283 10.5694/mja2.51871 36934408
    [Google Scholar]
  24. Lee P.C. Dixon J. Pharmacotherapy for obesity. Aust. Fam. Physician 2017 46 7 472 477 28697290
    [Google Scholar]
  25. Drent ML van der Veen EA First clinical studies with orlistat: A short review. Obes Res 1995 3 S4 623S 5S (Suppl. 4) 10.1002/j.1550‑8528.1995.tb00236.x 8697067
    [Google Scholar]
  26. Tiikkainen M. Bergholm R. Rissanen A. Effects of equal weight loss with orlistat and placebo on body fat and serum fatty acid composition and insulin resistance in obese women. Am. J. Clin. Nutr. 2004 79 1 22 30 10.1093/ajcn/79.1.22 14684393
    [Google Scholar]
  27. Rucker D. Padwal R. Li S.K. Curioni C. Lau D.C.W. Long term pharmacotherapy for obesity and overweight: Updated meta-analysis. BMJ 2007 335 7631 1194 1199 10.1136/bmj.39385.413113.25 18006966
    [Google Scholar]
  28. Smith S.R. Stenlof K.S. Greenway F.L. Orlistat 60 mg reduces visceral adipose tissue: A 24-week randomized, placebo-controlled, multicenter trial. Obesity 2011 19 9 1796 1803 10.1038/oby.2011.143 21720429
    [Google Scholar]
  29. Kiortsis D.N. Filippatos T.D. Elisaf M.S. The effects of orlistat on metabolic parameters and other cardiovascular risk factors. Diabetes Metab. 2005 31 1 15 22 10.1016/S1262‑3636(07)70161‑1 15803108
    [Google Scholar]
  30. Yesilbursa D. Serdar A. Heper Y. The effect of orlistat-induced weight loss on interleukin-6 and C-reactive protein levels in obese subjects. Acta Cardiol. 2005 60 3 265 269 10.2143/AC.60.3.2005002 15999465
    [Google Scholar]
  31. Derosa G. Maffioli P. Salvadeo S.A.T. Comparison of orlistat treatment and placebo in obese type 2 diabetic patients. Expert Opin. Pharmacother. 2010 11 12 1971 1982 10.1517/14656566.2010.493557 20569086
    [Google Scholar]
  32. Hsieh C.J. Wang P.W. Liu R.T. Orlistat for obesity: Benefits beyond weight loss. Diabetes Res. Clin. Pract. 2005 67 1 78 83 10.1016/j.diabres.2004.05.012 15620437
    [Google Scholar]
  33. Derosa G. Maffioli P. Sahebkar A. Improvement of plasma adiponectin, leptin and C‐reactive protein concentrations by orlistat: A systematic review and meta‐analysis. Br. J. Clin. Pharmacol. 2016 81 5 819 834 10.1111/bcp.12874 26717446
    [Google Scholar]
  34. Dixon A.N. Valsamakis G. Hanif M.W. Effect of the orlistat on serum endotoxin lipopolysaccharide and adipocytokines in South Asian individuals with impaired glucose tolerance. Int. J. Clin. Pract. 2008 62 7 1124 1129 10.1111/j.1742‑1241.2008.01800.x 18564278
    [Google Scholar]
  35. Al-Tahami B.A.M. Al-Safi Ismail A.A. Sanip Z. Metabolic and inflammatory changes with orlistat and sibutra-mine treatment in obese Malaysian subjects. J. Nippon Med. Sch. 2017 84 3 125 132 10.1272/jnms.84.125 28724846
    [Google Scholar]
  36. Ozcelik O. Ozkan Y. Karatas F. Kelestimur H. Exercise training as an adjunct to orlistat therapy reduces oxidative stress in obese subjects. Tohoku J. Exp. Med. 2005 206 4 313 318 10.1620/tjem.206.313 15997202
    [Google Scholar]
  37. Dias S. Paredes S. Ribeiro L. Drugs involved in dyslipidemia and obesity treatment: Focus on adipose tissue. Int. J. Endocrinol. 2018 2018 1 21 10.1155/2018/2637418 29593789
    [Google Scholar]
  38. Othman Z.A. Zakaria Z. Suleiman J.B. Ghazali W.S.W. Mohamed M. Anti-atherogenic effects of orlistat on obesity-induced vascular oxidative stress rat model. Antioxidants 2021 10 2 251 10.3390/antiox10020251 33562069
    [Google Scholar]
  39. Audikovszky M. Pados G. Seres I. Orlistat increases serum paraoxonase activity in obese patients. Nutr. Metab. Cardiovasc. Dis. 2007 17 4 268 273 10.1016/j.numecd.2006.03.004 17134960
    [Google Scholar]
  40. Tilinca M.C. Tiuca R.A. Burlacu A. Varga A. 2021 update on the use of liraglutide in the modern treatment of “diabesity”: A narrative review. Medicina (B. Aires) 2021 57 7 669 10.3390/medicina57070669 34209532
    [Google Scholar]
  41. Kuhre R.E. Deacon C.F. Holst J.J. Petersen N. What is an L-cell and how do we study the secretory mechanisms of the L-cell? Front. Endocrinol. 2021 12 694284 10.3389/fendo.2021.694284 34168620
    [Google Scholar]
  42. Trapp S. Brierley D.I. Brain GLP‐1 and the regulation of food intake: GLP‐1 action in the brain and its implications for GLP‐1 receptor agonists in obesity treatment. Br. J. Pharmacol. 2022 179 4 557 570 10.1111/bph.15638 34323288
    [Google Scholar]
  43. El Bekay R. Coín-Aragüez L. Fernández-García D. Effects of glucagon‐like peptide‐1 on the differentiation and metabolism of human adipocytes. Br. J. Pharmacol. 2016 173 11 1820 1834 10.1111/bph.13481 26993859
    [Google Scholar]
  44. Drucker D.J. Mechanisms of action and therapeutic application of glucagon-like peptide-1. Cell Metab. 2018 27 4 740 756 10.1016/j.cmet.2018.03.001 29617641
    [Google Scholar]
  45. Beiroa D. Imbernon M. Gallego R. GLP-1 agonism stimulates brown adipose tissue thermogenesis and browning through hypothalamic AMPK. Diabetes 2014 63 10 3346 3358 10.2337/db14‑0302 24917578
    [Google Scholar]
  46. Nonogaki K. Hazama M. Satoh N. Liraglutide suppresses obesity and hyperglycemia associated with increases in hepatic fibroblast growth factor 21 production in KKAy mice. BioMed Res. Int. 2014 2014 1 8 10.1155/2014/751930 24804243
    [Google Scholar]
  47. Caron A. Dungan Lemko H.M. Castorena C.M. POMC neurons expressing leptin receptors coordinate metabolic responses to fasting via suppression of leptin levels. eLife 2018 7 33710 10.7554/eLife.33710 29528284
    [Google Scholar]
  48. Dong Y. Carty J. Goldstein N. Time and metabolic state-dependent effects of GLP-1R agonists on NPY/AgRP and POMC neuronal activity in vivo. Mol. Metab. 2021 54 101352 10.1016/j.molmet.2021.101352 34626854
    [Google Scholar]
  49. Nakatani Y. Maeda M. Matsumura M. Effect of GLP-1 receptor agonist on gastrointestinal tract motility and residue rates as evaluated by capsule endoscopy. Diabetes Metab. 2017 43 5 430 437 10.1016/j.diabet.2017.05.009 28648835
    [Google Scholar]
  50. Robalino Gonzaga E. Farooq A. Mohammed A. Real-world impact of GLP-1 receptor agonists on endoscopic patient outcomes in an ambulatory setting: A retrospective study at a large tertiary center. J. Clin. Med. 2024 13 18 5403 10.3390/jcm13185403 39336890
    [Google Scholar]
  51. Luo Y. Yang P. Li Z. Liraglutide improves non-alcoholic fatty liver disease in diabetic mice by modulating inflammatory signaling pathways. Drug Des. Devel. Ther. 2019 13 4065 4074 10.2147/DDDT.S224688 31819375
    [Google Scholar]
  52. Gao H. Zeng Z. Zhang H. The glucagon-like peptide-1 analogue liraglutide inhibits oxidative stress and inflammatory response in the liver of rats with diet-induced non-alcoholic fatty liver disease. Biol. Pharm. Bull. 2015 38 5 694 702 10.1248/bpb.b14‑00505 25947915
    [Google Scholar]
  53. Simental-Mendía L.E. Sánchez-García A. Linden-Torres E. Simental-Mendía M. Impact of glucagon‐like peptide‐1 receptor agonists on adiponectin concentrations: A meta‐analysis of randomized controlled trials. Br. J. Clin. Pharmacol. 2021 87 11 4140 4149 10.1111/bcp.14855 33835520
    [Google Scholar]
  54. Sha S. Liu X. Zhao R. Effects of glucagon-like peptide-1 analog liraglutide on the systemic inflammation in high-fat-diet-induced mice. Endocrine 2019 66 3 494 502 10.1007/s12020‑019‑02081‑x 31542859
    [Google Scholar]
  55. Lyu X. Yan K. Wang X. A novel anti-obesity mechanism for liraglutide by improving adipose tissue leptin resistance in high-fat diet-fed obese mice. Endocr. J. 2022 69 10 1233 1244 10.1507/endocrj.EJ21‑0802 35705299
    [Google Scholar]
  56. Iepsen E.W. Lundgren J. Dirksen C. Treatment with a GLP-1 receptor agonist diminishes the decrease in free plasma leptin during maintenance of weight loss. Int. J. Obes. 2015 39 5 834 841 10.1038/ijo.2014.177 25287751
    [Google Scholar]
  57. Liu J. Aylor K.W. Liu Z. Liraglutide and exercise synergistically attenuate vascular inflammation and enhance metabolic insulin action in early diet-induced obesity. Diabetes 2023 72 7 918 931 10.2337/db22‑0745 37074396
    [Google Scholar]
  58. Zhang R. Yao K. Chen S. Pan X. Wu F. Gao P. Liraglutide promotes angiogenesis in adipose tissue via suppression of adipocyte-derived IL-6. Biochem. Biophys. Res. Commun. 2023 651 8 19 10.1016/j.bbrc.2023.02.007 36774663
    [Google Scholar]
  59. Bułdak Ł. Bołdys A. Skudrzyk E. Machnik G. Okopień B. Liraglutide therapy in obese patients alters macrophage phenotype and decreases their tumor necrosis factor alpha release and oxidative stress markers—A pilot study. Metabolites 2024 14 10 554 10.3390/metabo14100554 39452935
    [Google Scholar]
  60. Pi-Sunyer X. Astrup A. Fujioka K. A randomized, controlled Trial of 3.0 mg of liraglutide in weight management. N. Engl. J. Med. 2015 373 1 11 22 10.1056/NEJMoa1411892 26132939
    [Google Scholar]
  61. Svanström H. Ueda P. Melbye M. Use of liraglutide and risk of major cardiovascular events: A register-based cohort study in Denmark and Sweden. Lancet Diabetes Endocrinol. 2019 7 2 106 114 10.1016/S2213‑8587(18)30320‑6 30527909
    [Google Scholar]
  62. Rizzo M. Rizvi A.A. Patti A.M. Liraglutide improves metabolic parameters and carotid intima-media thickness in diabetic patients with the metabolic syndrome: An 18-month prospective study. Cardiovasc. Diabetol. 2016 15 1 162 10.1186/s12933‑016‑0480‑8 27912784
    [Google Scholar]
  63. Shiraki A. Oyama J. Komoda H. The glucagon-like peptide 1 analog liraglutide reduces TNF-α-induced oxidative stress and inflammation in endothelial cells. Atherosclerosis 2012 221 2 375 382 10.1016/j.atherosclerosis.2011.12.039 22284365
    [Google Scholar]
  64. Noyan-Ashraf M.H. Shikatani E.A. Schuiki I. A glucagon-like peptide-1 analog reverses the molecular pathology and cardiac dysfunction of a mouse model of obesity. Circulation 2013 127 1 74 85 10.1161/CIRCULATIONAHA.112.091215 23186644
    [Google Scholar]
  65. Parthsarathy V. Hölscher C. The type 2 diabetes drug liraglutide reduces chronic inflammation induced by irradiation in the mouse brain. Eur. J. Pharmacol. 2013 700 1-3 42 50 10.1016/j.ejphar.2012.12.012 23276669
    [Google Scholar]
  66. Batchuluun B. Inoguchi T. Sonoda N. Metformin and liraglutide ameliorate high glucose-induced oxidative stress via inhibition of PKC-NAD(P)H oxidase pathway in human aortic endothelial cells. Atherosclerosis 2014 232 1 156 164 10.1016/j.atherosclerosis.2013.10.025 24401231
    [Google Scholar]
  67. Gaspari T. Liu H.B. Welungoda I. A GLP-1 receptor agonist liraglutide inhibits endothelial cell dysfunction and vascular adhesion molecule expression in an ApoE -/- mouse model. Diab. Vasc. Dis. Res. 2011 8 2 117 124 10.1177/1479164111404257 21562063
    [Google Scholar]
  68. Mashayekhi M. Beckman J.A. Nian H. Comparative effects of weight loss and incretin‐based therapies on vascular endothelial function, fibrinolysis and inflammation in individuals with obesity and prediabetes: A randomized controlled trial. Diabetes Obes. Metab. 2023 25 2 570 580 10.1111/dom.14903 36306151
    [Google Scholar]
  69. Wu Y.R. Shi X.Y. Ma C.Y. Zhang Y. Xu R.X. Li J.J. Liraglutide improves lipid metabolism by enhancing cholesterol efflux associated with ABCA1 and ERK1/2 pathway. Cardiovasc. Diabetol. 2019 18 1 146 10.1186/s12933‑019‑0954‑6 31706303
    [Google Scholar]
  70. Zhu W. Feng P.P. He K. Li S.W. Gong J.P. Liraglutide protects non-alcoholic fatty liver disease via inhibiting NLRP3 inflammasome activation in a mouse model induced by high-fat diet. Biochem. Biophys. Res. Commun. 2018 505 2 523 529 10.1016/j.bbrc.2018.09.134 30269815
    [Google Scholar]
  71. Lau J. Bloch P. Schäffer L. Discovery of the once-weekly glucagon-like peptide-1 (GLP-1) analogue semaglutide. J. Med. Chem. 2015 58 18 7370 7380 10.1021/acs.jmedchem.5b00726 26308095
    [Google Scholar]
  72. Knudsen L.B. Lau J. The discovery and development of liraglutide and semaglutide. Front. Endocrinol. 2019 10 155 10.3389/fendo.2019.00155 31031702
    [Google Scholar]
  73. Guglielmi V. Bettini S. Sbraccia P. Beyond weight loss: Added benefits could guide the choice of anti-obesity medications. Curr. Obes. Rep. 2023 12 2 127 146 10.1007/s13679‑023‑00502‑7 37209215
    [Google Scholar]
  74. O’Neil P.M. Birkenfeld A.L. McGowan B. Efficacy and safety of semaglutide compared with liraglutide and placebo for weight loss in patients with obesity: A randomised, double-blind, placebo and active controlled, dose-ranging, phase 2 trial. Lancet 2018 392 10148 637 649 10.1016/S0140‑6736(18)31773‑2 30122305
    [Google Scholar]
  75. Chao A.M. Tronieri J.S. Amaro A. Wadden T.A. Semaglutide for the treatment of obesity. Trends Cardiovasc. Med. 2023 33 3 159 166 10.1016/j.tcm.2021.12.008 34942372
    [Google Scholar]
  76. Gabery S. Salinas C.G. Paulsen S.J. Semaglutide lowers body weight in rodents via distributed neural pathways. JCI Insight 2020 5 6 133429 10.1172/jci.insight.133429 32213703
    [Google Scholar]
  77. Enebo L.B. Berthelsen K.K. Kankam M. Safety, tolerability, pharmacokinetics, and pharmacodynamics of concomitant administration of multiple doses of cagrilintide with semaglutide 2·4 mg for weight management: A randomised, controlled, phase 1b trial. Lancet 2021 397 10286 1736 1748 10.1016/S0140‑6736(21)00845‑X 33894838
    [Google Scholar]
  78. Friedrichsen M. Breitschaft A. Tadayon S. Wizert A. Skovgaard D. The effect of semaglutide 2.4 mg once weekly on energy intake, appetite, control of eating, and gastric emptying in adults with obesity. Diabetes Obes. Metab. 2021 23 3 754 762 10.1111/dom.14280 33269530
    [Google Scholar]
  79. Overgaard R.V. Hertz C.L. Ingwersen S.H. Navarria A. Drucker D.J. Levels of circulating semaglutide determine reductions in HbA1c and body weight in people with type 2 diabetes. Cell Rep. Med. 2021 2 9 100387 10.1016/j.xcrm.2021.100387 34622228
    [Google Scholar]
  80. Wilding J.P.H. Batterham R.L. Calanna S. Once-weekly semaglutide in adults with overweight or obesity. N. Engl. J. Med. 2021 384 11 989 1002 10.1056/NEJMoa2032183 33567185
    [Google Scholar]
  81. Pan X. Yang L. Wang S. Liu Y. Yue L. Chen S. Semaglutide ameliorates obesity-induced cardiac inflammation and oxidative stress mediated via reduction of neutrophil Cxcl2, S100a8, and S100a9 expression. Mol. Cell. Biochem. 2024 479 5 1133 1147 10.1007/s11010‑023‑04784‑2 37318712
    [Google Scholar]
  82. Yang X. Feng P. Zhang X. The diabetes drug semaglutide reduces infarct size, inflammation, and apoptosis, and normalizes neurogenesis in a rat model of stroke. Neuropharmacology 2019 158 107748 10.1016/j.neuropharm.2019.107748 31465784
    [Google Scholar]
  83. Wang L. Ding J. Zhu C. Semaglutide attenuates seizure severity and ameliorates cognitive dysfunction by blocking the NLR family pyrin domain containing 3 inflammasome in pentylenetetrazole kindled mice. Int. J. Mol. Med. 2021 48 6 219 10.3892/ijmm.2021.5052 34676876
    [Google Scholar]
  84. Tan S.A. Tan L. Liraglutide and semaglutide attenuate inflammatory cytokines interferon-gamma, tumor necrosis factor-alpha, and interleukin-6: Possible mechanism of decreasing cardiovascular risk in diabetes mellitus. J. Am. Coll. Cardiol. 2019 73 9 1866 10.1016/S0735‑1097(19)32472‑6
    [Google Scholar]
  85. Martins F.F. Marinho T.S. Cardoso L.E.M. Semaglutide (GLP‐1 receptor agonist) stimulates browning on subcutaneous fat adipocytes and mitigates inflammation and endoplasmic reticulum stress in visceral fat adipocytes of obese mice. Cell Biochem. Funct. 2022 40 8 903 913 10.1002/cbf.3751 36169111
    [Google Scholar]
  86. Shnaien A.A. Mohammad A.R. Hassan E.S. Neuroprotective effect of semaglutide in endotoxemia mouse model. Iran J War Public Health 2023 15 2 1001 1007 10.58209/ijwph.15.2.199
    [Google Scholar]
  87. Jiang Z. Tan J. Yuan Y. Shen J. Chen Y. Semaglutide ameliorates lipopolysaccharide-induced acute lung injury through inhibiting HDAC5-mediated activation of NF-κB signaling pathway. Hum. Exp. Toxicol. 2022 41 09603271221125931 10.1177/09603271221125931 36075570
    [Google Scholar]
  88. Newsome P. Francque S. Harrison S. Effect of semaglutide on liver enzymes and markers of inflammation in subjects with type 2 diabetes and/or obesity. Aliment. Pharmacol. Ther. 2019 50 2 193 203 10.1111/apt.15316 31246368
    [Google Scholar]
  89. Mosenzon O. Capehorn M.S. De Remigis A. Rasmussen S. Weimers P. Rosenstock J. Impact of semaglutide on high-sensitivity C-reactive protein: Exploratory patient-level analyses of SUSTAIN and PIONEER randomized clinical trials. Cardiovasc. Diabetol. 2022 21 1 172 10.1186/s12933‑022‑01585‑7 36056351
    [Google Scholar]
  90. Blundell J. Finlayson G. Axelsen M. Effects of once‐weekly semaglutide on appetite, energy intake, control of eating, food preference and body weight in subjects with obesity. Diabetes Obes. Metab. 2017 19 9 1242 1251 10.1111/dom.12932 28266779
    [Google Scholar]
  91. Lincoff A.M. Brown-Frandsen K. Colhoun H.M. Semaglutide and cardiovascular outcomes in obesity without diabetes. N. Engl. J. Med. 2023 389 24 2221 2232 10.1056/NEJMoa2307563 37952131
    [Google Scholar]
  92. Patti A.M. Giglio R.V. Allotta A. Effect of semaglutide on subclinical atherosclerosis and cardiometabolic compensation: A real-world study in patients with type 2 diabetes. Biomedicines 2023 11 5 1362 10.3390/biomedicines11051362 37239033
    [Google Scholar]
  93. Mahapatra M.K. Karuppasamy M. Sahoo B.M. Semaglutide, a glucagon like peptide-1 receptor agonist with cardiovascular benefits for management of type 2 diabetes. Rev. Endocr. Metab. Disord. 2022 23 3 521 539 10.1007/s11154‑021‑09699‑1 34993760
    [Google Scholar]
  94. Pan X. Chen X. Ren Q. Single-cell transcriptome reveals effects of semaglutide on non-cardiomyocytes of obese mice. Biochem. Biophys. Res. Commun. 2022 622 22 29 10.1016/j.bbrc.2022.07.034 35843090
    [Google Scholar]
  95. Irfan H. Obesity, cardiovascular disease, and the promising role of semaglutide: Insights from the SELECT trial. Curr. Probl. Cardiol. 2023 49 102060 10.1016/j.cpcardiol.2023.102060
    [Google Scholar]
  96. Yaribeygi H. Maleki M. Jamialahmadi T. Sahebkar A. Anti-inflammatory benefits of semaglutide: State of the art. J. Clin. Transl. Endocrinol. 2024 36 100340 10.1016/j.jcte.2024.100340 38576822
    [Google Scholar]
  97. Williams D.M. Nawaz A. Evans M. Drug therapy in obesity: A review of current and emerging treatments. Diabetes Ther. 2020 11 6 1199 1216 10.1007/s13300‑020‑00816‑y 32297119
    [Google Scholar]
  98. Gjermeni E. Kirstein A.S. Kolbig F. Obesity–An update on the basic pathophysiology and review of recent therapeutic advances. Biomolecules 2021 11 10 1426 10.3390/biom11101426 34680059
    [Google Scholar]
  99. Kosmalski M. Deska K. Bąk B. Różycka-Kosmalska M. Pietras T. Pharmacological support for the treatment of obesity-present and future. Health Care 2023 11 3 433 10.3390/healthcare11030433 36767008
    [Google Scholar]
  100. Chakhtoura M. Haber R. Ghezzawi M. Rhayem C. Tcheroyan R. Mantzorosc C.S. Pharmacotherapy of obesity: An update on the available medications and drugs under investigation. EClinicalMedicine 2023 58 101882 10.1016/j.eclinm.2023.101882
    [Google Scholar]
  101. Mathiesen D.S. Bagger J.I. Bergmann N.C. The effects of dual GLP-1/GIP receptor agonism on glucagon secretion—A review. Int. J. Mol. Sci. 2019 20 17 4092 10.3390/ijms20174092 31443356
    [Google Scholar]
  102. Samms R.J. Coghlan M.P. Sloop K.W. How may GIP enhance the therapeutic efficacy of GLP-1? Trends Endocrinol. Metab. 2020 31 6 410 421 10.1016/j.tem.2020.02.006 32396843
    [Google Scholar]
  103. Fukuda M. The role of GIP receptor in the CNS for the pathogenesis of obesity. Diabetes 2021 70 9 1929 1937 10.2337/dbi21‑0001 34176784
    [Google Scholar]
  104. Miyawaki K. Yamada Y. Ban N. Inhibition of gastric inhibitory polypeptide signaling prevents obesity. Nat. Med. 2002 8 7 738 742 10.1038/nm727 12068290
    [Google Scholar]
  105. Hansotia T. Maida A. Flock G. Extrapancreatic incretin receptors modulate glucose homeostasis, body weight, and energy expenditure. J. Clin. Invest. 2007 117 1 143 152 10.1172/JCI25483 17187081
    [Google Scholar]
  106. Daousi C. Wilding J.P.H. Aditya S. Effects of peripheral administration of synthetic human glucose‐dependent insulinotropic peptide (GIP) on energy expenditure and subjective appetite sensations in healthy normal weight subjects and obese patients with type 2 diabetes. Clin. Endocrinol. 2009 71 2 195 201 10.1111/j.1365‑2265.2008.03451.x 19178509
    [Google Scholar]
  107. Bates H.E. Campbell J.E. Ussher J.R. Gipr is essential for adrenocortical steroidogenesis; however, corticosterone deficiency does not mediate the favorable metabolic phenotype of Gipr(-/-) mice. Diabetes 2012 61 1 40 48 10.2337/db11‑1060 22043004
    [Google Scholar]
  108. Bergmann N.C. Lund A. Gasbjerg L.S. Effects of combined GIP and GLP-1 infusion on energy intake, appetite and energy expenditure in overweight/obese individuals: A randomised, crossover study. Diabetologia 2019 62 4 665 675 10.1007/s00125‑018‑4810‑0 30683945
    [Google Scholar]
  109. Zhang Q. Delessa C.T. Augustin R. The glucose-dependent insulinotropic polypeptide (GIP) regulates body weight and food intake via CNS-GIPR signaling. Cell Metab. 2021 33 4 833 844.e5 10.1016/j.cmet.2021.01.015 33571454
    [Google Scholar]
  110. Dhirani D. Shahid A. Mumtaz H. A new kind of diabetes medication approved by the FDA: Is there hope for obesity? Int. J. Surg. 2023 109 2 81 82 10.1097/JS9.0000000000000044 36799809
    [Google Scholar]
  111. Sokary S. Bawadi H. The promise of tirzepatide: A narrative review of metabolic benefits. Prim. Care Diabetes 2025 11 S1751 10.1016/j.pcd.2025.03.008
    [Google Scholar]
  112. Copur S. Tanriover C. Yavuz F. Tuttle K.R. Kanbay M. Tirzepatide and potential use for metabolically healthy obesity. Eur. J. Intern. Med. 2023 113 1 5 10.1016/j.ejim.2023.05.012 37183081
    [Google Scholar]
  113. Frías J.P. Davies M.J. Rosenstock J. Tirzepatide versus semaglutide once weekly in patients with type 2 diabetes. N. Engl. J. Med. 2021 385 6 503 515 10.1056/NEJMoa2107519 34170647
    [Google Scholar]
  114. Ludvik B. Giorgino F. Jódar E. Once-weekly tirzepatide versus once-daily insulin degludec as add-on to metformin with or without SGLT2 inhibitors in patients with type 2 diabetes (SURPASS-3): A randomised, open-label, parallel-group, phase 3 trial. Lancet 2021 398 10300 583 598 10.1016/S0140‑6736(21)01443‑4 34370970
    [Google Scholar]
  115. Jastreboff A.M. Aronne L.J. Ahmad N.N. Tirzepatide once weekly for the treatment of obesity. N. Engl. J. Med. 2022 387 3 205 216 10.1056/NEJMoa2206038 35658024
    [Google Scholar]
  116. Jung H.N. Jung C.H. The upcoming weekly tides (Semaglutide vs. Tirzepatide) against obesity: STEP or SURPASS? J. Obes. Metab. Syndr. 2022 31 1 28 36 10.7570/jomes22012 35314521
    [Google Scholar]
  117. Karagiannis T. Avgerinos I. Liakos A. Management of type 2 diabetes with the dual GIP/GLP-1 receptor agonist tirzepatide: A systematic review and meta-analysis. Diabetologia 2022 65 8 1251 1261 10.1007/s00125‑022‑05715‑4 35579691
    [Google Scholar]
  118. Min T. Bain S.C. The Role of Tirzepatide, Dual GIP and GLP-1 receptor agonist, in the management of type 2 diabetes: The SURPASS clinical trials. Diabetes Ther. 2021 12 1 143 157 10.1007/s13300‑020‑00981‑0 33325008
    [Google Scholar]
  119. Kroopnick J.M. Davis S.N. The role of recent pharmacotherapeutic options on the management of treatment resistant type 2 diabetes. Expert Opin. Pharmacother. 2022 23 11 1259 1271 10.1080/14656566.2022.2089021 35765193
    [Google Scholar]
  120. Khurana A. Rabbani S.A. El-Tanani M. Safety profile of tirzepatide: A real-world pharmacovigilance analysis of EudraVigilance database. Clin. Epidemiol. Glob. Health 2024 30 101805 10.1016/j.cegh.2024.101805
    [Google Scholar]
  121. Patoulias D. Papadopoulos C. Fragakis N. Doumas M. Updated meta-analysis assessing the cardiovascular efficacy of tirzepatide. Am. J. Cardiol. 2022 181 139 140 10.1016/j.amjcard.2022.07.003 35977865
    [Google Scholar]
  122. Hankosky E.R. Wang H. Neff L.M. Tirzepatide reduces the predicted risk of developing type 2 diabetes in people with obesity or overweight: Post hoc analysis of the SURMOUNT ‐1 trial. Diabetes Obes. Metab. 2023 25 12 3748 3756 10.1111/dom.15269 37700443
    [Google Scholar]
  123. Hankosky E.R. Wang H. Neff L.M. Tirzepatide reduces the predicted risk of atherosclerotic cardiovascular disease and improves cardiometabolic risk factors in adults with obesity or overweight: SURMOUNT‐1 post hoc analysis. Diabetes Obes. Metab. 2024 26 1 319 328 10.1111/dom.15318 37932236
    [Google Scholar]
  124. Wong E. Cope R. Dima L. Nguyen T. Tirzepatide: A dual glucose-dependent insulinotropic polypeptide and glucagon-like peptide-1 agonist for the management of type 2 diabetes mellitus. Am. J. Ther. 2023 30 1 e26 e35 10.1097/MJT.0000000000001588 36516422
    [Google Scholar]
  125. Wilson J.M. Lin Y. Luo M.J. The dual glucose‐dependent insulinotropic polypeptide and glucagon‐like peptide‐1 receptor agonist tirzepatide improves cardiovascular risk biomarkers in patients with type 2 diabetes: A p ost hoc analysis. Diabetes Obes. Metab. 2022 24 1 148 153 10.1111/dom.14553 34542221
    [Google Scholar]
  126. Samms R.J. Christe M.E. Collins K.A.L. GIPR agonism mediates weight-independent insulin sensitization by tirzepatide in obese mice. J. Clin. Invest. 2021 131 12 146353 10.1172/JCI146353 34003802
    [Google Scholar]
  127. Taktaz F. Fontanella R.A. Scisciola L. Bridging the gap between GLP1-receptor agonists and cardiovascular outcomes: Evidence for the role of tirzepatide. Cardiovasc. Diabetol. 2024 23 1 242 10.1186/s12933‑024‑02319‑7 38987789
    [Google Scholar]
  128. Guo X. Lei M. Zhao J. Tirzepatide ameliorates spatial learning and memory impairment through modulation of aberrant insulin resistance and inflammation response in diabetic rats. Front. Pharmacol. 2023 14 1146960 10.3389/fphar.2023.1146960 37701028
    [Google Scholar]
  129. Yang Y. Wang Y. Zhou Y. Deng J. Wu L. Tirzepatide alleviates oxidative stress and inflammation in diabetic nephropathy via IL-17 signaling pathway. Mol. Cell. Biochem. 2025 480 2 1241 1254 10.1007/s11010‑024‑05066‑1 38965127
    [Google Scholar]
  130. Moldovan C.P. Weldon A.J. Daher N.S. Effects of a meal replacement system alone or in combination with phentermine on weight loss and food cravings. Obesity 2016 24 11 2344 2350 10.1002/oby.21649 27664021
    [Google Scholar]
  131. Rothman R.B. Baumann M.H. Dersch C.M. Amphetamine-type central nervous system stimulants release norepinephrine more potently than they release dopamine and serotonin. Synapse 2001 39 1 32 41 10.1002/1098‑2396(20010101)39:1<32:AID‑SYN5>3.0.CO;2‑3 11071707
    [Google Scholar]
  132. Mahgerefteh B. Vigue M. Freestone Z. Silver S. Nguyen Q. New drug therapies for the treatment of overweight and obese patients. Am. Health Drug Benefits 2013 6 7 423 430 24991373
    [Google Scholar]
  133. Coutinho W. Halpern B. Pharmacotherapy for obesity: Moving towards efficacy improvement. Diabetol. Metab. Syndr. 2024 16 1 6 10.1186/s13098‑023‑01233‑4 38172940
    [Google Scholar]
  134. Singh A.K. Singh R. Pharmacotherapy in obesity: A systematic review and meta-analysis of randomized controlled trials of anti-obesity drugs. Expert Rev. Clin. Pharmacol. 2020 13 1 53 64 10.1080/17512433.2020.1698291 31770497
    [Google Scholar]
  135. Ben-Menachem E. Axelsen M. Johanson E.H. Stagge A. Smith U. Predictors of weight loss in adults with topiramate-treated epilepsy. Obes. Res. 2003 11 4 556 562 10.1038/oby.2003.78 12690085
    [Google Scholar]
  136. York D.A. Singer L. Thomas S. Bray G.A. Effect of topiramate on body weight and body composition of osborne-mendel rats fed a high-fat diet: Alterations in hormones, neuropeptide, and uncoupling-protein mRNAs. Nutrition 2000 16 10 967 975 10.1016/S0899‑9007(00)00451‑2 11054603
    [Google Scholar]
  137. Abo-Elmatty D.M. Zaitone S.A. Topiramate induces weight loss and improves insulin sensitivity in dietary obese rats: Comparison to sibutramine. Eur. Rev. Med. Pharmacol. Sci. 2011 15 10 1187 1195 22165681
    [Google Scholar]
  138. Caricilli A.M. Penteado E. de Abreu L.L. Topiramate treatment improves hypothalamic insulin and leptin signaling and action and reduces obesity in mice. Endocrinology 2012 153 9 4401 4411 10.1210/en.2012‑1272 22822160
    [Google Scholar]
  139. Mohammad H.M.F. Eladl M.A. Abdelmaogood A.K.K. Protective effect of topiramate against diabetic retinopathy and computational approach recognizing the role of NLRP3/IL-1β/TNF-α signaling. Biomedicines 2023 11 12 3202 10.3390/biomedicines11123202 38137423
    [Google Scholar]
  140. Andrzejczak D. Woldan-Tambor A. Bednarska K. Zawilska J.B. The effects of topiramate on lipopolysaccharide (LPS)-induced proinflammatory cytokine release from primary rat microglial cell cultures. Epilepsy Res. 2016 127 352 357 10.1016/j.eplepsyres.2016.09.020 27721162
    [Google Scholar]
  141. Attia M.A. Soliman N. Eladl M.A. Topiramate affords neuroprotection in diabetic neuropathy model via downregulating spinal GFAP/inflammatory burden and improving neurofilament production. Toxicol. Mech. Methods 2023 33 7 563 577 10.1080/15376516.2023.2196687 36978280
    [Google Scholar]
  142. Price T.O. Farr S.A. Niehoff M.L. Ercal N. Morley J.E. Shah G.N. Protective effect of topiramate on hyperglycemia-induced cerebral oxidative stress, pericyte loss and learning behavior in diabetic mice. Int Libr Diabetes Metab 2015 1 1 6 12 26120599
    [Google Scholar]
  143. Hussain S. Bahadar H. Khan M.I. Qazi N.G. Wazir S.G. Ahmad H.A. Modulation of oxidative stress/NMDA/nitric oxide pathway by topiramate attenuates morphine dependence in mice. Heliyon 2024 10 23 40584 10.1016/j.heliyon.2024.e40584 39719994
    [Google Scholar]
  144. Halpern B. Mancini M.C. Safety assessment of combination therapies in the treatment of obesity: Focus on naltrexone/bupropion extended release and phentermine-topiramate extended release. Expert Opin. Drug Saf. 2017 16 1 27 39 10.1080/14740338.2017.1247807 27732121
    [Google Scholar]
  145. Mauer Y. Parker M. Kashyap S.R. Antiobesity drug therapy: An individualized and comprehensive approach. Cleve. Clin. J. Med. 2021 88 8 440 448 10.3949/ccjm.88a.20080 34341028
    [Google Scholar]
  146. Safer D.L. Adler S. Dalai S.S. A randomized, placebo-controlled crossover trial of phentermine-topiramate ER in patients with binge-eating disorder and bulimia ervosa. Int. J. Eat. Disord. 2020 53 2 266 10.1002/eat.23192
    [Google Scholar]
  147. Grunvald E. DeConde J. Phentermine–topiramate extended release for the dual treatment of obesity and sleep-related eating disorder: A case report. J. Med. Case Rep. 2022 16 1 34 10.1186/s13256‑021‑03250‑1 35081980
    [Google Scholar]
  148. Woloshin S. Schwartz L.M. The new weight-loss drugs, lorcaserin and phentermine-topiramate: Slim pickings? JAMA Intern. Med. 2014 174 4 615 619 10.1001/jamainternmed.2013.14629 24515599
    [Google Scholar]
  149. Gadde K.M. Allison D.B. Ryan D.H. Effects of low-dose, controlled-release, phentermine plus topiramate combination on weight and associated comorbidities in overweight and obese adults (CONQUER): A randomised, placebo-controlled, phase 3 trial. Lancet 2011 377 9774 1341 1352 10.1016/S0140‑6736(11)60205‑5 21481449
    [Google Scholar]
  150. Garvey W.T. Ryan D.H. Look M. Two-year sustained weight loss and metabolic benefits with controlled-release phentermine/topiramate in obese and overweight adults (SEQUEL): A randomized, placebo-controlled, phase 3 extension study. Am. J. Clin. Nutr. 2012 95 2 297 308 10.3945/ajcn.111.024927 22158731
    [Google Scholar]
  151. Allison D.B. Gadde K.M. Garvey W.T. Controlled-release phentermine/topiramate in severely obese adults: A randomized controlled trial (EQUIP). Obesity 2012 20 2 330 342 10.1038/oby.2011.330 22051941
    [Google Scholar]
  152. Aronne L.J. Wadden T.A. Peterson C. Winslow D. Odeh S. Gadde K.M. Evaluation of phentermine and topiramate versus phentermine/topiramate extended‐release in obese adults. Obesity 2013 21 11 2163 2171 10.1002/oby.20584 24136928
    [Google Scholar]
  153. Müller T.D. Clemmensen C. Finan B. DiMarchi R.D. Tschöp M.H. Antiobesity therapy: From rainbow pills to polyagonists. Pharmacol. Rev. 2018 70 4 712 746 10.1124/pr.117.014803 30087160
    [Google Scholar]
  154. Fleming J.W. McClendon K.S. Riche D.M. New obesity agents: Lorcaserin and phentermine/topiramate. Ann. Pharmacother. 2013 47 7-8 1007 1016 10.1345/aph.1R779 23800750
    [Google Scholar]
  155. Martins A. Morgado S. Morgado M. Anti-obesity drugs currently used and new compounds in clinical development. World J. Metaanal. 2014 2 4 135 153 10.13105/wjma.v2.i4.135
    [Google Scholar]
  156. Gasmi A. Mujawdiya P.K. Nehaoua A. Pharmacological treatments and natural biocompounds in weight management. Pharmaceuticals 2023 16 2 212 10.3390/ph16020212 37139804
    [Google Scholar]
  157. Vallé-Jones J.C. Brodie N.H. O’Hara H. O’Hara J. McGhie R.L. A comparative study of phentermine and diethylpropion in the treatment of obese patients in general practice. Pharmatherapeutica 1983 3 5 300 304 6844367
    [Google Scholar]
  158. Cercato C. Roizenblatt V.A. Leança C.C. A randomized double-blind placebo-controlled study of the long-term efficacy and safety of diethylpropion in the treatment of obese subjects. Int. J. Obes. 2009 33 8 857 865 10.1038/ijo.2009.124 19564877
    [Google Scholar]
  159. Ahmad N.N. Robinson S. Kennedy-Martin T. Poon J.L. Kan H. Clinical outcomes associated with anti‐obesity medications in real‐world practice: A systematic literature review. Obes. Rev. 2021 22 11 13326 10.1111/obr.13326 34423889
    [Google Scholar]
  160. Mercer S.L. ACS chemical neuroscience molecule spotlight on contrave. ACS Chem. Neurosci. 2011 2 9 484 486 10.1021/cn200076y 22860172
    [Google Scholar]
  161. Billes S.K. Sinnayah P. Cowley M.A. Naltrexone/bupropion for obesity: An investigational combination pharmacotherapy for weight loss. Pharmacol. Res. 2014 84 1 11 10.1016/j.phrs.2014.04.004 24754973
    [Google Scholar]
  162. Jepma M. Roy M. Ramlakhan K. van Velzen M. Dahan A. Different brain systems support learning from received and avoided pain during human pain-avoidance learning. eLife 2022 11 74149 10.7554/eLife.74149 35731646
    [Google Scholar]
  163. Soyka M. Rösner S. Opioid antagonists for pharmacological treatment of alcohol dependence - A critical review. Curr. Drug Abuse Rev. 2008 1 3 280 291 10.2174/1874473710801030280 19630726
    [Google Scholar]
  164. Skolnick P. Treatment of overdose in the synthetic opioid era. Pharmacol. Ther. 2022 233 108019 10.1016/j.pharmthera.2021.108019 34637841
    [Google Scholar]
  165. Apovian C.M. Naltrexone/bupropion for the treatment of obesity and obesity with Type 2 diabetes. Future Cardiol. 2016 12 2 129 138 10.2217/fca.15.79 26679384
    [Google Scholar]
  166. Montan P.D. Sourlas A. Olivero J. Pharmacologic therapy of obesity: Mechanisms of action and cardiometabolic effects. Ann. Transl. Med. 2019 7 16 393 10.21037/atm.2019.07.27 31555707
    [Google Scholar]
  167. Sherman MM Ungureanus S Rey JA Naltrexone/Bupropion ER Contrave): Newly approved treatment option for chronic weight management in obese adults. PT 2016 41 3 164
    [Google Scholar]
  168. Vorsanger M.H. Subramanyam P. Weintraub H.S. Cardiovascular effects of the new weight loss agents. J. Am. Coll. Cardiol. 2016 68 8 849 859 10.1016/j.jacc.2016.06.007 27539178
    [Google Scholar]
  169. Caixàs A. Albert L. Capel I. Rigla M. Naltrexone sustained-release/bupropion sustained-release for the management of obesity: Review of the data to date. Drug Des. Devel. Ther. 2014 8 1419 1427 10.2147/DDDT.S55587 25258511
    [Google Scholar]
  170. Greenway F.L. Fujioka K. Plodkowski R.A. Effect of naltrexone plus bupropion on weight loss in overweight and obese adults (COR-I): A multicentre, randomised, double-blind, placebo-controlled, phase 3 trial. Lancet 2010 376 9741 595 605 10.1016/S0140‑6736(10)60888‑4 20673995
    [Google Scholar]
  171. Wadden T.A. Hollander P. Klein S. Weight maintenance and additional weight loss with liraglutide after low-calorie-diet-induced weight loss: The SCALE Maintenance randomized study. Int. J. Obes. 2013 37 11 1443 1451 10.1038/ijo.2013.120 23812094
    [Google Scholar]
  172. Hollander P. Gupta A.K. Plodkowski R. Effects of naltrexone sustained-release/bupropion sustained-release combination therapy on body weight and glycemic parameters in overweight and obese patients with type 2 diabetes. Diabetes Care 2013 36 12 4022 4029 10.2337/dc13‑0234 24144653
    [Google Scholar]
  173. Thase M.E. Haight B.R. Johnson M.C. A randomized, double-blind, placebo-controlled study of the effect of sustained-release bupropion on blood pressure in individuals with mild untreated hypertension. J. Clin. Psychopharmacol. 2008 28 3 302 307 10.1097/JCP.0b013e318172424e 18480687
    [Google Scholar]
/content/journals/crcep/10.2174/0127724328392698250818071803
Loading
/content/journals/crcep/10.2174/0127724328392698250818071803
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test