Skip to content
2000
image of Nanotechnology: A Potentially Powerful Tool for Attenuating Cisplatin-Induced Nephrotoxicity: A Narrative Review

Abstract

-diamminedichloroplatinum (II) (cisplatin, CDDP) is one of the main anticancer drugs, used for the treatment of various malignancies. However, clinical application of this drug is associated with various side effects, prominently nephrotoxicity. One of the promising tools to decrease the side effects of the drug and simultaneously improve its therapeutic effects is the loading the drug into nanoparticles (NPs). This literature review focuses on the efficacy of various types of NPs, such as liposome, micelle, dendrimer, poly (lactic-co-glycolic acid), chitosan, alginate, curcumin (CUR), and metallic NPs to improve the therapeutic effects of CDDP and to decrease the nephrotoxicity. The results of these studies demonstrated that the reviewed NPs are able to decrease the nephrotoxic effects of CDDP in one of four different ways, including as a conjugating agent, encapsulating agent, antioxidant agent, or nanocarrier. Finally, among these reviewed NPs, liposomal NPs and the co-treatment with CUR as an antioxidant agent have more promising effects in reducing the toxicity of CDDP. Overall, the wide use of nanoliposomes in drug delivery systems due to their high stability, biocompatibility, drug loading capacity, and high bioavailability prompts the authors to propose liposomal CDDP delivery as a potent candidate for future studies. Moreover, because of the synergistic effects of CUR and CDDP on cancerous cells, the antioxidative properties of CUR in mitigating CDDP-induced nephrotoxicity, and the radiosensitizing influence of CUR, there is potential for the co-delivery of CDDP and CUR liposomes to the tumor region.

Loading

Article metrics loading...

/content/journals/crcep/10.2174/0127724328374568250711183328
2025-07-24
2025-11-02
Loading full text...

Full text loading...

References

  1. Dasari S. Bernard Tchounwou P. Cisplatin in cancer therapy: Molecular mechanisms of action. Eur. J. Pharmacol. 2014 740 364 378 10.1016/j.ejphar.2014.07.025 25058905
    [Google Scholar]
  2. Gately D.P. Howell S.B. Cellular accumulation of the anticancer agent cisplatin: A review. Br. J. Cancer 1993 67 6 1171 1176 10.1038/bjc.1993.221 8512802
    [Google Scholar]
  3. Klein A.V. Hambley T.W. Platinum drug distribution in cancer cells and tumors. Chem. Rev. 2009 109 10 4911 4920 10.1021/cr9001066 19711978
    [Google Scholar]
  4. Wang D. Lippard S.J. Cellular processing of platinum anticancer drugs. Nat. Rev. Drug Discov. 2005 4 4 307 320 10.1038/nrd1691 15789122
    [Google Scholar]
  5. Cepeda V. Fuertes M.A. Castilla J. Alonso C. Quevedo C. Pérez J.M. Biochemical mechanisms of cisplatin cytotoxicity. Anticancer. Agents Med. Chem. 2007 7 1 3 18 10.2174/187152007779314044 17266502
    [Google Scholar]
  6. Fujikawa Y. Kawanishi M. Kuraoka I. Yagi T. Frequencies of mutagenic translesion DNA synthesis over cisplatin-guanine intra-strand crosslinks in lacZ plasmids propagated in human cells. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 2014 770 23 28 10.1016/j.mrgentox.2014.05.006 25344160
    [Google Scholar]
  7. Pinto A.L. Lippard S.J. Binding of the antitumor drug cis-diamminedichloroplatinum(II) (cisplatin) to DNA. Biochim. Biophys. Acta Rev. Cancer 1985 780 3 167 180 10.1016/0304‑419X(85)90001‑0 3896310
    [Google Scholar]
  8. Hartmann J.T. Fels L.M. Knop S. Stolte H. Kanz L. Bokemeyer C. A randomized trial comparing the nephrotoxicity of cisplatin/ifosfamide-based combination chemotherapy with or without amifostine in patients with solid tumors. Invest. New Drugs 2000 18 3 281 289 10.1023/A:1006490226104 10958599
    [Google Scholar]
  9. Hartmann J.T. Lipp H.P. Toxicity of platinum compounds. Expert Opin. Pharmacother. 2003 4 6 889 901 10.1517/14656566.4.6.889 12783586
    [Google Scholar]
  10. Miller R.P. Tadagavadi R.K. Ramesh G. Reeves W.B. Mechanisms of Cisplatin nephrotoxicity. Toxins 2010 2 11 2490 2518 10.3390/toxins2112490 22069563
    [Google Scholar]
  11. Li H. Tang Y. Wen L. Neferine reduces cisplatin-induced nephrotoxicity by enhancing autophagy via the AMPK/mTOR signaling pathway. Biochem. Biophys. Res. Commun. 2017 484 3 694 701 10.1016/j.bbrc.2017.01.180 28161641
    [Google Scholar]
  12. Brock P.R. Koliouskas D.E. Barratt T.M. Yeomans E. Pritchard J. Partial reversibility of cisplatin nephrotoxicity in children. J. Pediatr. 1991 118 4 531 534 10.1016/S0022‑3476(05)83372‑4 2007926
    [Google Scholar]
  13. Sancho-Martيnez SM Prieto-García L, Prieto M, López-Novoa JM, López-Hernández FJ. Subcellular targets of cisplatin cytotoxicity: An integrated view. Pharmacol. Ther. 2012 136 1 35 55 10.1016/j.pharmthera.2012.07.003 22796517
    [Google Scholar]
  14. Zhang L. Feng J. Kong S. Nujiangexathone A, a novel compound from Garcinia nujiangensis, suppresses cervical cancer growth by targeting hnRNPK. Cancer Lett. 2016 380 2 447 456 10.1016/j.canlet.2016.07.005 27424288
    [Google Scholar]
  15. Xia J. Hu J. Zhang R. Icariin exhibits protective effects on cisplatin-induced cardiotoxicity via ROS-mediated oxidative stress injury in vivo and in vitro. Phytomedicine 2022 104 154331 10.1016/j.phymed.2022.154331 35878553
    [Google Scholar]
  16. Lai H. Zhang X. Song Z. Yuan Z. He L. Chen T. Facile synthesis of antioxidative nanotherapeutics using a microwave for efficient reversal of cisplatin-induced nephrotoxicity. Chem. Eng. J. 2020 391 123563 10.1016/j.cej.2019.123563
    [Google Scholar]
  17. Mehrizi T.Z. Shafiee Ardestani M. Haji Molla Hoseini M. Khamesipour A. Mosaffa N. Ramezani A. Novel nanosized chitosan-betulinic acid against resistant leishmania major and first clinical observation of such parasite in kidney. Sci. Rep. 2018 8 1 11759 10.1038/s41598‑018‑30103‑7 30082741
    [Google Scholar]
  18. Mehrizi T.Z. Khamesipour A. Shafiee Ardestani M. Comparative analysis between four model nanoformulations of amphotericin B-chitosan, amphotericin B-dendrimer, betulinic acid-chitosan and betulinic acid-dendrimer for treatment of Leishmania major: Real-time PCR assay plus. Int. J. Nanomedicine 2019 14 7593 7607 10.2147/IJN.S220410 31802863
    [Google Scholar]
  19. Mehrizi T.Z. An overview of the latest applications of platelet-derived microparticles and nanoparticles in medical technology 2010-2020. Curr. Mol. Med. 2022 22 6 524 539 10.2174/1566524021666210928152015 34602037
    [Google Scholar]
  20. Vandghanooni S. Eskandani M. Barar J. Omidi Y. AS1411 aptamer-decorated cisplatin-loaded poly(lactic- co -glycolic acid) nanoparticles for targeted therapy of mir-21-inhibited ovarian cancer cells. Nanomedicine 2018 13 21 2729 2758 10.2217/nnm‑2018‑0205 30394201
    [Google Scholar]
  21. Dehghani M.A. Shakiba Maram N. Moghimipour E. Khorsandi L. Atefi khah M, Mahdavinia M. Protective effect of gallic acid and gallic acid-loaded Eudragit-RS 100 nanoparticles on cisplatin-induced mitochondrial dysfunction and inflammation in rat kidney. Biochim. Biophys. Acta Mol. Basis Dis. 2020 1866 12 165911 10.1016/j.bbadis.2020.165911 32768679
    [Google Scholar]
  22. Amini Z. Rudsary S.S. Shahraeini S.S. Magnetic bioactive glasses/Cisplatin loaded-chitosan (CS)-grafted- poly (ε-caprolactone) nanofibers against bone cancer treatment. Carbohydr. Polym. 2021 258 117680 10.1016/j.carbpol.2021.117680 33593554
    [Google Scholar]
  23. Banihashem S. Nezhati M.N. Panahia H.A. Synthesis of chitosan-grafted-poly(N-vinylcaprolactam) coated on the thiolated gold nanoparticles surface for controlled release of cisplatin. Carbohydr. Polym. 2020 227 115333 10.1016/j.carbpol.2019.115333 31590864
    [Google Scholar]
  24. Mirrahimi M. Abed Z. Beik J. A thermo-responsive alginate nanogel platform co-loaded with gold nanoparticles and cisplatin for combined cancer chemo-photothermal therapy. Pharmacol. Res. 2019 143 178 185 10.1016/j.phrs.2019.01.005 30611856
    [Google Scholar]
  25. Zakeri N. Rezaie H.R. Javadpour J. Kharaziha M. Effect of pH on cisplatin encapsulated zeolite nanoparticles: Release mechanism and cytotoxicity. Mater. Chem. Phys. 2021 273 124964 10.1016/j.matchemphys.2021.124964
    [Google Scholar]
  26. Abedi M. Abolmaali S.S. Abedanzadeh M. Borandeh S. Samani S.M. Tamaddon A.M. Citric acid functionalized silane coupling versus post-grafting strategy for dual pH and saline responsive delivery of cisplatin by Fe3O4/carboxyl functionalized mesoporous SiO2 hybrid nanoparticles: A-synthesis, physicochemical and biological characterization. Mater. Sci. Eng. C 2019 104 109922 10.1016/j.msec.2019.109922 31499936
    [Google Scholar]
  27. Shakoori Z. Pashaei-Asl R. Pashaiasl M. Biocompatibility study of P (N-isopropylacrylamide)-based nanocomposite and its cytotoxic effect on HeLa cells as a drug delivery system for Cisplatin. J. Drug Deliv. Sci. Technol. 2022 71 103254 10.1016/j.jddst.2022.103254
    [Google Scholar]
  28. Goli P.P. Torbati M.B. Parivar K. Khiavi A.A. Yousefi M. Preparation and evaluation of gemcitabin and cisplatin-entrapped Folate-PEGylated liposomes as targeting co-drug delivery system in cancer therapy. J. Drug Deliv. Sci. Technol. 2021 65 102756 10.1016/j.jddst.2021.102756
    [Google Scholar]
  29. Mehrizi T.Z. Hemocompatibility and hemolytic effects of functionalized nanoparticles on red blood cells: A recent review study. Nano 2021 16 8 2130007 10.1142/S1793292021300073
    [Google Scholar]
  30. Mehrizi T.Z. Mousavi Hosseini K. An overview on the investigation of nanomaterials’ effect on plasma components: Immunoglobulins and coagulation factor VIII, 2010–2020 review. Nanoscale Adv. 2021 3 13 3730 3745 10.1039/D1NA00119A 36133015
    [Google Scholar]
  31. Mehrizi T.Z. Ardestani M.S. Therapeutic application of nanoparticles in hepatitis diseases: A narrative review (2011-2021). Curr. Pharm. Biotechnol. 2023 24 5 611 632 10.2174/1389201023666220727141624 35894465
    [Google Scholar]
  32. Mehrizi T.Z. Eshghi P. Investigation of the effect of nanoparticles on platelet storage duration 2010–2020. Int. Nano Lett. 2022 12 1 15 45 10.1007/s40089‑021‑00340‑2
    [Google Scholar]
  33. Mehrizi T.Z. Mosaffa N. In vivo therapeutic effects of four synthesized antileishmanial nanodrugs in the treatment of leishmaniasis. Arch. Clin. Infect. Dis. 2018 13 5 e80314 10.5812/archcid.80314
    [Google Scholar]
  34. Mehrizi T.Z. Pirali Hamedani M. Ebrahimi Shahmabadi H. Effective materials of medicinal plants for leishmania treatment in vivo environment. Faslnamah-i Giyahan-i Daruyi 2020 19 74 39 62 10.29252/jmp.19.74.39
    [Google Scholar]
  35. Mehrizi T.Z. Amini Kafiabad S. Evaluation of the effects of nanoparticles on the therapeutic function of platelet: A review. J. Pharm. Pharmacol. 2022 74 2 179 190 10.1093/jpp/rgab089 34244798
    [Google Scholar]
  36. Fatemeh D.R.A. Ebrahimi Shahmabadi H. Abedi A. Polybutylcyanoacrylate nanoparticles and drugs of the platinum family: last status. Indian J. Clin. Biochem. 2014 29 3 333 338 10.1007/s12291‑013‑0364‑6 24966482
    [Google Scholar]
  37. Han Y. Wen P. Li J. Kataoka K. Targeted nanomedicine in cisplatin-based cancer therapeutics. J. Control. Release 2022 345 709 720 10.1016/j.jconrel.2022.03.049 35367476
    [Google Scholar]
  38. Wiglusz K. Trynda-Lemiesz L. Platinum drugs binding to human serum albumin: Effect of non-steroidal anti-inflammatory drugs. J. Photochem. Photobiol. Chem. 2014 289 1 6 10.1016/j.jphotochem.2014.05.013
    [Google Scholar]
  39. Chirino Y.I. Pedraza-Chaverri J. Role of oxidative and nitrosative stress in cisplatin-induced nephrotoxicity. Exp. Toxicol. Pathol. 2009 61 3 223 242 10.1016/j.etp.2008.09.003 18986801
    [Google Scholar]
  40. Li Q. Tian Y. Li D. The effect of lipocisplatin on cisplatin efficacy and nephrotoxicity in malignant breast cancer treatment. Biomaterials 2014 35 24 6462 6472 10.1016/j.biomaterials.2014.04.023 24797881
    [Google Scholar]
  41. Shahabi J. Shahmabadi H.E. Alavi S.E. Effect of gold nanoparticles on properties of nanoliposomal hydroxyurea: An in vitro study. Indian J. Clin. Biochem. 2014 29 3 315 320 10.1007/s12291‑013‑0355‑7 24966479
    [Google Scholar]
  42. Stathopoulos G.P. Boulikas T. Lipoplatin formulation review article. J. Drug Deliv. 2012 2012 1 10 10.1155/2012/581363 21904682
    [Google Scholar]
  43. Stathopoulos G.P. Rigatos S. Stathopoulos J. Batzios S. Liposomal cisplatin in cancer patients with renal failure. J. Drug Deliv. Ther. 2012 2 3 106 109 10.22270/jddt.v2i3.146
    [Google Scholar]
  44. Gu L. Deng Z.J. Roy S. Hammond P.T. A combination RNAi-chemotherapy layer-by-layer nanoparticle for systemic targeting of KRAS/P53 with cisplatin to treat non–small cell lung cancer. Clin. Cancer Res. 2017 23 23 7312 7323 10.1158/1078‑0432.CCR‑16‑2186 28912139
    [Google Scholar]
  45. Kuang Y. Liu J. Liu Z. Zhuo R. Cholesterol-based anionic long-circulating cisplatin liposomes with reduced renal toxicity. Biomaterials 2012 33 5 1596 1606 10.1016/j.biomaterials.2011.10.081 22079777
    [Google Scholar]
  46. Lan X. She J. Lin D. Microneedle-mediated delivery of lipid-coated cisplatin nanoparticles for efficient and safe cancer therapy. ACS Appl. Mater. Interfaces 2018 10 39 33060 33069 10.1021/acsami.8b12926 30204401
    [Google Scholar]
  47. Guo S. Wang Y. Miao L. Lipid-coated Cisplatin nanoparticles induce neighboring effect and exhibit enhanced anticancer efficacy. ACS Nano 2013 7 11 9896 9904 10.1021/nn403606m 24083505
    [Google Scholar]
  48. Gusti-Ngurah-Putu E.P. Huang L. Hsu Y.C. Effective combined photodynamic therapy with lipid platinum chloride nanoparticles therapies of oral squamous carcinoma tumor inhibition. J. Clin. Med. 2019 8 12 2112 10.3390/jcm8122112 31810241
    [Google Scholar]
  49. Jung J. Jeong S.Y. Park S.S. A cisplatin-incorporated liposome that targets the epidermal growth factor receptor enhances radiotherapeutic efficacy without nephrotoxicity. Int. J. Oncol. 2015 46 3 1268 1274 10.3892/ijo.2014.2806 25544240
    [Google Scholar]
  50. Wang Y. Zhou J. Qiu L. Cisplatin–alginate conjugate liposomes for targeted delivery to EGFR-positive ovarian cancer cells. Biomaterials 2014 35 14 4297 4309 10.1016/j.biomaterials.2014.01.035 24565522
    [Google Scholar]
  51. Kishimoto S. Fujitani N. Ohnishi T. Aoki H. Suzuki R. Fukushima S. Cisplatin-loaded, Sialyl Lewis X-modified liposomes: drug release. Anticancer Res. 2017 37 11 6055 6061 10.21873/anticanres.12053 29061785
    [Google Scholar]
  52. Hamano N Böttger R, Lee SE, et al. Robust microfluidic technology and new lipid composition for fabrication of curcumin-loaded liposomes: effect on the anticancer activity and safety of cisplatin. Mol. Pharm. 2019 16 9 3957 3967 10.1021/acs.molpharmaceut.9b00583 31381352
    [Google Scholar]
  53. Liu H.T. Wang T.E. Hsu Y.T. Nanoparticulated honokiol mitigates cisplatin-induced chronic kidney injury by maintaining mitochondria antioxidant capacity and reducing caspase 3-associated cellular apoptosis. Antioxidants 2019 8 10 466 10.3390/antiox8100466 31600935
    [Google Scholar]
  54. Taguchi K. Suzuki Y. Tsutsuura M. Liposomal artificial red blood cell-based carbon monoxide donor is a potent renoprotectant against cisplatin-induced acute kidney injury. Pharmaceutics 2021 14 1 57 10.3390/pharmaceutics14010057 35056952
    [Google Scholar]
  55. Gomes I.P. Silva J.O. Cassali G.D. De Barros A.L.B. Leite E.A. Cisplatin-loaded thermosensitive liposomes functionalized with hyaluronic acid: Cytotoxicity and in vivo acute toxicity evaluation. Pharmaceutics 2023 15 2 583 10.3390/pharmaceutics15020583 36839905
    [Google Scholar]
  56. Song J. Xu T. Zhang Y. 3-octadecylcarbamoylacrylic acid-cisplatin nanocomplexes for the development of novel liposome formulation. Drug Deliv. 2016 23 9 3285 3293 10.3109/10717544.2016.1172369
    [Google Scholar]
  57. Zhang J. Gu L. Jiang Y. Artesunate-nanoliposome-TPP, a novel drug delivery system that targets the mitochondria, attenuates cisplatin-induced acute kidney injury by suppressing oxidative stress and inflammatory effects. Int. J. Nanomedicine 2024 19 1385 1408 10.2147/IJN.S444076 38371457
    [Google Scholar]
  58. Ashrafzadeh M.S. Akbarzadeh A. Heydarinasab A. Ardjmand M. In vivo glioblastoma therapy using targeted liposomal cisplatin. Int. J. Nanomedicine 2020 15 7035 7049 10.2147/IJN.S255902 33061366
    [Google Scholar]
  59. Ghaferi M. Asadollahzadeh M.J. Akbarzadeh A. Ebrahimi Shahmabadi H. Alavi S.E. Enhanced efficacy of PEGylated liposomal cisplatin: In vitro and in vivo evaluation. Int. J. Mol. Sci. 2020 21 2 559 10.3390/ijms21020559 31952316
    [Google Scholar]
  60. Cheng Y. Zhao P. Wu S. Cisplatin and curcumin co-loaded nano-liposomes for the treatment of hepatocellular carcinoma. Int. J. Pharm. 2018 545 1-2 261 273 10.1016/j.ijpharm.2018.05.007 29730175
    [Google Scholar]
  61. Casanova A.G. Prieto M. Colino C.I. A micellar formulation of quercetin prevents cisplatin nephrotoxicity. Int. J. Mol. Sci. 2021 22 2 729 10.3390/ijms22020729 33450917
    [Google Scholar]
  62. Desale S.S. Cohen S.M. Zhao Y. Kabanov A.V. Bronich T.K. Biodegradable hybrid polymer micelles for combination drug therapy in ovarian cancer. J. Control. Release 2013 171 3 339 348 10.1016/j.jconrel.2013.04.026 23665258
    [Google Scholar]
  63. Oberoi H. Nukolova N.V. Laquer F.C. Cisplatin-loaded core cross-linked micelles: Comparative pharmacokinetics, antitumor activity, and toxicity in mice. Int. J. Nanomedicine 2012 7 2557 2571 10.2147/IJN.S29145 22745537
    [Google Scholar]
  64. Chen Q. Luo L. Xue Y. Cisplatin-loaded polymeric complex micelles with a modulated drug/copolymer ratio for improved in vivo performance. Acta Biomater. 2019 92 205 218 10.1016/j.actbio.2019.05.007 31071475
    [Google Scholar]
  65. Soodvilai S. Tipparos W. Rangsimawong W. Effects of silymarin-loaded amphiphilic chitosan polymeric micelles on the renal toxicity and anticancer activity of cisplatin. Pharm. Dev. Technol. 2019 24 8 927 934 10.1080/10837450.2018.1556690 30526167
    [Google Scholar]
  66. Soodvilai S. Soodvilai S. Sajomsang W. Rojanarata T. Patrojanasophon P. Opanasopit P. Chitosan polymeric micelles for prevention of cisplatin-induced nephrotoxicity and anticancer activity of cisplatin. Proceedings of the 2020 10th International Conference on Biomedical Engineering and Technology Tokyo, Japan, 15 Sept. 2020 197 201 10.1145/3397391.3397438
    [Google Scholar]
  67. Mohamed E.A. Abu Hashim I.I. Yusif R.M. Suddek G.M. Shaaban A.A.A. Badria F.A.E. Enhanced in vitro cytotoxicity and anti-tumor activity of vorinostat-loaded pluronic micelles with prolonged release and reduced hepatic and renal toxicities. Eur. J. Pharm. Sci. 2017 96 232 242 10.1016/j.ejps.2016.09.029 27667706
    [Google Scholar]
  68. Li Z. Cao S. Pre-incubation with human umbilical cord derived mesenchymal stem cells-exosomes prevents cisplatin-induced renal tubular epithelial cell injury. Aging (Albany NY) 2020 12 18 18008 18018 10.18632/aging.103545 32965241
    [Google Scholar]
  69. Hou Y. Wang Y. Wang R. Harnessing phosphato-platinum bonding induced supramolecular assembly for systemic cisplatin delivery. ACS Appl. Mater. Interfaces 2017 9 21 17757 17768 10.1021/acsami.7b03686 28481085
    [Google Scholar]
  70. Mehrizi T.Z. Shafiee Ardestani M. Mirzaei M.J. Ahmad A review study on the application of polymeric-based nanoparticles as a novel approach for enhancing the stability of albumins. Nanomed. J. 2022 9 4 261 272 10.22038/nmj.2022.65394.1686
    [Google Scholar]
  71. Mehrizi T.Z. Mirzaei M. Ardestani M.S. Pegylation, a successful strategy to address the storage and instability problems of blood products: Review 2011-2021. Curr. Pharm. Biotechnol. 2024 25 3 247 267 10.2174/1389201024666230522091958 37218184
    [Google Scholar]
  72. Mehrizi T.Z. Assessment of the effect of polymeric nanoparticles on storage and stability of blood products (red blood cells, plasma, and platelet). Polym. Bull. 2023 80 3 2263 2298 10.1007/s00289‑022‑04147‑9
    [Google Scholar]
  73. Mehrizi T.Z. Kafiabad S.A. Eshghi P. Effects and treatment applications of polymeric nanoparticles on improving platelets’ storage time: A review of the literature from 2010 to 2020. Blood Res. 2021 56 4 215 228 10.5045/br.2021.2021094 34880140
    [Google Scholar]
  74. Lyu Z. Ding L. Huang A.Y.T. Kao C.L. Peng L. Poly(amidoamine) dendrimers: Covalent and supramolecular synthesis. Mater. Today Chem. 2019 13 34 48 10.1016/j.mtchem.2019.04.004
    [Google Scholar]
  75. Pandita D. Madaan K. Kumar S. Poonia N. Lather V. Dendrimers in drug delivery and targeting: Drug-dendrimer interactions and toxicity issues. J. Pharm. Bioallied Sci. 2014 6 3 139 150 10.4103/0975‑7406.130965 25035633
    [Google Scholar]
  76. Cheng Y. Zhao L. Li Y. Xu T. Design of biocompatible dendrimers for cancer diagnosis and therapy: Current status and future perspectives. Chem. Soc. Rev. 2011 40 5 2673 2703 10.1039/c0cs00097c 21286593
    [Google Scholar]
  77. Mehrizi T.Z. Ardestani M.S. Khamesipour A. Reduction toxicity of Amphotericin B through loading into a novel nanoformulation of anionic linear globular dendrimer for improve treatment of leishmania major. J. Mater. Sci. Mater. Med. 2018 29 8 125 10.1007/s10856‑018‑6122‑9 30056571
    [Google Scholar]
  78. Mehrizi T.Z. Mosaffa N. Khamesipour A. A novel nanoformulation for reducing the toxicity and increasing the efficacy of betulinic acid using anionic linear globular dendrimer. J Nanostruct 2021 11 1 143 152 10.22052/jns.2021.01.016
    [Google Scholar]
  79. Mehrizi T.Z. Ardestani M.S. The introduction of dendrimers as a new approach to improve the performance and quality of various blood products (platelets, plasma and erythrocytes): A 2010-2022 review study. Curr. Nanosci. 2023 19 1 103 122 10.2174/1573413718666220728141511
    [Google Scholar]
  80. Mehrizi T.Z. Ardestani M.S. Kafiabad S.A. A review study of the influences of dendrimer nanoparticles on stored platelet in order to treat patients (2001-2020). Curr. Nanosci. 2022 18 3 304 318 10.2174/1566524021666210708154736
    [Google Scholar]
  81. Li Y. Li Y. Zhang X. Supramolecular PEGylated dendritic systems as ph/redox dual-responsive theranostic nanoplatforms for platinum drug delivery and nir imaging. Theranostics 2016 6 9 1293 1305 10.7150/thno.15081 27375780
    [Google Scholar]
  82. Liu J. Guo X. Luo Z. Zhang J. Li M. Cai K. Hierarchically stimuli-responsive nanovectors for improved tumor penetration and programed tumor therapy. Nanoscale 2018 10 28 13737 13750 10.1039/C8NR02971G 29992216
    [Google Scholar]
  83. Guo X.L. Kang X.X. Wang Y.Q. Co-delivery of cisplatin and doxorubicin by covalently conjugating with polyamidoamine dendrimer for enhanced synergistic cancer therapy. Acta Biomater. 2019 84 367 377 10.1016/j.actbio.2018.12.007 30528609
    [Google Scholar]
  84. Mondal J. Patra M. Panigrahi A.K. Khuda-Bukhsh A.R. Improved drug carriage and protective potential against Cisplatin-induced toxicity using Boldine-loaded PLGA nanoparticles. J. Ayurveda Integr. Med. 2020 11 1 24 36 10.1016/j.jaim.2017.11.002 30115410
    [Google Scholar]
  85. Alam N. Khare V. Dubey R. Biodegradable polymeric system for cisplatin delivery: Development, in vitro characterization and investigation of toxicity profile. Mater. Sci. Eng. C 2014 38 85 93 10.1016/j.msec.2014.01.043 24656356
    [Google Scholar]
  86. Wang Y. Liu P. Qiu L. Toxicity and therapy of cisplatin-loaded EGF modified mPEG-PLGA-PLL nanoparticles for SKOV3 cancer in mice. Biomaterials 2013 34 16 4068 4077 10.1016/j.biomaterials.2012.12.033 23480957
    [Google Scholar]
  87. Zahran F. Nabil A. El-Karef A. El-Sherbiny I.M. Sobh M. Effect of nano-formulated antioxidant on development of renal fibrosis induced by cisplatin. J Stem Cell Res Med 2016 1 1 36 40 10.15761/JSCRM.1000105
    [Google Scholar]
  88. Harakeh S. Qari Y. Tashkandi H. Thymoquinone nanoparticles protect against cisplatin-induced nephrotoxicity in Ehrlich carcinoma model without compromising cisplatin anti-cancer efficacy. J. King Saud Univ. Sci. 2022 34 1 101675 10.1016/j.jksus.2021.101675
    [Google Scholar]
  89. Alotaibi B. El-Masry T.A. Elekhnawy E. Aqueous core epigallocatechin gallate PLGA nanocapsules: characterization, antibacterial activity against uropathogens, and in vivo reno-protective effect in cisplatin induced nephrotoxicity. Drug Deliv. 2022 29 1 1848 1862 10.1080/10717544.2022.2083725 35708451
    [Google Scholar]
  90. He Z. Huang J. Xu Y. Co-delivery of cisplatin and paclitaxel by folic acid conjugated amphiphilic PEG-PLGA copolymer nanoparticles for the treatment of non-small lung cancer. Oncotarget 2015 6 39 42150 42168 10.18632/oncotarget.6243 26517524
    [Google Scholar]
  91. Anees L.M. Abdel-Hamid G.R. Elkady A.A. A nano based approach to alleviate cisplatin induced nephrotoxicity. Int. J. Immunopathol. Pharmacol. 2021 35 20587384211066441 10.1177/20587384211066441 34915755
    [Google Scholar]
  92. Sasai M. Sakura K. Matsuda T. Uyama H. A novel formulation of cisplatin with γ-polyglutamic acid and chitosan reduces its adverse renal effects: An in vitro and in vivo animal study. Polymers 2021 13 11 1803 10.3390/polym13111803 34070811
    [Google Scholar]
  93. Trummer R. Rangsimawong W. Sajomsang W. Kumpugdee-Vollrath M. Opanasopit P. Tonglairoum P. Chitosan-based self-assembled nanocarriers coordinated to cisplatin for cancer treatment. RSC Advances 2018 8 41 22967 22973 10.1039/C8RA03069C 35540171
    [Google Scholar]
  94. Mehrizi T.Z. Shafiee Ardestani M. Application of non-metal nanoparticles, as a novel approach, for improving the stability of blood products: 2011–2021. Prog. Biomater. 2022 11 2 137 161 10.1007/s40204‑022‑00188‑5 35536502
    [Google Scholar]
  95. Mehrizi T.Z. Ardestani M.S. Molla Hoseini M.H. Khamesipour A. Mosaffa N. Ramezani A. Novel nano-sized chitosan amphotericin B formulation with considerable improvement against Leishmania major. Nanomedicine 2018 13 24 3129 3147 10.2217/nnm‑2018‑0063 30463469
    [Google Scholar]
  96. Mehrizi T.Z. Shafiee Ardestani M. Rezayat S.M. Javanmard A. A review study of the use of modified chitosan as a new approach to increase the preservation of blood products (erythrocytes, platelets, and plasma products): 2010-2022. Nanomed. J. 2023 10 1 16 32 10.22038/nmj.2022.65972.1693
    [Google Scholar]
  97. Mehrizi T.Z. Rezayat S.M. Ardestani M.S. Shahmabadi H.E. Ramezani A. A review study about the effect of chitosan nanocarrier on improving the efficacy of amphotericin B in the treatment of leishmania from 2010 to 2020. Curr. Drug Deliv. 2021 18 9 1234 1243 10.2174/1567201818666210316111941 33726648
    [Google Scholar]
  98. El-Shafai N.M. Farrag F. Shukry M. Effect of a novel hybrid nanocomposite of cisplatin–chitosan on induced tissue injury as a suggested drug by reducing cisplatin side effects. Biol. Trace Elem. Res. 2022 200 9 4017 4026 10.1007/s12011‑021‑02994‑7 34719747
    [Google Scholar]
  99. Yoon S.J. Moon Y.J. Chun H.J. Yang D.H. Doxorubicin·hydrochloride/cisplatin-loaded hydrogel/nanosized (2-hydroxypropyl)-beta-cyclodextrin local drug-delivery system for osteosarcoma treatment in vivo. Nanomaterials 2019 9 12 1652 10.3390/nano9121652 31766334
    [Google Scholar]
  100. Sandoughdaran S. Razzaghdoust A. Tabibi A. Basiri A. Simforoosh N. Mofid B. Randomized, double-blind pilot study of nanocurcumin in bladder cancer patients receiving induction chemotherapy. Urol. J. 2021 18 3 295 300 10.22037/uj.v0i0.5719 32350847
    [Google Scholar]
  101. El-Gizawy M.M. Hosny E.N. Mourad H.H. Abd-El Razik A.N. Amira N. Curcumin nanoparticles ameliorate hepatotoxicity and nephrotoxicity induced by cisplatin in rats. Naunyn Schmiedebergs Arch. Pharmacol. 2020 393 10 1941 1953 10.1007/s00210‑020‑01888‑0 32447466
    [Google Scholar]
  102. Dhima I. Zerikiotis S. Lekkas P. Curcumin acts as a chemosensitizer for leiomyosarcoma cells in vitro but fails to mediate antioxidant enzyme activity in cisplatin-induced experimental nephrotoxicity in rats. Integr. Cancer Ther. 2019 18 1534735419872811 10.1177/1534735419872811 31441361
    [Google Scholar]
  103. Trujillo J Molina-Jijón E Medina-Campos ON Curcumin prevents cisplatin-induced decrease in the tight and adherens junctions: Relation to oxidative stress. Food Funct. 2016 7 1 279 293 10.1039/C5FO00624D 26467482
    [Google Scholar]
  104. Ugur S. Ulu R. Dogukan A. The renoprotective effect of curcumin in cisplatin-induced nephrotoxicity. Ren. Fail. 2015 37 2 332 336 10.3109/0886022X.2014.986005 25594614
    [Google Scholar]
  105. Said Salem N.I. Noshy M.M. Said A.A. Modulatory effect of curcumin against genotoxicity and oxidative stress induced by cisplatin and methotrexate in male mice. Food Chem. Toxicol. 2017 105 370 376 10.1016/j.fct.2017.04.007 28428088
    [Google Scholar]
  106. Waseem M. Kaushik P. Parvez S. Mitochondria-mediated mitigatory role of curcumin in cisplatin-induced nephrotoxicity. Cell Biochem. Funct. 2013 31 8 678 684 10.1002/cbf.2955 23408677
    [Google Scholar]
  107. Al Fayi M. Otifi H. Alshyarba M. Dera A.A. Rajagopalan P. Thymoquinone and curcumin combination protects cisplatin-induced kidney injury, nephrotoxicity by attenuating NFκB, KIM-1 and ameliorating Nrf2/HO-1 signalling. J. Drug Target. 2020 28 9 913 922 10.1080/1061186X.2020.1722136 31983246
    [Google Scholar]
  108. Ueki M. Ueno M. Morishita J. Maekawa N. Curcumin ameliorates cisplatin-induced nephrotoxicity by inhibiting renal inflammation in mice. J. Biosci. Bioeng. 2013 115 5 547 551 10.1016/j.jbiosc.2012.11.007 23245727
    [Google Scholar]
  109. Maghmomeh A.O. El-Gayar A.M. El-Karef A. Abdel-Rahman N. Arsenic trioxide and curcumin attenuate cisplatin-induced renal fibrosis in rats through targeting Hedgehog signaling. Naunyn Schmiedebergs Arch. Pharmacol. 2020 393 3 303 313 10.1007/s00210‑019‑01734‑y 31612257
    [Google Scholar]
  110. Ali B.H. Abdelrahman A. Al Suleimani Y. Effect of concomitant treatment of curcumin and melatonin on cisplatin-induced nephrotoxicity in rats. Biomed. Pharmacother. 2020 131 110761 10.1016/j.biopha.2020.110761 33152924
    [Google Scholar]
  111. Huang S.J. Huang J. Yan Y.B. The renoprotective effect of curcumin against cisplatin-induced acute kidney injury in mice: Involvement of miR-181a/PTEN axis. Ren. Fail. 2020 42 1 350 357 10.1080/0886022X.2020.1751658 32338107
    [Google Scholar]
  112. Abd El-Kader M. Taha R.I. Comparative nephroprotective effects of curcumin and etoricoxib against cisplatin-induced acute kidney injury in rats. Acta Histochem. 2020 122 4 151534 10.1016/j.acthis.2020.151534 32151374
    [Google Scholar]
  113. Sahin K. Orhan C. Tuzcu M. Comparative in vivo evaluations of curcumin and its analog difluorinated curcumin against cisplatin-induced nephrotoxicity. Biol. Trace Elem. Res. 2014 157 2 156 163 10.1007/s12011‑014‑9886‑x 24415068
    [Google Scholar]
  114. Kumar P. Sulakhiya K. Barua C.C. Mundhe N. TNF-α IL-6 and IL-10 expressions, responsible for disparity in action of curcumin against cisplatin-induced nephrotoxicity in rats. Mol. Cell. Biochem. 2017 431 1-2 113 122 10.1007/s11010‑017‑2981‑5 28258441
    [Google Scholar]
  115. Waly M.I. Ali B.H. Nemmar A. Acute effects of diesel exhaust particles and cisplatin on oxidative stress in cultured human kidney (HEK 293) cells, and the influence of curcumin thereon. Toxicol. In Vitro 2013 27 8 2299 2304 10.1016/j.tiv.2013.09.023 24113306
    [Google Scholar]
  116. Gupta S.C. Patchva S. Aggarwal B.B. Therapeutic roles of curcumin: Lessons learned from clinical trials. AAPS J. 2013 15 1 195 218 10.1208/s12248‑012‑9432‑8 23143785
    [Google Scholar]
  117. Rahimi H.R. Nedaeinia R. Sepehri Shamloo A. Nikdoust S. Kazemi Oskuee R. Novel delivery system for natural products: Nano-curcumin formulations. Avicenna J. Phytomed. 2016 6 4 383 398 27516979
    [Google Scholar]
  118. El-Rahman S. Al-Jameel S. Protection of curcumin and curcumin nanoparticles against cisplatin induced nephrotoxicity in male rats. Scholars Acad. J. Biosci. 2014 2 3 214 223
    [Google Scholar]
  119. Rahmi DNI Louisa M Soetikno V 2018
  120. Abd El-Rahman S.N. Al-Jameel S.S. Efficacy of nano curcumin in F-2 isoprostanes in male rats treated with Cisplatin and Methotrexate as chemotherapy drugs. Int J Sudan Res 2014 4 2 155 179 10.47556/J.IJSR.4.2.2014.5
    [Google Scholar]
  121. Chen Y. Chen C. Zhang X. Platinum complexes of curcumin delivered by dual-responsive polymeric nanoparticles improve chemotherapeutic efficacy based on the enhanced anti-metastasis activity and reduce side effects. Acta Pharm. Sin. B 2020 10 6 1106 1121 10.1016/j.apsb.2019.10.011 32642416
    [Google Scholar]
  122. Louisa M. Wanafri E. Arozal W. Sandhiutami N.M.D. Basalamah A.M. Nanocurcumin preserves kidney function and haematology parameters in DMBA-induced ovarian cancer treated with cisplatin via its antioxidative and anti-inflammatory effect in rats. Pharm. Biol. 2023 61 1 298 305 10.1080/13880209.2023.2166965 36708211
    [Google Scholar]
  123. Panahi Y. Saberi-Karimian M. Valizadeh O. Effects of curcuminoids on systemic inflammation and quality of life in patients with colorectal cancer undergoing chemotherapy: A randomized controlled trial. Adv. Exp. Med. Biol. 2021 1328 1 9 10.1007/978‑3‑030‑73234‑9_1 34981467
    [Google Scholar]
  124. Belcaro G. Hosoi M. Pellegrini L. A controlled study of a lecithinized delivery system of curcumin (Meriva®) to alleviate the adverse effects of cancer treatment. Phytother. Res. 2014 28 3 444 450 10.1002/ptr.5014 23775598
    [Google Scholar]
  125. Ferreira N.H. Furtado R.A. Ribeiro A.B. Europium(III)-doped yttrium vanadate nanoparticles reduce the toxicity of cisplatin. J. Inorg. Biochem. 2018 182 9 17 10.1016/j.jinorgbio.2018.01.014 29407869
    [Google Scholar]
  126. Alam N. Dubey R.D. Kumar A. Reduced toxicological manifestations of cisplatin following encapsulation in folate grafted albumin nanoparticles. Life Sci. 2015 142 76 85 10.1016/j.lfs.2015.10.019 26482203
    [Google Scholar]
  127. Neamatallah T. El-Shitany N. Abbas A. Nano ellagic acid counteracts cisplatin-induced upregulation in OAT1 and OAT3: A possible nephroprotection mechanism. Molecules 2020 25 13 3031 10.3390/molecules25133031 32630784
    [Google Scholar]
  128. Khan M.W. Zou C. Hassan S. Cisplatin and oleanolic acid Co-loaded pH-sensitive CaCO 3 nanoparticles for synergistic chemotherapy. RSC Advances 2022 12 23 14808 14818 10.1039/D2RA00742H 35702211
    [Google Scholar]
  129. Shi C. Yu H. Sun D. Cisplatin-loaded polymeric nanoparticles: Characterization and potential exploitation for the treatment of non-small cell lung carcinoma. Acta Biomater. 2015 18 68 76 10.1016/j.actbio.2015.02.009 25707922
    [Google Scholar]
  130. Chen Y. Wang J. Wang J. Aptamer functionalized cisplatin-albumin nanoparticles for targeted delivery to epidermal growth factor receptor positive cervical cancer. J. Biomed. Nanotechnol. 2016 12 4 656 666 10.1166/jbn.2016.2203 27301192
    [Google Scholar]
  131. Chiang C.S. Tseng Y.H. Liao B.J. Chen S.Y. Magnetically targeted nanocapsules for PAA-cisplatin-conjugated cores in PVA/SPIO shells via surfactant-free emulsion for reduced nephrotoxicity and enhanced lung cancer therapy. Adv. Healthc. Mater. 2015 4 7 1066 1075 10.1002/adhm.201400794 25656800
    [Google Scholar]
  132. Patil B.R. Kang S.Y. Jung D.H. Design of a novel theranostic nanomedicine (III): Synthesis and physicochemical properties of tumor-targeting cisplatin conjugated to a hydrophilic polyphosphazene. Int. J. Nanomedicine 2020 15 981 990 10.2147/IJN.S235618 32103951
    [Google Scholar]
  133. Yang T. Yu S. Liu L. Dual polymeric prodrug co-assembled nanoparticles with precise ratiometric co-delivery of cisplatin and metformin for lung cancer chemoimmunotherapy. Biomater. Sci. 2020 8 20 5698 5714 10.1039/D0BM01191F 32930254
    [Google Scholar]
  134. Xiong Y Zhao Y Miao L Lin CM Huang L Co-delivery of polymeric metformin and cisplatin by self-assembled coremembrane nanoparticles to treat non-small cell lung cancer. J Control Release 2016 244 PT A 63 73 10.1016/j.jconrel.2016.11.005 27840166
    [Google Scholar]
  135. Huang Y. He Y. Huang Z. Coordination self-assembly of platinum–bisphosphonate polymer–metal complex nanoparticles for cisplatin delivery and effective cancer therapy. Nanoscale 2017 9 28 10002 10019 10.1039/C7NR02662E 28682411
    [Google Scholar]
  136. Ling X. Chen X. Riddell I.A. Glutathione-scavenging poly (disulfide amide) nanoparticles for the effective delivery of Pt (IV) prodrugs and reversal of cisplatin resistance. Nano Lett. 2018 18 7 4618 4625 10.1021/acs.nanolett.8b01924 29902013
    [Google Scholar]
  137. Zou D. Ganugula R. Arora M. Nabity M.B. Sheikh-Hamad D. Kumar M.N.V.R. Oral delivery of nanoparticle urolithin A normalizes cellular stress and improves survival in mouse model of cisplatin-induced AKI. Am. J. Physiol. Renal Physiol. 2019 317 5 F1255 F1264 10.1152/ajprenal.00346.2019 31532243
    [Google Scholar]
  138. Li M. Tang Z. Zhang Y. Lv S. Li Q. Chen X. Targeted delivery of cisplatin by LHRH-peptide conjugated dextran nanoparticles suppresses breast cancer growth and metastasis. Acta Biomater. 2015 18 132 143 10.1016/j.actbio.2015.02.022 25735801
    [Google Scholar]
  139. Gunji S. Obama K. Matsui M. Tabata Y. Sakai Y. A novel drug delivery system of intraperitoneal chemotherapy for peritoneal carcinomatosis using gelatin microspheres incorporating cisplatin. Surgery 2013 154 5 991 999 10.1016/j.surg.2013.04.054 24008088
    [Google Scholar]
  140. Wang X. Chang Z. Nie X. A conveniently synthesized Pt (IV) conjugated alginate nanoparticle with ligand self-shielded property for targeting treatment of hepatic carcinoma. Nanomedicine 2019 15 1 153 163 10.1016/j.nano.2018.09.012 30308299
    [Google Scholar]
  141. Tsai S.W. Yu D.S. Tsao S.W. Hsu F.Y. Hyaluronan–cisplatin conjugate nanoparticles embedded in Eudragit S100-coated pectin/alginate microbeads for colon drug delivery. Int. J. Nanomedicine 2013 8 2399 2407 10.2147/IJN.S46613 23861585
    [Google Scholar]
  142. Mehrizi T.Z. Ardestani M.S. Kafiabad S.A. A review of the use of metallic nanoparticles as a novel approach for overcoming the stability challenges of blood products: A narrative review from 2011-2021. Curr. Drug Deliv. 2023 20 3 261 280 10.2174/1567201819666220513092020 35570560
    [Google Scholar]
  143. Mehrizi T.Z. Impact of metallic, quantum dots and carbon-based nanoparticles on quality and storage of albumin products for clinical use. Nano 2021 16 14 2130013 10.1142/S1793292021300139
    [Google Scholar]
  144. Caputo F. Mameli M. Sienkiewicz A. A novel synthetic approach of cerium oxide nanoparticles with improved biomedical activity. Sci. Rep. 2017 7 1 4636 10.1038/s41598‑017‑04098‑6 28680107
    [Google Scholar]
  145. Abdelhamid A.M. Mahmoud S.S. Abdelrahman A.E. Protective effect of cerium oxide nanoparticles on cisplatin and oxaliplatin primary toxicities in male albino rats. Naunyn Schmiedebergs Arch. Pharmacol. 2020 393 12 2411 2425 10.1007/s00210‑020‑01946‑7 32710137
    [Google Scholar]
  146. Saifi M.A. Sangomla S. Khurana A. Godugu C. Protective effect of nanoceria on cisplatin-induced nephrotoxicity by amelioration of oxidative stress and pro-inflammatory mechanisms. Biol. Trace Elem. Res. 2019 189 1 145 156 10.1007/s12011‑018‑1457‑0 30047078
    [Google Scholar]
  147. El-Sheikh SMA Edrees N EL-Sayed H Could cisplatin loading on biosynthesized silver nanoparticles improve its therapeutic efficacy on human prostate cancer cell line and reduce its in vivo nephrotoxic effects? Biol. Trace Elem. Res. 2022 200 2 582 590 10.1007/s12011‑021‑02677‑3 33759109
    [Google Scholar]
  148. Zhang Z. Xin G. Zhou G. Green synthesis of silver nanoparticles from Alpinia officinarum mitigates cisplatin-induced nephrotoxicity via down-regulating apoptotic pathway in rats. Artif. Cells Nanomed. Biotechnol. 2019 47 1 3212 3221 10.1080/21691401.2019.1645158 31359793
    [Google Scholar]
  149. Liu C. Zhou S. Lai H. Shi L. Bai W. Li X. Protective effect of spore oil-functionalized nano-selenium system on cisplatin-induced nephrotoxicity by regulating oxidative stress-mediated pathways and activating immune response. J. Nanobiotechnology 2023 21 1 47 10.1186/s12951‑022‑01754‑6 36759859
    [Google Scholar]
  150. Saif-Elnasr M. Abdel-Aziz N. El-Batal A.I. Ameliorative effect of selenium nanoparticles and fish oil on cisplatin and gamma irradiation-induced nephrotoxicity in male albino rats. Drug Chem. Toxicol. 2019 42 1 94 103 10.1080/01480545.2018.1497050 30203673
    [Google Scholar]
  151. Li X. Wang Q. Deng G. Porous Se@SiO2 nanospheres attenuate cisplatin-induced acute kidney injury via activation of Sirt1. Toxicol. Appl. Pharmacol. 2019 380 114704 10.1016/j.taap.2019.114704 31400413
    [Google Scholar]
  152. Hassanen E.I. Korany R.M.S. Bakeer A.M. Cisplatin-conjugated gold nanoparticles-based drug delivery system for targeting hepatic tumors. J. Biochem. Mol. Toxicol. 2021 35 5 22722 10.1002/jbt.22722 33484050
    [Google Scholar]
  153. Kadir A. Ibrahim S. Shah S.N.N. Attenuation of cisplatin-induced acute kidney injury by N-(2-Hydroxyphenyl) acetamide and its gold conjugated nano-formulations in mice. Pak. J. Pharm. Sci. 2020 33 2 Supplementary 787 793 (Suppl.) 32863253
    [Google Scholar]
  154. ALRashdi BM Mohamed RA Mohamed AH Therapeutic activity of green synthesized selenium nanoparticles from turmeric against cisplatin-induced oxido-inflammatory stress and cell death in mice kidney. Biosci. Rep. 2023 43 11 BSR20231130 10.1042/BSR20231130 37902021
    [Google Scholar]
  155. Hussein J. El-Bana M. Abdel-Latif Y. El-Sayed S. Shaarawy S. Medhat D. Moringa oleifera leaves extract loaded gold nanoparticles offers a promising approach in protecting against experimental nephrotoxicity. Prostaglandins Other Lipid Mediat. 2024 170 106800 10.1016/j.prostaglandins.2023.106800 38029886
    [Google Scholar]
  156. Kamat A.M. Sethi G. Aggarwal B.B. Curcumin potentiates the apoptotic effects of chemotherapeutic agents and cytokines through down-regulation of nuclear factor-κB and nuclear factor-κB–regulated gene products in IFN-α–sensitive and IFN-α–resistant human bladder cancer cells. Mol. Cancer Ther. 2007 6 3 1022 1030 10.1158/1535‑7163.MCT‑06‑0545 17363495
    [Google Scholar]
  157. Liu Z. Huang P. Law S. Tian H. Leung W. Xu C. Preventive effect of curcumin against chemotherapy-induced side-effects. Front. Pharmacol. 2018 9 1374 10.3389/fphar.2018.01374 30538634
    [Google Scholar]
  158. Fetoni A.R. Eramo S.L.M. Paciello F. Curcuma longa (curcumin) decreases in vivo cisplatin-induced ototoxicity through heme oxygenase-1 induction. Otol. Neurotol. 2014 35 5 e169 e177 10.1097/MAO.0000000000000302 24608370
    [Google Scholar]
  159. Kuhad A. Pilkhwal S. Sharma S. Tirkey N. Chopra K. Effect of curcumin on inflammation and oxidative stress in cisplatin-induced experimental nephrotoxicity. J. Agric. Food Chem. 2007 55 25 10150 10155 10.1021/jf0723965 18001039
    [Google Scholar]
  160. Chen X. Wang J. Fu Z. Curcumin activates DNA repair pathway in bone marrow to improve carboplatin-induced myelosuppression. Sci. Rep. 2017 7 1 17724 10.1038/s41598‑017‑16436‑9 29255221
    [Google Scholar]
  161. Davoudi M. Jadidi Y. Moayedi K. Farrokhi V. Afrisham R. Ameliorative impacts of polymeric and metallic nanoparticles on cisplatin-induced nephrotoxicity: A 2011–2022 review. J. Nanobiotechnology 2022 20 1 504 10.1186/s12951‑022‑01718‑w 36457031
    [Google Scholar]
  162. Menon V.P. Sudheer A.R. Antioxidant and anti-inflammatory properties of curcumin. Adv. Exp. Med. Biol. 2007 595 105 125 10.1007/978‑0‑387‑46401‑5_3 17569207
    [Google Scholar]
  163. Priyadarsini K.I. Maity D.K. Naik G.H. Role of phenolic O-H and methylene hydrogen on the free radical reactions and antioxidant activity of curcumin. Free Radic. Biol. Med. 2003 35 5 475 484 10.1016/S0891‑5849(03)00325‑3 12927597
    [Google Scholar]
  164. Dickinson D.A. Iles K.E. Zhang H. Blank V. Forman H.J. Curcumin alters EpRE and AP-1 binding complexes and elevates glutamate-cysteine ligase gene expression. FASEB J. 2003 17 3 1 26 10.1096/fj.02‑0566fje 12514113
    [Google Scholar]
  165. M Khopde S Priyadarsini KI, Venkatesan P, Rao MN. Free radical scavenging ability and antioxidant efficiency of curcumin and its substituted analogue. Biophys. Chem. 1999 80 2 85 91 10.1016/S0301‑4622(99)00070‑8 17030320
    [Google Scholar]
  166. Sumanont Y. Murakami Y. Tohda M. Vajragupta O. Watanabe H. Matsumoto K. Prevention of kainic acid-induced changes in nitric oxide level and neuronal cell damage in the rat hippocampus by manganese complexes of curcumin and diacetylcurcumin. Life Sci. 2006 78 16 1884 1891 10.1016/j.lfs.2005.08.028 16266725
    [Google Scholar]
  167. Begum A.N. Jones M.R. Lim G.P. Curcumin structure-function, bioavailability, and efficacy in models of neuroinflammation and Alzheimer’s disease. J. Pharmacol. Exp. Ther. 2008 326 1 196 208 10.1124/jpet.108.137455 18417733
    [Google Scholar]
  168. Falke J. Parkkinen J. Vaahtera L. Hulsbergen-van de Kaa C.A. Oosterwijk E. Witjes J.A. Curcumin as treatment for bladder cancer: A preclinical study of cyclodextrin-curcumin complex and BCG as intravesical treatment in an orthotopic bladder cancer rat model. BioMed Res. Int. 2018 2018 1 7 10.1155/2018/9634902 29984253
    [Google Scholar]
  169. Hauser P.J. Han Z. Sindhwani P. Hurst R.E. Sensitivity of bladder cancer cells to curcumin and its derivatives depends on the extracellular matrix. Anticancer Res. 2007 27 2 737 740 17465196
    [Google Scholar]
  170. Du B. Jiang L. Xia Q. Zhong L. Synergistic inhibitory effects of curcumin and 5-fluorouracil on the growth of the human colon cancer cell line HT-29. Chemotherapy 2006 52 1 23 28 10.1159/000090238 16340194
    [Google Scholar]
  171. Dhandapani K.M. Mahesh V.B. Brann D.W. Curcumin suppresses growth and chemoresistance of human glioblastoma cells via AP-1 and NFκB transcription factors. J. Neurochem. 2007 102 2 522 538 10.1111/j.1471‑4159.2007.04633.x 17596214
    [Google Scholar]
  172. Montopoli M. Ragazzi E. Froldi G. Caparrotta L. Cell-cycle inhibition and apoptosis induced by curcumin and cisplatin or oxaliplatin in human ovarian carcinoma cells. Cell Prolif. 2009 42 2 195 206 10.1111/j.1365‑2184.2009.00585.x 19236381
    [Google Scholar]
  173. Ke C.S. Liu H.S. Yen C.H. Curcumin-induced Aurora-A suppression not only causes mitotic defect and cell cycle arrest but also alters chemosensitivity to anticancer drugs. J. Nutr. Biochem. 2014 25 5 526 539 10.1016/j.jnutbio.2014.01.003 24613085
    [Google Scholar]
  174. Aggarwal B.B. Shishodia S. Takada Y. Curcumin suppresses the paclitaxel-induced nuclear factor-kappaB pathway in breast cancer cells and inhibits lung metastasis of human breast cancer in nude mice. Clin. Cancer Res. 2005 11 20 7490 7498 10.1158/1078‑0432.CCR‑05‑1192 16243823
    [Google Scholar]
  175. Sun T. Zhang Y.S. Pang B. Hyun D.C. Yang M. Xia Y. Engineered nanoparticles for drug delivery in cancer therapy. Angew. Chem. Int. Ed. 2014 53 46 12320 12364 10.1002/anie.201403036 25294565
    [Google Scholar]
  176. Jha S. Sharma P.K. Malviya R. Liposomal drug delivery system for cancer therapy: Advancement and patents. Recent Pat. Drug Deliv. Formul. 2016 10 3 177 183 10.2174/1872211310666161004155757 27712569
    [Google Scholar]
  177. Noble G.T. Stefanick J.F. Ashley J.D. Kiziltepe T. Bilgicer B. Ligand-targeted liposome design: Challenges and fundamental considerations. Trends Biotechnol. 2014 32 1 32 45 10.1016/j.tibtech.2013.09.007 24210498
    [Google Scholar]
  178. Pepic I. Hafner A. Lovric J. Perina Lakos G. Nanotherapeutics in the EU: An overview on current state and future directions. Int. J. Nanomedicine 2014 9 1005 1023 10.2147/IJN.S55359 24600222
    [Google Scholar]
  179. McClements D.J. Rao J. Food-grade nanoemulsions: Formulation, fabrication, properties, performance, biological fate, and potential toxicity. Crit. Rev. Food Sci. Nutr. 2011 51 4 285 330 10.1080/10408398.2011.559558 21432697
    [Google Scholar]
  180. Chen T. Gong T. Zhao T. Fu Y. Zhang Z. Gong T. A comparison study between lycobetaine-loaded nanoemulsion and liposome using nRGD as therapeutic adjuvant for lung cancer therapy. Eur. J. Pharm. Sci. 2018 111 293 302 10.1016/j.ejps.2017.09.041 28966099
    [Google Scholar]
  181. He H. Lu Y. Qi J. Zhu Q. Chen Z. Wu W. Adapting liposomes for oral drug delivery. Acta Pharm. Sin. B 2019 9 1 36 48 10.1016/j.apsb.2018.06.005 30766776
    [Google Scholar]
  182. Mehta P.P. Ghoshal D. Pawar A.P. Kadam S.S. Dhapte-Pawar V.S. Recent advances in inhalable liposomes for treatment of pulmonary diseases: Concept to clinical stance. J. Drug Deliv. Sci. Technol. 2020 56 101509 10.1016/j.jddst.2020.101509
    [Google Scholar]
  183. Pierre M.B.R. dos Santos Miranda Costa I. Liposomal systems as drug delivery vehicles for dermal and transdermal applications. Arch. Dermatol. Res. 2011 303 9 607 621 10.1007/s00403‑011‑1166‑4 21805180
    [Google Scholar]
  184. Barenholz Y.C. Doxil® — The first FDA-approved nano-drug: Lessons learned. J. Control. Release 2012 160 2 117 134 10.1016/j.jconrel.2012.03.020 22484195
    [Google Scholar]
  185. Cevenini A. Celia C. Orrù S. Liposome-embedding silicon microparticle for oxaliplatin delivery in tumor chemotherapy. Pharmaceutics 2020 12 6 559 10.3390/pharmaceutics12060559 32560359
    [Google Scholar]
  186. Kirui D.K. Celia C. Molinaro R. Mild hyperthermia enhances transport of liposomal gemcitabine and improves in vivo therapeutic response. Adv. Healthc. Mater. 2015 4 7 1092 1103 10.1002/adhm.201400738 25721343
    [Google Scholar]
  187. Laouini A. Jaafar-Maalej C. Limayem-Blouza I. Sfar S. Charcosset C. Fessi H. Preparation, characterization and applications of liposomes: State of the art. J Colloid Sci Biotechnol 2012 1 2 147 168 10.1166/jcsb.2012.1020
    [Google Scholar]
  188. Bulbake U. Doppalapudi S. Kommineni N. Khan W. Liposomal formulations in clinical use: An updated review. Pharmaceutics 2017 9 2 12 10.3390/pharmaceutics9020012 28346375
    [Google Scholar]
  189. Tadokoro S. Hirashima N. Utsunomiya-Tate N. Effect of Complexin II on membrane fusion between liposomes containing mast cell SNARE proteins. Biol. Pharm. Bull. 2016 39 3 446 449 10.1248/bpb.b15‑00751 26934935
    [Google Scholar]
  190. Pasut G. Paolino D. Celia C. Polyethylene glycol (PEG)-dendron phospholipids as innovative constructs for the preparation of super stealth liposomes for anticancer therapy. J. Control. Release 2015 199 106 113 10.1016/j.jconrel.2014.12.008 25499917
    [Google Scholar]
  191. Mare R. Paolino D. Celia C. Molinaro R. Fresta M. Cosco D. Post-insertion parameters of PEG-derivatives in phosphocholine-liposomes. Int. J. Pharm. 2018 552 1-2 414 421 10.1016/j.ijpharm.2018.10.028 30316001
    [Google Scholar]
  192. Zeng H. Qi Y. Zhang Z. Liu C. Peng W. Zhang Y. Nanomaterials toward the treatment of Alzheimer’s disease: Recent advances and future trends. Chin. Chem. Lett. 2021 32 6 1857 1868 10.1016/j.cclet.2021.01.014
    [Google Scholar]
  193. Li C. Zhang Y. Wan Y. STING-activating drug delivery systems: Design strategies and biomedical applications. Chin. Chem. Lett. 2021 32 5 1615 1625 10.1016/j.cclet.2021.01.001
    [Google Scholar]
  194. Kalyane D. Raval N. Maheshwari R. Tambe V. Kalia K. Tekade R.K. Employment of enhanced permeability and retention effect (EPR): Nanoparticle-based precision tools for targeting of therapeutic and diagnostic agent in cancer. Mater. Sci. Eng. C 2019 98 1252 1276 10.1016/j.msec.2019.01.066 30813007
    [Google Scholar]
  195. Dana P. Bunthot S. Suktham K. Active targeting liposome-PLGA composite for cisplatin delivery against cervical cancer. Colloids Surf. B Biointerfaces 2020 196 111270 10.1016/j.colsurfb.2020.111270 32777659
    [Google Scholar]
  196. Hashemi M. Shamshiri A. Saeedi M. Tayebi L. Yazdian-Robati R. Aptamer-conjugated PLGA nanoparticles for delivery and imaging of cancer therapeutic drugs. Arch. Biochem. Biophys. 2020 691 108485 10.1016/j.abb.2020.108485 32712288
    [Google Scholar]
  197. Fernandes M.A. Eloy J.O. Luiz M.T. Transferrin-functionalized liposomes for docetaxel delivery to prostate cancer cells. Colloids Surf. A Physicochem. Eng. Asp. 2021 611 125806 10.1016/j.colsurfa.2020.125806
    [Google Scholar]
  198. Danhier F. Le Breton A. Préat V. RGD-based strategies to target alpha(v) beta(3) integrin in cancer therapy and diagnosis. Mol. Pharm. 2012 9 11 2961 2973 10.1021/mp3002733 22967287
    [Google Scholar]
  199. Kang T. Gao X. Hu Q. iNGR-modified PEG-PLGA nanoparticles that recognize tumor vasculature and penetrate gliomas. Biomaterials 2014 35 14 4319 4332 10.1016/j.biomaterials.2014.01.082 24565520
    [Google Scholar]
  200. Liang H. Zou F. Liu Q. Nanocrystal-loaded liposome for targeted delivery of poorly water-soluble antitumor drugs with high drug loading and stability towards efficient cancer therapy. Int. J. Pharm. 2021 599 120418 10.1016/j.ijpharm.2021.120418 33647414
    [Google Scholar]
  201. Chen Q. Gao M. Li Z. Biodegradable nanoparticles decorated with different carbohydrates for efficient macrophage-targeted gene therapy. J. Control. Release 2020 323 179 190 10.1016/j.jconrel.2020.03.044 32334322
    [Google Scholar]
  202. Saraf S. Jain A. Tiwari A. Verma A. Panda P.K. Jain S.K. Advances in liposomal drug delivery to cancer: An overview. J. Drug Deliv. Sci. Technol. 2020 56 101549 10.1016/j.jddst.2020.101549
    [Google Scholar]
/content/journals/crcep/10.2174/0127724328374568250711183328
Loading
/content/journals/crcep/10.2174/0127724328374568250711183328
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: nephrotoxicity ; biocompatibility ; nanoliposomes ; CDDP ; chitosan ; nanoparticles
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test