Skip to content
2000
image of Dipeptidyl Peptidase-4 Inhibitors and Risk of Fractures in Type 2 Diabetes Mellitus Patients: A Bayesian Network Meta-Analysis

Abstract

Background/Objective

Type 2 diabetes mellitus (T2DM) contributes to an increased fracture risk and impaired bone health. The impact of dipeptidyl peptidase-4 inhibitors (DPP-4i) on bone fracture risk is unclear. We performed a network meta-analysis (NMA) to assess the impact of DPP-4i on fracture risk in patients with T2DM.

Methods

A comprehensive systematic literature search was conducted on PubMed/Medline, Cochrane Library, and ClinicalTrials.gov until June 2024 to identify RCTs reporting fracture events with DPP-4i among T2DM patients. A Bayesian NMA has been performed to calculate the odds ratio (OR) and 95% credible intervals (CrI). Surface under the cumulative ranking analysis (SUCRA) was utilized to assess the rank probability of DPP-4i.

Results

A total of 85 RCTs were identified, including 89,965 T2DM patients with 1,083 fracture events. In the direct meta-analysis, DPP-4i did not elevate fracture risk compared to placebo or other oral anti-diabetics (OADs) (OR (95%CI): 1.04 (0.91-1.18); =0.57 and 1.18 (0.79-1.74); =0.96, respectively). Alogliptin and sitagliptin indicated a non-significant trend towards reducing fracture risk compared to placebo (OR (95%CI): 0.59 (0.31-1.15); =0.12) and OADs (OR (95%CI): 0.73 (0.41-1.30); =0.28), respectively. In the NMA, alogliptin significantly reduced fracture risk compared to linagliptin and SGLT2i (OR (95%CrI): 0.41 (0.16-0.93) and 0.16 (0.017-0.83), respectively). Conversely, linagliptin increased fracture risk compared to sulfonylurea (OR (95%CrI): 2.3 (1.1-5.2). According to SUCRA, alogliptin (84%) ranked as the preferred treatment for reducing fracture risk in T2DM patients.

Conclusion

Overall, DPP-4i was not associated with an increased risk of fractures in patients with T2DM. However, alogliptin demonstrated a reduced risk of fractures when compared to both linagliptin and SGLT2i. Further long-term clinical studies are needed to confirm the present findings.

Loading

Article metrics loading...

/content/journals/crcep/10.2174/0127724328373328250624065307
2025-07-09
2025-10-18
Loading full text...

Full text loading...

References

  1. Hossain M.J. Al-Mamun M. Islam M.R. Diabetes mellitus, the fastest growing global public health concern: Early detection should be focused. Health Sci. Rep. 2024 7 3 2004 10.1002/hsr2.2004 38524769
    [Google Scholar]
  2. IDF diabetes atlas. 2025 Available from: http://www.diabetesatlas.org/ resources/idf-diabetes-atlas-2025/
  3. Konar M. Kaur B. Sharma S. Mechanistic implications of diabetes leading to bone pathology. J. Orthop. Res. 2025 4 4 100485 10.1016/j.jorep.2024.100485
    [Google Scholar]
  4. Liu X. Chen F. Liu L. Zhang Q. Prevalence of osteoporosis in patients with diabetes mellitus: A systematic review and meta-analysis of observational studies. BMC Endocr. Disord. 2023 23 1 1 10.1186/s12902‑022‑01260‑8 36597121
    [Google Scholar]
  5. Wikarek A. Grabarczyk M. Klimek K. Janoska-Gawrońska A. Suchodolska M. Holecki M. Effect of drugs used in pharmacotherapy of type 2 diabetes on bone density and risk of bone fractures. Medicina 2024 60 3 393 10.3390/medicina60030393 38541119
    [Google Scholar]
  6. Paschou S.A. Dede A.D. Anagnostis P.G. Vryonidou A. Morganstein D. Goulis D.G. Type 2 diabetes and osteoporosis: A guide to optimal management. J. Clin. Endocrinol. Metab. 2017 102 10 3621 3634 10.1210/jc.2017‑00042 28938433
    [Google Scholar]
  7. Wang Y. Yu L. Ye Z. Association of metformin use with fracture risk in type 2 diabetes: A systematic review and meta-analysis of observational studies. Front. Endocrinol. 2023 13 1038603 10.3389/fendo.2022.1038603 36714564
    [Google Scholar]
  8. Cipriani C. Lauriero G. Tripepi G. Effect of antidiabetic drugs on bone health in patients with normal renal function and in chronic kidney disease (CKD): Insight into clinical challenges in the treatment of type 2 diabetes. J. Clin. Med. 2023 12 23 7260 10.3390/jcm12237260 38068310
    [Google Scholar]
  9. Gracia-Ramos A.E. Cruz-Domínguez M.P. Madrigal-Santillán E.O. Incretin-based therapy for glycemic control of hospitalized patients with type 2 diabetes: A systematic review. Rev Clin Esp 2022 222 3 180 189 10.1016/j.rceng.2021.09.003 34872879
    [Google Scholar]
  10. Huang L. Zhong W. Liang X. Wang H. Fu S. Luo Z. Meta-analysis on the association between dpp-4 inhibitors and bone mineral density and osteoporosis. J. Clin. Densitom. 2024 27 1 101455 10.1016/j.jocd.2023.101455 38101289
    [Google Scholar]
  11. Monami M. Dicembrini I. Antenore A. Mannucci E. Dipeptidyl peptidase-4 inhibitors and bone fractures: A meta-analysis of randomized clinical trials. Diabetes Care 2011 34 11 2474 2476 10.2337/dc11‑1099 22025784
    [Google Scholar]
  12. Mamza J. Marlin C. Wang C. Chokkalingam K. Idris I. DPP-4 inhibitor therapy and bone fractures in people with Type 2 diabetes – A systematic review and meta-analysis. Diabetes Res. Clin. Pract. 2016 116 288 298 10.1016/j.diabres.2016.04.029 27321347
    [Google Scholar]
  13. Chen Q. Liu T. Zhou H. Peng H. Yan C. Risk of fractures associated with dipeptidyl peptidase-4 inhibitor treatment: A systematic review and meta-analysis of randomized controlled trials. Diabetes Ther. 2019 10 5 1879 1892 10.1007/s13300‑019‑0668‑5 31347093
    [Google Scholar]
  14. Fu J. Zhu J. Hao Y. Guo C. Zhou Z. Dipeptidyl peptidase-4 inhibitors and fracture risk: An updated meta-analysis of randomized clinical trials. Sci. Rep. 2016 6 1 29104 10.1038/srep29104 27384445
    [Google Scholar]
  15. Hu D. O’Connor A.M. Wang C. Sargeant J.M. Winder C.B. How to conduct a bayesian network meta-analysis. Front. Vet. Sci. 2020 7 271 10.3389/fvets.2020.00271 32509807
    [Google Scholar]
  16. Hutton B. Salanti G. Caldwell D.M. The PRISMA extension statement for reporting of systematic reviews incorporating network meta-analyses of health care interventions: Checklist and explanations. Ann. Intern. Med. 2015 162 11 777 784 10.7326/M14‑2385 26030634
    [Google Scholar]
  17. Moher D. Shamseer L. Clarke M. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement. Syst. Rev. 2015 4 1 1 9 10.1186/2046‑4053‑4‑1 25554246
    [Google Scholar]
  18. Higgins J.P. Altman D.G. Assessing Risk of Bias in Included Studies. Hoboken, New Jersey John Wiley and Sons 2008 187 241 10.1002/9780470712184.ch8
    [Google Scholar]
  19. Dias S. Sutton A.J. Ades A.E. Welton N.J. Evidence synthesis for decision making 2: A generalized linear modeling framework for pairwise and network meta-analysis of randomized controlled trials. Med. Decis. Making 2013 33 5 607 617 10.1177/0272989X12458724 23104435
    [Google Scholar]
  20. Lu G. Ades A.E. Combination of direct and indirect evidence in mixed treatment comparisons. Stat. Med. 2004 23 20 3105 3124 10.1002/sim.1875 15449338
    [Google Scholar]
  21. Dias S. Welton N.J. Caldwell D.M. Ades A.E. Checking consistency in mixed treatment comparison meta‐analysis. Stat. Med. 2010 29 7-8 932 944 10.1002/sim.3767 20213715
    [Google Scholar]
  22. Lu G. Ades A.E. Assessing evidence inconsistency in mixed treatment comparisons. J. Am. Stat. Assoc. 2006 101 474 447 459 10.1198/016214505000001302
    [Google Scholar]
  23. Kibret T. Richer D. Beyene J. Bias in identification of the best treatment in a Bayesian network meta-analysis for binary outcome: A simulation study. Clin. Epidemiol. 2014 6 451 460 25506247
    [Google Scholar]
  24. Mbuagbaw L. Rochwerg B. Jaeschke R. Approaches to interpreting and choosing the best treatments in network meta-analyses. Syst. Rev. 2017 6 1 79 10.1186/s13643‑017‑0473‑z 28403893
    [Google Scholar]
  25. Begg C.B. Mazumdar M. Operating characteristics of a rank correlation test for publication bias. Biometrics 1994 50 4 1088 1101 10.2307/2533446 7786990
    [Google Scholar]
  26. Egger M. Smith G.D. Schneider M. Minder C. Bias in meta-analysis detected by a simple, graphical test. BMJ 1997 315 7109 629 634 10.1136/bmj.315.7109.629 9310563
    [Google Scholar]
  27. Schwarzer G. Carpenter J.R. Rücker G. Network meta-analysis. Meta-analysis with R. 2015 187 216
    [Google Scholar]
  28. Kanazawa I. Inaba M. Inoue D. Executive summary of clinical practice guide on fracture risk in lifestyle diseases. J. Bone Miner. Metab. 2020 38 6 746 758 10.1007/s00774‑020‑01149‑3 32892240
    [Google Scholar]
  29. Yang J. Huang C. Wu S. The effects of dipeptidyl peptidase-4 inhibitors on bone fracture among patients with type 2 diabetes mellitus: A network meta-analysis of randomized controlled trials. PLoS One 2017 12 12 0187537 10.1371/journal.pone.0187537 29206832
    [Google Scholar]
  30. Pechmann L.M. Pinheiro F.I. Andrade V.F.C. Moreira C.A. The multiple actions of dipeptidyl peptidase 4 (DPP-4) and its pharmacological inhibition on bone metabolism: A review. Diabetol. Metab. Syndr. 2024 16 1 175 10.1186/s13098‑024‑01412‑x 39054499
    [Google Scholar]
  31. Liu H. Xiao H. Lin S. Effect of gut hormones on bone metabolism and their possible mechanisms in the treatment of osteoporosis. Front. Pharmacol. 2024 15 1372399 10.3389/fphar.2024.1372399 38725663
    [Google Scholar]
  32. Daniilopoulou I. Vlachou E. Lambrou G.I. The impact of GLP1 agonists on bone metabolism: A systematic review. Medicina 2022 58 2 224 10.3390/medicina58020224 35208548
    [Google Scholar]
  33. Chang C.H. Lu C.H. Chung C.H. Dipeptidyl peptidase-4 inhibitors attenuates osteoporosis in patients with diabetes: A nationwide, retrospective, matched-cohort study in Taiwan. J. Chin. Med. Assoc. 2022 85 7 747 753 10.1097/JCMA.0000000000000743 35648138
    [Google Scholar]
  34. Driessen J.H.M. van den Bergh J.P.W. van Onzenoort H.A.W. Henry R.M.A. Leufkens H.G.M. de Vries F. Long‐term use of dipeptidyl peptidase‐4 inhibitors and risk of fracture: A retrospective population‐based cohort study. Diabetes Obes. Metab. 2017 19 3 421 428 10.1111/dom.12843 27943565
    [Google Scholar]
  35. Tsai W.H. Kong S.K. Lin C.L. Risk of fracture caused by anti-diabetic drugs in individuals with type 2 diabetes: A network meta-analysis. Diabetes Res. Clin. Pract. 2022 192 110082 10.1016/j.diabres.2022.110082 36122867
    [Google Scholar]
  36. Al-Mashhadi Z.K. Viggers R. Fuglsang-Nielsen R. Vestergaard P. Gregersen S. Starup-Linde J. The risk of major osteoporotic fractures with GLP-1 receptor agonists when compared to DPP-4 inhibitors: A Danish nationwide cohort study. Front. Endocrinol. 2022 13 882998 10.3389/fendo.2022.882998 36299454
    [Google Scholar]
  37. Gamble J.M. Donnan J.R. Chibrikov E. Twells L.K. Midodzi W.K. Majumdar S.R. The risk of fragility fractures in new users of dipeptidyl peptidase-4 inhibitors compared to sulfonylureas and other anti-diabetic drugs: A cohort study. Diabetes Res. Clin. Pract. 2018 136 159 167 10.1016/j.diabres.2017.12.008 29258886
    [Google Scholar]
  38. Bahardoust M. Yarali M. Donyadideh G. The use of metformin, sulfonylurea compounds and insulin and the risk of hip fractures in diabetic patients: A systematic review and meta-analysis of observational studies. BMC Musculoskelet. Disord. 2023 24 1 367 10.1186/s12891‑023‑06493‑9 37161384
    [Google Scholar]
  39. Dombrowski S. Kostev K. Jacob L. Use of dipeptidyl peptidase-4 inhibitors and risk of bone fracture in patients with type 2 diabetes in Germany—A retrospective analysis of real-world data. Osteoporos. Int. 2017 28 8 2421 2428 10.1007/s00198‑017‑4051‑y 28455750
    [Google Scholar]
  40. Chai S. Liu F. Yang Z. Risk of fracture with dipeptidyl peptidase-4 inhibitors, glucagon-like peptide-1 receptor agonists, or sodium-glucose cotransporter-2 inhibitors in patients with type 2 diabetes mellitus: A systematic review and network meta-analysis combining 177 randomized controlled trials with a median follow-up of 26 weeks. Front. Pharmacol. 2022 13 825417 10.3389/fphar.2022.825417 35847027
    [Google Scholar]
  41. Azharuddin M. Adil M. Ghosh P. Sharma M. Sodium-glucose cotransporter 2 inhibitors and fracture risk in patients with type 2 diabetes mellitus: A systematic literature review and Bayesian network meta-analysis of randomized controlled trials. Diabetes Res. Clin. Pract. 2018 146 180 190 10.1016/j.diabres.2018.10.019 30389620
    [Google Scholar]
  42. Chaiyakunapruk N. Saokaew S. Sruamsiri R. Dilokthornsakul P. Systematic review and network meta-analysis in health technology assessment. J. Med. Assoc. Thai. 2014 97 Suppl. 5 S33 S42 24964697
    [Google Scholar]
/content/journals/crcep/10.2174/0127724328373328250624065307
Loading
/content/journals/crcep/10.2174/0127724328373328250624065307
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test