Skip to content
2000
Volume 20, Issue 4
  • ISSN: 2772-4328
  • E-ISSN: 2772-4336

Abstract

Previous genetic studies on the genetic makeup of Arab populations highlight the diversity resulting from the distribution of specific genetic markers among various Arab descendant populations. Different genetic variants classified as clinically significant have been identified, impacting the response to administered drugs. Absorption, distribution, and excretion of drugs throughout the human body are managed through the actions of drug transporters and receptor proteins, which are expressed on the cellular membrane. Drug metabolism involves activating or inactivating various compounds, transforming them into therapeutically active or toxic metabolites. With the rapid advancement of pharmacogenetic testing techniques and increased genetic studies involving Arab populations, insights into genetic polymorphisms have emerged, leading to a better understanding of the diverse phenotypes of drug response associated with genotype variation. Variations in transporters and receptor genes have significantly contributed to generating variant phenotypes that affect individuals' responses to treatments and substrates. This necessitates administering individualized drug doses based on the patient's haplotype, which can be determined through advanced genetic diagnosis. This review summarizes the findings of recent pharmacogenetic studies in the Arab world, emphasizing the benefits of pharmacogenetic research and applications to enhance therapeutic aspects of healthcare and treatment among patients in Arab countries.

Loading

Article metrics loading...

/content/journals/crcep/10.2174/0127724328335492241206075509
2024-12-23
2025-10-18
Loading full text...

Full text loading...

References

  1. RodenD.M. WilkeR.A. KroemerH.K. SteinC.M. Pharmacogenomics.Circulation2011123151661167010.1161/CIRCULATIONAHA.109.91482021502584
    [Google Scholar]
  2. JohnsonJ.A. WeitzelK.W. Advancing pharmacogenomics as a component of precision medicine: How, where, and who?Clin. Pharmacol. Ther.201699215415610.1002/cpt.27326440500
    [Google Scholar]
  3. GurwitzD. LunshofJ.E. DedoussisG. FlordellisC.S. FuhrU. KirchheinerJ. LicinioJ. LlerenaA. ManolopoulosV.G. SheffieldL.J. SiestG. TorricelliF. VasiliouV. WongS. Pharmacogenomics education: International society of pharmacogenomics recommendations for medical, pharmaceutical, and health schools deans of education.Pharmacogenomics J.20055422122510.1038/sj.tpj.650031215852053
    [Google Scholar]
  4. GinsburgG.S. WillardH.F. Genomic and personalized medicine: Foundations and applications.Transl. Res.2009154627728710.1016/j.trsl.2009.09.00519931193
    [Google Scholar]
  5. TeebiA.S. TeebiS.A. Genetic diversity among the arabs.Community Genet.200581212615767750
    [Google Scholar]
  6. DahlS.G. SylteI. RavnaA.W. Structures and models of transporter proteins.J. Pharmacol. Exp. Ther.2004309385386010.1124/jpet.103.05997214988415
    [Google Scholar]
  7. MorrisM.E. Rodriguez-CruzV. FelmleeM.A. SLC and ABC transporters: Expression, localization, and species differences at the blood-brain and the blood-cerebrospinal fluid barriers.AAPS J.20171951317133110.1208/s12248‑017‑0110‑828664465
    [Google Scholar]
  8. De MattiaE. ToffoliG. PoleselJ. D’AndreaM. CoronaG. ZagonelV. BuonadonnaA. DreussiE. CecchinE. Pharmacogenetics of ABC and SLC transporters in metastatic colorectal cancer patients receiving first-line folfiri treatment.Pharmacogenet. Genomics2013231054955710.1097/FPC.0b013e328364b6cf24018773
    [Google Scholar]
  9. NingrumV.D.A. SadewaA.H. IkawatiZ. YuliwulandariR. IkhsanM.R. FajriyahR. The influence of metformin transporter gene SLC22a1 and SLC47a1 variants on steady-state pharmacokinetics and glycemic response.PLoS One2022177e027141010.1371/journal.pone.027141035905099
    [Google Scholar]
  10. VasiliouV. VasiliouK. NebertD.W. Human atp-binding cassette (ABC) transporter family.Hum. Genomics20083328129010.1186/1479‑7364‑3‑3‑28119403462
    [Google Scholar]
  11. DeanM. The Human ATP-Binding Cassette (ABC) Transporter Superfamily.Bethesda, MDNational Center for Biotechnology Information (US)2002
    [Google Scholar]
  12. King JordanI. KotaK.C. CuiG. ThompsonC.H. McCartyN.A. Evolutionary and functional divergence between the cystic fibrosis transmembrane conductance regulator and related atp-binding cassette transporters.Proc. Natl. Acad. Sci. USA200810548188651887010.1073/pnas.080630610519020075
    [Google Scholar]
  13. StefkováJ. PoledneR. HubácekJ.A. Atp-binding cassette (ABC) transporters in human metabolism and diseases.Physiol. Res.200453323524310.33549/physiolres.93043215209530
    [Google Scholar]
  14. ChinJ.E. SoffirR. NoonanK.E. ChoiK. RoninsonI.B. Structure and expression of the human mdr (p-glycoprotein) gene family.Mol. Cell. Biol.198999380838202571078
    [Google Scholar]
  15. EmranT.B. ShahriarA. MahmudA.R. RahmanT. AbirM.H. SiddiqueeM.F.R. AhmedH. RahmanN. NainuF. WahyudinE. MitraS. DhamaK. HabiballahM.M. HaqueS. IslamA. HassanM.M. Multidrug resistance in cancer: Understanding molecular mechanisms, immunoprevention and therapeutic approaches.Front. Oncol.20221289165210.3389/fonc.2022.89165235814435
    [Google Scholar]
  16. MillerE.J. LappinS.L. Physiology, Cellular ReceptorStatPearlsTreasure Island (FL)StatPearls Publishing2024
    [Google Scholar]
  17. Di RestaC. BecchettiA. Introduction to ion channels.Adv. Exp. Med. Biol.201067492110.1007/978‑1‑4419‑6066‑5_220549936
    [Google Scholar]
  18. KamatoD. ThachL. BernardR. ChanV. ZhengW. KaurH. BrimbleM. OsmanN. LittleP.J. Structure, function, pharmacology, and therapeutic potential of the g protein, gî±/q,11.Front. Cardiovasc. Med.201521410.3389/fcvm.2015.0001426664886
    [Google Scholar]
  19. RehmanS. RahimiN. DimriM. Biochemistry, G Protein Coupled Receptors.StatPearls.Treasure Island (FL)StatPearls Publishing2024
    [Google Scholar]
  20. CampbellI.D. HumphriesM.J. Integrin structure, activation, and interactions.Cold Spring Harb. Perspect. Biol.201133a00499410.1101/cshperspect.a00499421421922
    [Google Scholar]
  21. AnghelS.A. Dinu-PirvuC.E. CostacheM.A. VoiculescuA.M. GhicaM.V. AnuțaV. PopaL. Receptor pharmacogenomics: Deciphering genetic influence on drug response.Int. J. Mol. Sci.20242517937110.3390/ijms2517937139273318
    [Google Scholar]
  22. PeterJ.U. DieudonnéP. ZolkO. Pharmacokinetics, pharmacodynamics, and side effects of midazolam: A review and case example.Pharmaceuticals202417447310.3390/ph1704047338675433
    [Google Scholar]
  23. PacanowskiM.A. GongY. Cooper-DeHoffR.M. SchorkN.J. ShriverM.D. LangaeeT.Y. PepineC.J. JohnsonJ.A. INVEST Investigators Beta-adrenergic receptor gene polymorphisms and beta-blocker treatment outcomes in hypertension.Clin. Pharmacol. Ther.200884671572110.1038/clpt.2008.13918615004
    [Google Scholar]
  24. MargoobM. MushtaqD. MurtzaI. MushtaqH. AliA. Serotonin transporter gene polymorphism and treatment response to serotonin reuptake inhibitor (escitalopram) in depression: An open pilot study.Indian J. Psychiatry2008501475010.4103/0019‑5545.3975919771307
    [Google Scholar]
  25. ChengL. XiaF. LiZ. ShenC. YangZ. HouH. SunS. FengY. YongX. TianX. QinH. YanW. ShaoZ. Structure, function and drug discovery of gpcr signaling.Molecular Biomedicine2023414610.1186/s43556‑023‑00156‑w38047990
    [Google Scholar]
  26. Al-EitanL. JaradatS.A. SuS. TayG.K. HulseG.K. Mu opioid receptor (oprm1) as a predictor of treatment outcome in opiate-dependent individuals of arab descent.Pharm. Genomics Pers. Med.201259911110.2147/PGPM.S3335123226066
    [Google Scholar]
  27. AL-EitanL.N. AlshudaifatK.M. AnaniJ.Y. Association of the drd4 exon iii and 5-httlpr vntr polymorphisms with substance abuse in jordanian arab population.Gene202073314426710.1016/j.gene.2019.14426731809838
    [Google Scholar]
  28. AlshogranO.Y. Al-EitanL.N. AltawalbehS.M. AmanH.A. Association of drd4 exon iii and 5-httlpr vntr genetic polymorphisms with psychiatric symptoms in hemodialysis patients.PLoS One2021163e024928410.1371/journal.pone.024928433784353
    [Google Scholar]
  29. BellJ.K. MullenG.E.D. LeiferC.A. MazzoniA. DaviesD.R. SegalD.M. Leucine-rich repeats and pathogen recognition in toll-like receptors.Trends Immunol.2003241052853310.1016/S1471‑4906(03)00242‑414552836
    [Google Scholar]
  30. NieL. CaiS.Y. ShaoJ.Z. ChenJ. Toll-like receptors, associated biological roles, and signaling networks in non-mammals.Front. Immunol.20189152310.3389/fimmu.2018.0152330034391
    [Google Scholar]
  31. TakeuchiO. AkiraS. Pattern recognition receptors and inflammation.Cell2010140680582010.1016/j.cell.2010.01.02220303872
    [Google Scholar]
  32. BehzadiP. García-PerdomoH.A. KarpińskiT.M. Toll-like receptors: General molecular and structural biology.J. Immunol. Res.2021202112110.1155/2021/991485434195298
    [Google Scholar]
  33. ReuvenE.M. FinkA. ShaiY. Regulation of innate immune responses by transmembrane interactions: Lessons from the tlr family.Biochim. Biophys. Acta Biomembr.2014183861586159310.1016/j.bbamem.2014.01.02024480409
    [Google Scholar]
  34. ThompsonJ. IwasakiA. Toll-like receptors regulation of viral infection and disease.Adv. Drug Deliv. Rev.200860778679410.1016/j.addr.2007.11.00318280610
    [Google Scholar]
  35. SkevakiC. PararasM. KostelidouK. TsakrisA. RoutsiasJ.G. Single nucleotide polymorphisms of toll-like receptors and susceptibility to infectious diseases.Clin. Exp. Immunol.2015180216517710.1111/cei.1257825560985
    [Google Scholar]
  36. ZolaH. SwartB. NicholsonI. AastedB. BensussanA. BoumsellL. BuckleyC. ClarkG. DrbalK. EngelP. HartD. HorejsíV. IsackeC. MacardleP. MalavasiF. MasonD. OliveD. SaalmuellerA. SchlossmanS.F. Schwartz-AlbiezR. SimmonsP. TedderT.F. UguccioniM. WarrenH. CD molecules 2005: Human cell differentiation molecules.Blood200510693123312610.1182/blood‑2005‑03‑133816020511
    [Google Scholar]
  37. WalterR.B. AppelbaumF.R. EsteyE.H. BernsteinI.D. Acute myeloid leukemia stem cells and CD33-targeted immunotherapy.Blood2012119266198620810.1182/blood‑2011‑11‑32505022286199
    [Google Scholar]
  38. MortlandL. AlonzoT.A. WalterR.B. GerbingR.B. MitraA.K. PollardJ.A. LokenM.R. HirschB. RaimondiS. FranklinJ. PoundsS. CaoX. RubnitzJ.E. RibeiroR.C. GamisA. MeshinchiS. LambaJ.K. Clinical significance of CD33 nonsynonymous single-nucleotide polymorphisms in pediatric patients with acute myeloid leukemia treated with gemtuzumab-ozogamicin-containing chemotherapy.Clin. Cancer Res.20131961620162710.1158/1078‑0432.CCR‑12‑311523444229
    [Google Scholar]
  39. MingariM.C. VitaleC. RomagnaniC. FalcoM. MorettaL. P75/AIRM1 and CD33, two sialoadhesin receptors that regulate the proliferation or the survival of normal and leukemic myeloid cells.Immunol. Rev.2001181126026810.1034/j.1600‑065X.2001.1810122.x11513147
    [Google Scholar]
  40. MiedemaK.G.E. te PoeleE.M. TissingW.J.E. PostmaD.S. KoppelmanG.H. de PagterA.P. KampsW.A. AlizadehB.Z. BoezenH.M. de BontE.S.J.M. Association of polymorphisms in the tlr4 gene with the risk of developing neutropenia in children with leukemia.Leukemia2011256995100010.1038/leu.2011.2721403649
    [Google Scholar]
  41. PavlosR. MallalS. OstrovD. BuusS. MetushiI. PetersB. PhillipsE. T cell-mediated hypersensitivity reactions to drugs.Annu. Rev. Med.201566143945410.1146/annurev‑med‑050913‑02274525386935
    [Google Scholar]
  42. Van Den DriesscheG. FourchesD. Adverse drug reactions triggered by the common hla-b*57:01 variant: A molecular docking study.J. Cheminform.2017911310.1186/s13321‑017‑0202‑628303164
    [Google Scholar]
  43. PrincipiN. PetropulacosK. EspositoS. Impact of pharmacogenomics in clinical practice.Pharmaceuticals20231611159610.3390/ph1611159638004461
    [Google Scholar]
  44. KangH.R. JeeY.K. KimY.S. LeeC.H. JungJ.W. KimS.H. ParkH.W. ChangY.S. JangI.J. ChoS.H. MinK.U. KimS.H. LeeK.W. Adverse Drug Reaction Research Group in Korea Positive and negative associations of hla class i alleles with allopurinol-induced scars in koreans.Pharmacogenet. Genomics201121530330710.1097/FPC.0b013e32834282b821301380
    [Google Scholar]
  45. AL-EitanL.N. Rababa’hD.M. AlghamdiM.A. KhasawnehR.H. Association between ESR1, ESR2, her2, ugt1a4, and ugt2b7 polymorphisms and breast cancer in jordan: A case-control study.BMC Cancer2019191125710.1186/s12885‑019‑6490‑731888550
    [Google Scholar]
  46. GhaliR.M. Al-MutawaM.A. Al-AnsariA.K. ZaiedS. BhiriH. MahjoubT. AlmawiW.Y. Differential association of ESR1 and ESR2 gene variants with the risk of breast cancer and associated features: A case-control study.Gene201865119419910.1016/j.gene.2018.02.01129414691
    [Google Scholar]
  47. Al-AmriR. AlotibiM. AL-RaddadiR. ShebliW. FallatahE. AlhujailyA. MohamedH. Estrogen receptor 1 gene (ESR1) RS2234693 polymorphism and breast cancer risk in saudi women.Asian Pac. J. Cancer Prev.202021113235324010.31557/APJCP.2020.21.11.323533247680
    [Google Scholar]
  48. DoumaZ. DallelM. BahiaW. Ben SalemA. Hachani Ben AliF. AlmawiW.Y. LautierC. HaydarS. GrigorescuF. MahjoubT. Association of estrogen receptor gene variants (ESR1 and ESR2) with polycystic ovary syndrome in tunisia.Gene202074114456010.1016/j.gene.2020.14456032169631
    [Google Scholar]
  49. BahiaW. SoltaniI. HaddadA. SouaA. RadhouaniA. MahdhiA. FerchichiS. Association of genetic variants in estrogen receptor (ESR)1 and ESR2 with susceptibility to recurrent pregnancy loss in tunisian women: A case control study.Gene202073614440610.1016/j.gene.2020.14440632007580
    [Google Scholar]
  50. AL-EitanL. M Rababa’hD. AmanH.A. The associations of common genetic susceptibility variants with breast cancer in jordanian arabs: A case-control study.Asian Pac. J. Cancer Prev.202021103045305410.31557/APJCP.2020.21.10.304533112566
    [Google Scholar]
  51. MtiraouiN. TurkiA. NemrR. EchtayA. IzzidiI. Al-ZabenG.S. Irani-HakimeN. KeleshianS.H. MahjoubT. AlmawiW.Y. Contribution of common variants of enpp1, IGF2bp2, KCNJ11, mlxipl, pparγ, SLC30a8 and tcf7l2 to the risk of type 2 diabetes in lebanese and tunisian arabs.Diabetes Metab.201238544444910.1016/j.diabet.2012.05.00222749234
    [Google Scholar]
  52. AL-EitanL.N. AlmomaniF.A. Al-KhatibS.M. Association of cyp2c19, tnf-α, nod1, nod2, and pparγ polymorphisms with peptic ulcer disease enhanced by helicobacter pylori infection.Saudi Med. J.2021421212910.15537/smj.2021.1.2565433399167
    [Google Scholar]
  53. AlmomaniB.A. AL-EitanL.N. Al-SawalhaN.A. SamrahS.M. Al-QuasmiM.N. Association of genetic variants with level of asthma control in the arab population.J. Asthma Allergy201912354210.2147/JAA.S18625230774389
    [Google Scholar]
  54. AlmomaniB.A. Al-EitanL.N. SamrahS.M. Al-QuasmiM.N. McKnightA.J. Candidate gene analysis of asthma in a population of arab descent: A case-control study in jordan.Per. Med.2017141516110.2217/pme‑2016‑005929749828
    [Google Scholar]
  55. AL-EitanL. ElsaqaB. AlmasriA. AmanH. KhasawnehR. AlghamdiM. Influence of psrc1, celsr2, and sort1 gene polymorphisms on the variability of warfarin dosage and susceptibility to cardiovascular disease.Pharm. Genomics Pers. Med.20201361963210.2147/PGPM.S27424633235484
    [Google Scholar]
  56. AL-EitanL.N. Al-DalalahI.M. AljamalH.A. Effects of grm4, scn2a and scn3b polymorphisms on antiepileptic drugs responsiveness and epilepsy susceptibility.Saudi Pharm. J.201927573173710.1016/j.jsps.2019.04.00931297029
    [Google Scholar]
  57. AL-EitanL.N. Al-DalalaI.M. ElshammariA.K. KhreisatW.H. NimriA.F. AlnaamnehA.H. AljamalH.A. AlghamdiM.A. Genetic association of epilepsy and anti-epileptic drugs treatment in jordanian patients.Pharm. Genomics Pers. Med.20201350351010.2147/PGPM.S27312533116764
    [Google Scholar]
  58. AL-EitanL.N. Al-DalalahI.M. MustafaM.M. AlghamdiM.A. ElshammariA.K. KhreisatW.H. Al-QuasmiM.N. AljamalH.A. Genetic polymorphisms of cyp3a5, chrm2, and znf498 and their association with epilepsy susceptibility: A pharmacogenetic and case–control study.Pharm. Genomics Pers. Med.20191222523310.2147/PGPM.S21243331564953
    [Google Scholar]
  59. AL-EitanL.N. Rababa’hD.M. AlghamdiM.A. Genetic susceptibility of opioid receptor genes polymorphism to drug addiction: A candidate-gene association study.BMC Psychiatry2021211510.1186/s12888‑020‑03006‑z33402148
    [Google Scholar]
  60. AliE.M.M. DiabT. ElsaidA. Abd El DaimH.A. ElshazliR.M. SettinA. Fat mass and obesity-associated ( FTO ) and leptin receptor ( LEPR ) gene polymorphisms in egyptian obese subjects.Arch. Physiol. Biochem.20211271283610.1080/13813455.2019.157384130767572
    [Google Scholar]
  61. DashtiM. AlroughaniR. JacobS. Al-TemaimiR. Leptin RS7799039 polymorphism is associated with multiple sclerosis risk in kuwait.Mult. Scler. Relat. Disord.20193610140910.1016/j.msard.2019.10140931563075
    [Google Scholar]
  62. Al-KhatibS. AbdoN. Al-EitanL. Al-MistarehiA.H.W. ZahranD. KewanT.Z. Lta, lep, and tnf-a gene polymorphisms are associated with susceptibility and overall survival of diffuse large b-cell lymphoma in an arab population: A case-control study.Asian Pac. J. Cancer Prev.20202192783279110.31557/APJCP.2020.21.9.278332986381
    [Google Scholar]
  63. DallelM. DoumaZ. FinanR.R. HachaniF. LetaifaD.B. MahjoubT. AlmawiW.Y. Contrasting association of leptin receptor polymorphisms and haplotypes with polycystic ovary syndrome in bahraini and tunisian women: A case–control study.Biosci. Rep.2021411BSR2020272610.1042/BSR2020272633245096
    [Google Scholar]
  64. MedvedevA.E. Toll-like receptor polymorphisms, inflammatory and infectious diseases, allergies, and cancer.J. Interferon Cytokine Res.201333946748410.1089/jir.2012.014023675778
    [Google Scholar]
  65. FekiS. BouzidD. AbidaO. ChtourouL. ElloumiN. ToumiA. HachichaH. AmouriA. TahriN. MasmoudiH. Genetic association and phenotypic correlation of tlr4 but not nod2 variants with tunisian inflammatory bowel disease.J. Dig. Dis.2017181162563310.1111/1751‑2980.1255229055077
    [Google Scholar]
  66. SemlaliA. Al MutairiM. Oqla AlanaziI. Awad AljohiH. Reddy ParineN. AlhadheqA. Al-JafariA.A. MobeirekA.F. Al AmriA. ShaikJ.P. FilaliF. AlanaziM. Toll-like receptor 4 polymorphisms in saudi population with cardiovascular diseases.Mol. Genet. Genomic Med.201979e85210.1002/mgg3.85231328431
    [Google Scholar]
  67. SharifE. Al-WakeelM. MohamedA. kerkadiA. RizkN. tlr4 receptor d299g/t399i haplotype polymorphism is associated with insulin resistance in obese female subjects.Genes202011781410.3390/genes1107081432708841
    [Google Scholar]
  68. El JilaniM.M. MohamedA.A. ZeglamH.B. AlhudiriI.M. RamadanA.M. SalehS.S. ElkabirM. AmerI.B. AshammakhiN. EnattahN.S. Association between vitamin D receptor gene polymorphisms and chronic periodontitis among libyans.Libyan J. Med.20151012677110.3402/ljm.v10.2677125795245
    [Google Scholar]
  69. Al AsoomL.I. Al AfandiD.T. Al AbdulhadiA.S. RafiqueN. ChathothS. Al SunniA.A. Protective association of single nucleotide polymorphisms RS1861868-fto and RS7975232-vdr and obesity in saudi females.Int. J. Gen. Med.20201323524110.2147/IJGM.S25146632547165
    [Google Scholar]
  70. RasoulM.A. HaiderM.Z. Al-MahdiM. Al-KandariH. DhaunsiG.S. Relationship of four vitamin D receptor gene polymorphisms with type 1 diabetes mellitus susceptibility in kuwaiti children.BMC Pediatr.20191917110.1186/s12887‑019‑1448‑030845908
    [Google Scholar]
  71. KhanS.M. El Hajj ChehadehS. AbdulrahmanM. OsmanW. Al SafarH. Establishing a genetic link between fto and vdr gene polymorphisms and obesity in the emirati population.BMC Med. Genet.20181911110.1186/s12881‑018‑0522‑z29343214
    [Google Scholar]
  72. Abo El-khairS.M. SameerW. AwadallahN. ShaalanD. Programmed cell death 1 gene polymorphism as a possible risk for systemic lupus erythematosus in egyptian females.Lupus201928121427143410.1177/096120331987849331551030
    [Google Scholar]
  73. IbrahimA.T. HussainA. SalihM.A.M. IbrahimO.A. JamiesonS.E. IbrahimM.E. BlackwellJ.M. MohamedH.S. Candidate gene analysis supports a role for polymorphisms at tcf7l2 as risk factors for type 2 diabetes in sudan.J. Diabetes Metab. Disord.2015151410.1186/s40200‑016‑0225‑y26937418
    [Google Scholar]
  74. Al-NaemiA.H. AhmadA.J. Is the RS1801282 (g/c) polymorphism of ppar - gamma gene associated with t2dm in iraqi people?Open Access Maced. J. Med. Sci.20186344745510.3889/oamjms.2018.15629610599
    [Google Scholar]
  75. BazziM.D. NasrF.A. AlanaziM.S. AlamriA. TurjomanA.A. MoustafaA.S. AlfaddaA.A. PathanA.A.K. ParineN.R. Association between fto, mc4r, SLC30a8, and KCNQ1 gene variants and type 2 diabetes in saudi population.Genet. Mol. Res.2014134101941020310.4238/2014.December.4.1425501231
    [Google Scholar]
  76. HammadM.M. Abu-FarhaM. HebbarP. CherianP. Al KhairiI. MelhemM. AlkayalF. AlsmadiO. ThanarajT.A. Al-MullaF. AbubakerJ. mc4r variant RS17782313 associates with increased levels of dnajc27, ghrelin, and visfatin and correlates with obesity and hypertension in a kuwaiti cohort.Front. Endocrinol.20201143710.3389/fendo.2020.0043732733386
    [Google Scholar]
  77. El Hajj ChehadehS. OsmanW. NazarS. JermanL. AlghafriA. SajwaniA. AlawlaqiM. AlObeidliM. JelinekH.F. AlAnoutiF. KhalafK. AlsafarH. Implication of genetic variants in overweight and obesity susceptibility among the young arab population of the united arab emirates.Gene202073914450910.1016/j.gene.2020.14450932109558
    [Google Scholar]
  78. SharmaC. R AliB. OsmanW. AfandiB. AburawiE.H. BeshyahS.A. Al-MahayriZ. Al-RifaiR.H. Al YafeiZ. ElGhazaliG. AlkaabiJ. Association of variants in ptpn22, ctla-4, IL2-ra, and ins genes with type 1 diabetes in emiratis.Ann. Hum. Genet.2021852485710.1111/ahg.1240632970831
    [Google Scholar]
  79. Al-NaseriM.A. SalmanE.D. Ad’hiahA.H. Association between interleukin-4 and interleukin-10 single nucleotide polymorphisms and multiple sclerosis among iraqi patients.Neurol. Sci.201940112383238910.1007/s10072‑019‑04000‑431264107
    [Google Scholar]
  80. Al-SaffarO.B. Ad’hiahA.H. Genetic variants in il4ra, il6, and il12b genes and susceptibility to hepatitis B and C virus infections among iraqi patients.J. Med. Virol.202092123448345810.1002/jmv.2629732652594
    [Google Scholar]
  81. KaananeH. SenhajiN. BerradiH. BenchakrounN. BeniderA. KarkouriM. El AttarH. KhyattiM. NadifiS. NadifiS. IGOT CASA Association of variants in IL6-related genes with lung cancer risk in moroccan population.Lung2019197560160810.1007/s00408‑019‑00261‑031468132
    [Google Scholar]
  82. AL-EitanL. Al QudahM. Al QawasmehM. Association of multiple sclerosis phenotypes with single nucleotide polymorphisms of IL7R, LAG3, and CD40 genes in a jordanian population: A genotype-phenotype study.Biomolecules202010335610.3390/biom1003035632111053
    [Google Scholar]
  83. AL-EitanL. Al QudahM. Al QawasmehM. Candidate gene association analysis of multiple sclerosis in the Jordanian Arab population: A case-control study.Gene202075814495910.1016/j.gene.2020.14495932683075
    [Google Scholar]
  84. LouahchiS. AllamI. BerkaniL. BoucharefA. AbdesemedA. KhaldounN. NebbabA. LadjouzeA. DjidjikR. Association study of single nucleotide polymorphisms of IL23R and IL17 in Rheumatoid arthritis in the algerian population.Acta Reumatol. Port.201641215115727606475
    [Google Scholar]
  85. MellalY. AllamI. TahiatA. AbessemedA. NebbabR. LadjouzeA. DjidjikR. Th17 pathway genes polymorphisms in algerian patients with systemic sclerosis.Acta Reumatol. Port.201843426927830641535
    [Google Scholar]
  86. AhmedA. AmberK. HadN. The impact of kinase insert domain (KDR) gene polymorphism RS2305948 on clopidogrel resistance in iraqi patients undergoing elective percutaneous coronary intervention (PCI).Acta Inform. Med.202028320220810.5455/aim.2020.28.202‑20833417661
    [Google Scholar]
  87. RafaaT.A. SuleimanA.A. DawoodM.F. Al-RawiA.M. Association of two single nucleotide polymorphisms RS10407022 and rs3741664 with the risk of primary ovarian insufficiency in a sample of iraqi women.Mol. Biol. Res. Commun.20209414114433344660
    [Google Scholar]
  88. SalamiA. El ShamiehS. Association between snps of circulating vascular endothelial growth factor levels, hypercholesterolemia and metabolic syndrome.Medicina201955846410.3390/medicina5508046431405227
    [Google Scholar]
  89. MousaT.G. OmarH.H. EmadR. SalamaM.I. OmarW. FawzyM. HassobaH.M. The association of CD40 polymorphism (RS1883832C/T) and soluble CD40 with the risk of systemic lupus erythematosus among egyptian patients.Clin. Rheumatol.201938377778410.1007/s10067‑018‑4349‑y30374748
    [Google Scholar]
  90. GhareebD. FawzyM. MaatyA.I. Association of CD40 RS1883832 polymorphism with susceptibility of diabetic nephropathy and neuropathy in egyptian population.Egypt. J. Immunol.2020271879633180391
    [Google Scholar]
  91. Abu El-EllaS.S. KhattabE.S.A.E.H. El-MekkawyM.S. El-ShamyA.A. CD226 gene polymorphism (RS763361 C>T) is associated with susceptibility to type 1 diabetes mellitus among egyptian children.Arch. Pediatr.201825637838210.1016/j.arcped.2018.06.00930145014
    [Google Scholar]
  92. HakoozN. JarrarY.B. ZihlifM. ImraishA. HamedS. ArafatT. Effects of the genetic variants of organic cation transporters 1 and 3 on the pharmacokinetics of metformin in jordanians.Drug Metab. Pers. Ther.201732315716210.1515/dmpt‑2017‑001928862982
    [Google Scholar]
  93. AL-EitanL.N. AlmomaniB.A. NassarA.M. ElsaqaB.Z. SaadehN.A. Metformin pharmacogenetics: Effects of SLC22a1, SLC22a2, and SLC22a3 polymorphisms on glycemic control and hba1c levels.J. Pers. Med.2019911710.3390/jpm901001730934600
    [Google Scholar]
  94. BruckmuellerH. CascorbiI. ABCB1, ABCG2, ABCC1, ABCC2, and ABCC3 drug transporter polymorphisms and their impact on drug bioavailability: What is our current understanding?Expert Opin. Drug Metab. Toxicol.202117436939610.1080/17425255.2021.187666133459081
    [Google Scholar]
  95. AbdelhediR. BouayedN.A. AlfadhliS. AbidL. RebaiA. KharratN. Characterization of drug-metabolizing enzymes cyp2c9, cyp2c19 polymorphisms in tunisian, kuwaiti and bahraini populations.J. Genet.201594476577010.1007/s12041‑015‑0581‑226690534
    [Google Scholar]
  96. IssacM.S.M. El-NahidM.S. WissaM.Y. Is there a role for mdr1, ephx1 and protein z gene variants in modulation of warfarin dosage? a study on a cohort of the egyptian population.Mol. Diagn. Ther.2014181738310.1007/s40291‑013‑0055‑224092646
    [Google Scholar]
  97. BoughraraW. AberkaneM. FodilM. BenzaouiA. DorghamS. ZemaniF. DahmaniC. Petit TeixeiraE. BoudjemaA. Impact of MTHFR RS1801133, MTHFR RS1801131 and ABCB1 RS1045642 polymorphisms with increased susceptibility of rheumatoid arthritis in the west algerian population: A case-control study.Acta Reumatol. Port.201540436337126922200
    [Google Scholar]
  98. Ben HassineI. GharbiH. SoltaniI. Ben Hadj OthmanH. FarrahA. AmouriH. TeberM. GhediraH. Ben YoussefY. SafraI. AbbesS. MenifS. Molecular study of ABCB1 gene and its correlation with imatinib response in chronic myeloid leukemia.Cancer Chemother. Pharmacol.201780482983910.1007/s00280‑017‑3424‑428836054
    [Google Scholar]
  99. Ben HassineI. GharbiH. SoltaniI. TeberM. FarrahA. Ben Hadj OthmanH. AmouriH. BellaajH. lakhalR.B. RomdhaneN.B. AbbesS. MenifS. Hoct1 gene expression predict for optimal response to imatinib in tunisian patients with chronic myeloid leukemia.Cancer Chemother. Pharmacol.201779473774510.1007/s00280‑017‑3266‑028286932
    [Google Scholar]
  100. ElghannamD.M. IbrahimL. EbrahimM.A. AzmyE. HakemH. Association of mdr1 gene polymorphism (g2677t) with imatinib response in egyptian chronic myeloid leukemia patients.Hematology201419312312810.1179/1607845413Y.000000010223683876
    [Google Scholar]
  101. AouamK. KolsiA. KerkeniE. Ben FredjN. ChaabaneA. MonastiriK. BoughattasN. Influence of combined cyp3a4 and cyp3a5 single-nucleotide polymorphisms on tacrolimus exposure in kidney transplant recipients: A study according to the post-transplant phase.Pharmacogenomics201516182045205410.2217/pgs.15.13826615671
    [Google Scholar]
  102. AwadaZ. HaiderS. TfayliA. BazarbachiA. El-SaghirN.S. SalemZ. ShamseddineA. TaherA. ZgheibN.K. Pharmacogenomics variation in drug metabolizing enzymes and transporters in relation to docetaxel toxicity in lebanese breast cancer patients: Paving the way for omics in low and middle income countries.OMICS201317735336710.1089/omi.2013.001923758476
    [Google Scholar]
  103. AL-EitanL.N. Al-DalalahI.M. MustafaM.M. AlghamdiM.A. ElshammariA.K. KhreisatW.H. AljamalH.A. Effects of MTHFR and ABCC2 gene polymorphisms on antiepileptic drug responsiveness in jordanian epileptic patients.Pharm. Genomics Pers. Med.201912879510.2147/PGPM.S21149031354331
    [Google Scholar]
  104. TchalovaK. SadikajG. MoskowitzD.S. ZuroffD.C. BartzJ.A. Variation in the μ-opioid receptor gene (oprm1) and experiences of felt security in response to a romantic partner’s quarrelsome behavior.Mol. Psychiatry20212683847385710.1038/s41380‑019‑0600‑431772303
    [Google Scholar]
  105. ChattiI. CreveauxI. WoillardJ.B. LanglaisS. AmaraA. Ben FatmaL. SaadA. GribaaM. LibertF. Association of the OPRM1 and comt genes’ polymorphisms with the efficacy of morphine in tunisian cancer patients: Impact of the high genetic heterogeneity in tunisia?Therapie201671550751310.1016/j.therap.2016.04.00427288213
    [Google Scholar]
  106. AllenN.M. MannionM. ConroyJ. LynchS.A. ShahwanA. LynchB. KingM.D. The variable phenotypes of KCNQ -related epilepsy.Epilepsia2014559e99e10510.1111/epi.1271525052858
    [Google Scholar]
  107. LiangJ.S. LinL.J. YangM.T. WangJ.S. LuJ.F. The therapeutic implication of a novel scn2a mutation associated early-onset epileptic encephalopathy with rett-like features.Brain Dev.2017391087788110.1016/j.braindev.2017.06.00328709814
    [Google Scholar]
  108. ZamanT. HelbigI. BožovićI.B. DeBrosseS.D. BergqvistA.C. WallisK. MedneL. MaverA. PeterlinB. HelbigK.L. ZhangX. GoldbergE.M. Mutations in scn3a cause early infantile epileptic encephalopathy.Ann. Neurol.201883470371710.1002/ana.2518829466837
    [Google Scholar]
  109. KrepischiA.C.V. KnijnenburgJ. BertolaD.R. KimC.A. PearsonP.L. BijlsmaE. SzuhaiK. KokF. Vianna-MorganteA.M. RosenbergC. Two distinct regions in 2q24.2-q24.3 associated with idiopathic epilepsy.Epilepsia201051122457246010.1111/j.1528‑1167.2010.02742.x21204806
    [Google Scholar]
  110. DavidssonJ. CollinA. OlssonM.E. LundgrenJ. SollerM. Deletion of the scn gene cluster on 2q24.4 is associated with severe epilepsy: An array-based genotype–phenotype correlation and a comprehensive review of previously published cases.Epilepsy Res.2008811697910.1016/j.eplepsyres.2008.04.01818539002
    [Google Scholar]
  111. BuonoR.J. LohoffF.W. SanderT. SperlingM.R. O’ConnorM.J. DlugosD.J. RyanS.G. GoldenG.T. ZhaoH. ScattergoodT.M. BerrettiniW.H. FerraroT.N. Association between variation in the human KCNJ10 potassium ion channel gene and seizure susceptibility.Epilepsy Res.2004582-317518310.1016/j.eplepsyres.2004.02.00315120748
    [Google Scholar]
  112. SerinoD. SpecchioN. PontrelliG. VigevanoF. FuscoL. Video/eeg findings in a KCNQ2 epileptic encephalopathy: A case report and revision of literature data.Epileptic Disord.201315215816510.1684/epd.2013.057823774309
    [Google Scholar]
  113. AL-EitanL.N. Al-DalalahI.M. ElshammariA.K. KhreisatW.H. AlmasriA.Y. The impact of potassium channel gene polymorphisms on antiepileptic drug responsiveness in arab patients with epilepsy.J. Pers. Med.2018843710.3390/jpm804003730441785
    [Google Scholar]
  114. El-sisiA.E. HegazyS.K. MetwallyS.S. WafaA.M. DawoodN.A. Effect of genetic polymorphisms on the development of secondary failure to sulfonylurea in egyptian patients with type 2 diabetes.Ther. Adv. Endocrinol. Metab.20112415516410.1177/204201881141598523148181
    [Google Scholar]
  115. RadouaniF. ZassL. HamdiY. RochaJ. SallamR. AbdelhakS. AhmedS. AzzouziM. BenamriI. BenkahlaA. Bouhaouala-ZaharB. ChaouchM. JmelH. KefiR. KsouriA. KumuthiniJ. MasilelaP. MasimirembwaC. OthmanH. PanjiS. RomdhaneL. SamtalC. SibiraR. GhediraK. FadlelmolaF. KassimS.K. MulderN. A review of clinical pharmacogenetics studies in african populations.Per. Med.202017215517010.2217/pme‑2019‑011032125935
    [Google Scholar]
  116. DeanL. KaneM. Clopidogrel Therapy and CYP2C19 Genotype.Medical Genetics Summaries. PrattV.M. Bethesda, MDNational Center for Biotechnology Information (US)2012
    [Google Scholar]
  117. Hassani IdrissiH. HmimechW. El KhorbN. AkoudadH. HabbalR. NadifiS. Does I-T744C P2Y12 polymorphism modulate clopidogrel response among moroccan acute coronary syndromes patients?Genet. Res. Int.201720171710.1155/2017/953247128261502
    [Google Scholar]
  118. AnthonyE.G. RichardE. LipkowitzM.S. BhatnagarV. Association of the ADRB2 (RS2053044) polymorphism and angiotensin- converting enzyme-inhibitor blood pressure response in the african american study of kidney disease and hypertension.Pharmacogenet. Genomics201525944444910.1097/FPC.000000000000015426111150
    [Google Scholar]
  119. YehyaA. IrshaidY. SalehA. Cholesteryl ester transfer protein RS1532624 gene polymorphism is associated with reduced response to statin therapy.Curr. Mol. Pharmacol.20146315616210.2174/1874467211306666003724160573
    [Google Scholar]
  120. Al-AzzamS.I. AlzoubiK.H. KhabourO.F. TawalbehD. Al-AzzehO. The contribution of platelet glycoproteins (GPIA C807T and GPIBA C-5T) and cyclooxygenase 2 (COX-2G-765C) polymorphisms to platelet response in patients treated with aspirin.Gene2013526211812110.1016/j.gene.2013.04.08323688555
    [Google Scholar]
  121. ChooS.Y. The hla system: Genetics, immunology, clinical testing, and clinical implications.Yonsei Med. J.2007481112310.3349/ymj.2007.48.1.1117326240
    [Google Scholar]
  122. FaragR.E. ArafaM.M. El-EtrebyS. SaudyN.S. EldeekB.S. El-AlfyH.A. GodaI.F. AliR.M. Human leukocyte antigen class i alleles can predict response to pegylated interferon/ribavirin therapy in chronic hepatitis c egyptian patients.Arch. Iran Med.2013162687323360626
    [Google Scholar]
  123. Al-EitanL.N. AlmasriA.Y. Al-HabahbehS.O. Effects of coagulation factor VII polymorphisms on warfarin sensitivity and responsiveness in jordanian cardiovascular patients during the initiation and maintenance phases of warfarin therapy.Pharm. Genomics Pers. Med.2019121810.2147/PGPM.S18945830679919
    [Google Scholar]
  124. ForslundA. ZengZ. QinL.X. RosenbergS. NdubuisiM. PincasH. GeraldW. NottermanD.A. BaranyF. PatyP.B. MDM2 gene amplificatTon IS correlated to tumor progression but not to the presence of SNP309 or TP53 mutational status in primary colorectal cancers.Mol. Cancer Res.20086220521110.1158/1541‑7786.MCR‑07‑023918314481
    [Google Scholar]
  125. ArfaouiA. DouikH. KabloutiG. ChaabenA. HandiriN. ZidZ. OuniN. ZouiouchF. AyariF. MamoghliT. BouassidaJ. HarzallahL. GuemiraF. MDM2 344T>A polymorphism; could it be a predictive marker of anthracycline resistance?J. BUON201621373273927569097
    [Google Scholar]
  126. AbdeljaouedS. Bettaieb NasriM. AdouniO. GouchaA. BouzaieneH. BoussenH. RahalK. GamoudiA. Forkhead box M1 (FOXM1) expression predicts disease free survival and may mediate resistance to chemotherapy and hormonotherapy in male breast cancer.Breast Dis.201837310911410.3233/BD‑17031529504520
    [Google Scholar]
  127. AbdullahS. JarrarY. AlhawariH. AbedE. ZihlifM. The influence of endothelial nitric oxide synthase (ENOS) genetic polymorphisms on cholesterol blood levels among type 2 diabetic patients on atorvastatin therapy.Endocr. Metab. Immune Disord. Drug Targets202121235235910.2174/22123873MTA3wNTIrx32564765
    [Google Scholar]
  128. AlkhatibR. AbudhaimN. AL-EitanL. AbdoN. AlqudahA. AmanH. Genetic analysis of ABCA1 gene of primary glaucoma in Jordanian Arab population.Appl. Clin. Genet.20191218118910.2147/TACG.S21381831632126
    [Google Scholar]
  129. AL-EitanL.N. Rababa’hD.M. AlghamdiM.A. KhasawnehR.H. Role of four ABC transporter genes in pharmacogenetic susceptibility to breast cancer in jordanian patients.J. Oncol.201920191810.1155/2019/642570831391850
    [Google Scholar]
  130. BenrahmaH. CharouteH. LasramK. BoulouizR. AtigR.K.B. FakiriM. RoubaH. AbdelhakS. BarakatA. Association analysis of IGF2bp2, KCNJ11, and CDKAL1 polymorphisms with type 2 diabetes mellitus in a moroccan population: A case-control study and meta-analysis.Biochem. Genet.2014529-1043044210.1007/s10528‑014‑9658‑524898818
    [Google Scholar]
  131. AbdelhamidI. LasramK. MeiloudG. Ben HalimN. KefiR. SambA. AbdelhakS. HoumeidaA. E23k variant in KCNJ11 gene is associated with susceptibility to type 2 diabetes in the mauritanian population.Prim. Care Diabetes20148217117510.1016/j.pcd.2013.10.00624332549
    [Google Scholar]
  132. MakhzoomO. KabalanY. AL-QuobailiF. Association of KCNJ11 rs5219 gene polymorphism with type 2 diabetes mellitus in a population of syria: A case-control study.BMC Med. Genet.201920110710.1186/s12881‑019‑0846‑331195986
    [Google Scholar]
  133. QahwajiR. AshankytyI. SannanN.S. HazzaziM.S. BasabrainA.A. MobashirM. Pharmacogenomics: A genetic approach to drug development and therapy.Pharmaceuticals202417794010.3390/ph1707094039065790
    [Google Scholar]
  134. NameghiS.M. Exploring the recent advancements and future prospects of personalized medicine in type 2 diabetes.Endoc Metab Sci20241610019310.1016/j.endmts.2024.100193
    [Google Scholar]
  135. DahuiQ. Next-generation sequencing and its clinical application.Cancer Biol. Med.201916141010.20892/j.issn.2095‑3941.2018.005531119042
    [Google Scholar]
  136. KhehraN. PaddaI.S. SwiftC.J. Polymerase Chain Reaction (PCR)StatPearls.Treasure Island (FL)StatPearls Publishing2024
    [Google Scholar]
  137. Totomoch-SerraA. MarquezM.F. Cervantes-BarragánD.E. Sanger sequencing as a first-line approach for molecular diagnosis of andersen-tawil syndrome.F1000 Res.20176101610.12688/f1000research.11610.129093808
    [Google Scholar]
  138. BumgarnerR. Overview of DNA microarrays: Types, applications, and their future.Curr. Protoc. Mol. Biol.20132222.110.1002/0471142727.mb2201s10123288464
    [Google Scholar]
  139. CuiC. ShuW. LiP. Fluorescence in situ hybridization: Cell-based genetic diagnostic and research applications.Front. Cell Dev. Biol.201648910.3389/fcell.2016.0008927656642
    [Google Scholar]
  140. JovicD. LiangX. ZengH. LinL. XuF. LuoY. Single-cell rna sequencing technologies and applications: A brief overview.Clin. Transl. Med.2022123e69410.1002/ctm2.69435352511
    [Google Scholar]
  141. LiJ.H. ZhangD.Y. ZhuJ.M. DongL. Clinical applications and perspectives of circulating tumor dna in gastric cancer.Cancer Cell Int.20242411310.1186/s12935‑024‑03209‑438184573
    [Google Scholar]
  142. ArafahA. RehmanM.U. SyedW. BabelghaithS.D. AlwhaibiA. Al ArifiM.N. Knowledge, attitude and perception of pharmacy students towards pharmacogenomics and genetics: An observational study from king saud university.Genes202213226910.3390/genes1302026935205314
    [Google Scholar]
  143. RahmaA.T. AliB.R. PatrinosG.P. AhmedL.A. ElbaraziI. AbdullahiA.S. ElsheikM. AbbasM. AfandiF. AlnaqbiA. Al MaskariF. Knowledge, attitudes, and perceptions of the multi-ethnic population of the united arab emirates on genomic medicine and genetic testing.Hum. Genomics20231716310.1186/s40246‑023‑00509‑037454085
    [Google Scholar]
  144. AntounJ. ZgheibN.K. AshkarK. Education may improve the underutilization of genetic services by middle eastern primary care practitioners.Genet. Test. Mol. Biomarkers201014444745410.1089/gtmb.2010.002120649434
    [Google Scholar]
  145. SirisenaN.D. DissanayakeV.H.W. Strategies for genomic medicine education in low- and middle-income countries.Front. Genet.20191094410.3389/fgene.2019.0094431649727
    [Google Scholar]
  146. RahmaA.T. ElsheikM. AliB.R. ElbaraziI. PatrinosG.P. AhmedL.A. Al MaskariF. Knowledge, attitudes, and perceived barriers toward genetic testing and pharmacogenomics among healthcare workers in the united arab emirates: A cross-sectional study.J. Pers. Med.202010421610.3390/jpm1004021633182317
    [Google Scholar]
  147. AlRasheedM.M. AlAliH. AlsuwaidA.F. KhalafS. AtaS.I. BinDhimN.F. BakheetD. KhurshidF. AlhawassiT.M. Gene therapy knowledge and attitude among healthcare professionals: A cross- sectional study.Front. Public Health2021977317510.3389/fpubh.2021.77317534869185
    [Google Scholar]
/content/journals/crcep/10.2174/0127724328335492241206075509
Loading
/content/journals/crcep/10.2174/0127724328335492241206075509
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test