Skip to content
2000
Volume 20, Issue 4
  • ISSN: 2772-4328
  • E-ISSN: 2772-4336

Abstract

The two-way communication between intestinal microbiota and the central nervous system (the microbiota-gut-brain axis) is involved in the regulation of brain function, neurodevelopment, and aging. The microbiota-gut-brain axis dysfunction may be a predisposition factor for Parkinson’s disease (PD), Alzheimer’s disease (AD), Autism spectrum disorder (ASD), and other neurological diseases. However, it is not clear whether gut microbiota dysfunction contributes to neuropsychiatric disorders. Changes in the gut microbiota may modulate or modify the effects of environmental factors on neuropsychiatric disorders. Factors that impact neuropsychiatric disorders also influence the gut microbiota, including diet patterns, exercise, stress and functional gastrointestinal disorders. These factors change microbiome composition and function, along with the metabolism and immune responses that cause neuropsychiatric disorders. In this review, we summarized epidemiological and laboratory evidence for the influence of the gut microbiota, metabolism and environmental factors on neuropsychiatric disorders incidence and outcomes. Furthermore, the role of gut microbiota in the two-way interaction between the gut and the brain was also reviewed, including the vagus nerve, microbial metabolism, and immuno-inflammatory responses. We also considered the therapeutic strategies that target gut microbiota in the treatment of neuropsychiatric disorders, including prebiotics, probiotics, Fecal microbiota transplant (FMT), and antibiotics. Based on these data, possible strategies for microbiota-targeted intervention could improve people’s lives and prevent neuropsychiatric disorders in the future.

Loading

Article metrics loading...

/content/journals/crcep/10.2174/0127724328335219241202142003
2024-12-13
2025-10-18
Loading full text...

Full text loading...

References

  1. HashiokaS. InoueK. MiyaokaT. HayashidaM. WakeR. Oh-NishiA. InagakiM. The possible causal link of periodontitis to neuropsychiatric disorders: More than psychosocial mechanisms.Int. J. Mol. Sci.20192015372310.3390/ijms2015372331366073
    [Google Scholar]
  2. KimY.K. ShinC. The microbiota-gut-brain axis in neuropsychiatric disorders: Patho-physiological mechanisms and novel treatments.Curr. Neuropharmacol.201816555957310.2174/1570159X1566617091514103628925886
    [Google Scholar]
  3. KimN. YunM. OhY.J. ChoiH.J. Mind-altering with the gut: Modulation of the gut-brain axis with probiotics.J. Microbiol.201856317218210.1007/s12275‑018‑8032‑429492874
    [Google Scholar]
  4. DinanT.G. CryanJ.F. The impact of gut microbiota on brain and behaviour.Curr. Opin. Clin. Nutr. Metab. Care201518655255810.1097/MCO.000000000000022126372511
    [Google Scholar]
  5. Long-SmithC. O’RiordanK.J. ClarkeG. StantonC. DinanT.G. CryanJ.F. Microbiota-gut-brain axis: New therapeutic opportunities.Annu. Rev. Pharmacol. Toxicol.202060147750210.1146/annurev‑pharmtox‑010919‑02362831506009
    [Google Scholar]
  6. IannoneL.F. PredaA. BlottièreH.M. ClarkeG. AlbaniD. BelcastroV. CarotenutoM. CattaneoA. CitraroR. FerrarisC. RonchiF. LuongoG. SantocchiE. GuiducciL. BaldelliP. IannettiP. PedersenS. PetrettoA. ProvasiS. SelmerK. SpaliceA. TagliabueA. VerrottiA. SegataN. ZimmermannJ. MinettiC. MainardiP. GiordanoC. SisodiyaS. ZaraF. RussoE. StrianoP. Microbiota-gut brain axis involvement in neuropsychiatric disorders.Expert Rev. Neurother.201919101037105010.1080/14737175.2019.163876331260640
    [Google Scholar]
  7. LinL. ZhangJ. Role of intestinal microbiota and metabolites on gut homeostasis and human diseases.BMC Immunol.2017181210.1186/s12865‑016‑0187‑328061847
    [Google Scholar]
  8. SherwinE. DinanT.G. CryanJ.F. Recent developments in understanding the role of the gut microbiota in brain health and disease.Ann. N. Y. Acad. Sci.20181420152510.1111/nyas.1341628768369
    [Google Scholar]
  9. BonazB. BazinT. PellissierS. The vagus nerve at the interface of the microbiota-gut-brain axis.Front. Neurosci.2018124910.3389/fnins.2018.0004929467611
    [Google Scholar]
  10. van de GuchteM. BlottièreH.M. DoréJ. Humans as holobionts: Implications for prevention and therapy.Microbiome2018618110.1186/s40168‑018‑0466‑829716650
    [Google Scholar]
  11. DicksonD.W. Neuropathology of parkinson disease.Parkinsonism Relat. Disord.201846Suppl 1S30S3310.1016/j.parkreldis.2017.07.03328780180
    [Google Scholar]
  12. Perez-PardoP. DodiyaH.B. BroersenL.M. DounaH. van WijkN. Lopes da SilvaS. GarssenJ. KeshavarzianA. KraneveldA.D. Gut–brain and brain–gut axis in parkinson’s disease models: Effects of a uridine and fish oil diet.Nutr. Neurosci.201821639140210.1080/1028415X.2017.129455528276272
    [Google Scholar]
  13. SunM.F. ShenY.Q. Dysbiosis of gut microbiota and microbial metabolites in parkinson’s disease.Ageing Res. Rev.201845536110.1016/j.arr.2018.04.00429705121
    [Google Scholar]
  14. DevosD. LebouvierT. LardeuxB. BiraudM. RouaudT. PoucletH. CoronE. Bruley des VarannesS. NaveilhanP. NguyenJ.M. NeunlistM. DerkinderenP. Colonic inflammation in parkinson’s disease.Neurobiol. Dis.201350424810.1016/j.nbd.2012.09.00723017648
    [Google Scholar]
  15. Vidal-MartinezG. ChinB. CamarilloC. HerreraG.V. YangB. SarosiekI. PerezR.G. A pilot microbiota study in parkinson’s disease patients versus control subjects, and effects of fty720 and fty720-mitoxy therapies in parkinsonian and multiple system atrophy mouse models.J. Parkinsons Dis.202010118519210.3233/JPD‑19169331561385
    [Google Scholar]
  16. LiC. CuiL. YangY. MiaoJ. ZhaoX. ZhangJ. CuiG. ZhangY. Gut microbiota differs between parkinson’s disease patients and healthy controls in northeast china.Front. Mol. Neurosci.20191217110.3389/fnmol.2019.0017131354427
    [Google Scholar]
  17. SereginS.S. GolovchenkoN. SchafB. ChenJ. PudloN.A. MitchellJ. BaxterN.T. ZhaoL. SchlossP.D. MartensE.C. EatonK.A. ChenG.Y. NLRP6 protects Il10−/− mice from colitis by limiting colonization of akkermansia muciniphila.Cell Rep.201719473374510.1016/j.celrep.2017.03.08028445725
    [Google Scholar]
  18. LinC.H. ChenC.C. ChiangH.L. LiouJ.M. ChangC.M. LuT.P. ChuangE.Y. TaiY.C. ChengC. LinH.Y. WuM.S. Altered gut microbiota and inflammatory cytokine responses in patients with Parkinson’s disease.J. Neuroinflammation201916112910.1186/s12974‑019‑1528‑y31248424
    [Google Scholar]
  19. LaiF. JiangR. XieW. LiuX. TangY. XiaoH. GaoJ. JiaY. BaiQ. Intestinal pathology and gut microbiota alterations in a methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of Parkinson’s disease.Neurochem. Res.201843101986199910.1007/s11064‑018‑2620‑x30171422
    [Google Scholar]
  20. SunM.F. ZhuY.L. ZhouZ.L. JiaX.B. XuY.D. YangQ. CuiC. ShenY.Q. Neuroprotective effects of fecal microbiota transplantation on MPTP-induced Parkinson’s disease mice: Gut microbiota, glial reaction and TLR4/TNF-α signaling pathway.Brain Behav. Immun.201870486010.1016/j.bbi.2018.02.00529471030
    [Google Scholar]
  21. SunM MaK WenJ A review of the brain-gut-microbiome axis and the potential role of microbiota in alzheimer's disease.J Alzheimer dis.2020733849865
    [Google Scholar]
  22. KimM.S. KimY. ChoiH. KimW. ParkS. LeeD. KimD.K. KimH.J. ChoiH. HyunD.W. LeeJ.Y. ChoiE.Y. LeeD.S. BaeJ.W. Mook-JungI. Transfer of a healthy microbiota reduces amyloid and tau pathology in an Alzheimer’s disease animal model.Gut202069228329410.1136/gutjnl‑2018‑31743131471351
    [Google Scholar]
  23. FujiiY. NguyenT.T.T. FujimuraY. KameyaN. NakamuraS. ArakawaK. MoritaH. Fecal metabolite of a gnotobiotic mouse transplanted with gut microbiota from a patient with Alzheimer’s disease.Biosci. Biotechnol. Biochem.201983112144215210.1080/09168451.2019.164414931327302
    [Google Scholar]
  24. LiuP. WuL. PengG. HanY. TangR. GeJ. ZhangL. JiaL. YueS. ZhouK. LiL. LuoB. WangB. Altered microbiomes distinguish Alzheimer’s disease from amnestic mild cognitive impairment and health in a Chinese cohort.Brain Behav. Immun.20198063364310.1016/j.bbi.2019.05.00831063846
    [Google Scholar]
  25. ZhuangZ.Q. ShenL.L. LiW.W. FuX. ZengF. GuiL. LüY. CaiM. ZhuC. TanY.L. ZhengP. LiH.Y. ZhuJ. ZhouH.D. BuX.L. WangY.J. Gut microbiota is altered in patients with Alzheimer’s disease.J. Alzheimers Dis.20186341337134610.3233/JAD‑18017629758946
    [Google Scholar]
  26. LiB. HeY. MaJ. HuangP. DuJ. CaoL. WangY. XiaoQ. TangH. ChenS. Mild cognitive impairment has similar alterations as Alzheimer’s disease in gut microbiota.Alzheimers Dement.201915101357136610.1016/j.jalz.2019.07.00231434623
    [Google Scholar]
  27. WangF. XuT. ZhangY. ZhengT. HeY. HeF. JiangY. Long-term combined administration of Bifidobacterium bifidum TMC3115 and Lactobacillus plantarum 45 alleviates spatial memory impairment and gut dysbiosis in APP/PS1 mice.FEMS Microbiol. Lett.20203677fnaa04810.1093/femsle/fnaa04832239209
    [Google Scholar]
  28. KaurH. Nagamoto-CombsK. GolovkoS. GolovkoM.Y. KlugM.G. CombsC.K. Probiotics ameliorate intestinal pathophysiology in a mouse model of Alzheimer’s disease.Neurobiol. Aging20209211413410.1016/j.neurobiolaging.2020.04.00932417748
    [Google Scholar]
  29. CorcoranJ. BerryA. HillS. The lived experience of US parents of children with autism spectrum disorders.J. Intellect. Disabil.201519435636610.1177/174462951557787625819433
    [Google Scholar]
  30. SharonG. CruzN.J. KangD.W. GandalM.J. WangB. KimY.M. ZinkE.M. CaseyC.P. TaylorB.C. LaneC.J. BramerL.M. IsernN.G. HoytD.W. NoeckerC. SweredoskiM.J. MoradianA. BorensteinE. JanssonJ.K. KnightR. MetzT.O. LoisC. GeschwindD.H. Krajmalnik-BrownR. MazmanianS.K. Human gut microbiota from Autism spectrum disorder promote behavioral symptoms in mice.Cell2019177616001618.e1710.1016/j.cell.2019.05.00431150625
    [Google Scholar]
  31. SunH. YouZ. JiaL. WangF. Autism spectrum disorder is associated with gut microbiota disorder in children.BMC Pediatr.201919151610.1186/s12887‑019‑1896‑631881951
    [Google Scholar]
  32. XuM. XuX. LiJ. LiF. Association between gut microbiota and autism spectrum disorder: A systematic review and meta-analysis.Front. Psychiatry20191047310.3389/fpsyt.2019.0047331404299
    [Google Scholar]
  33. ChenK. FuY. WangY. LiaoL. XuH. ZhangA. ZhangJ. FanL. RenJ. FangB. Therapeutic effects of the in vitro cultured human gut microbiota as transplants on altering gut microbiota and improving symptoms associated with autism spectrum disorder.Microb. Ecol.202080247548610.1007/s00248‑020‑01494‑w32100127
    [Google Scholar]
  34. OrganizationW.H. Depression and other common mental disorders: Global health estimates.2017Available from: https://www.who.int/publications/i/item/depression-global-health-estimates
  35. PapaliniS. MichelsF. KohnN. WegmanJ. van HemertS. RoelofsK. Arias-VasquezA. AartsE. Stress matters: Randomized controlled trial on the effect of probiotics on neurocognition.Neurobiol. Stress20191010014110.1016/j.ynstr.2018.10014130937347
    [Google Scholar]
  36. SongJ. ZhouN. MaW. GuX. ChenB. ZengY. YangL. ZhouM. Modulation of gut microbiota by chlorogenic acid pretreatment on rats with adrenocorticotropic hormone induced depression-like behavior.Food Funct.20191052947295710.1039/C8FO02599A31073553
    [Google Scholar]
  37. ZhengP. YangJ. LiY. WuJ. LiangW. YinB. TanX. HuangY. ChaiT. ZhangH. DuanJ. ZhouJ. SunZ. ChenX. MarwariS. LaiJ. HuangT. DuY. ZhangP. PerryS.W. WongM.L. LicinioJ. HuS. XieP. WangG. Gut microbial signatures can discriminate unipolar from bipolar depression.Adv. Sci. (Weinh.)202077190286210.1002/advs.20190286232274300
    [Google Scholar]
  38. KellyJ.R. BorreY. O’ BrienC. PattersonE. El AidyS. DeaneJ. KennedyP.J. BeersS. ScottK. MoloneyG. HobanA.E. ScottL. FitzgeraldP. RossP. StantonC. ClarkeG. CryanJ.F. DinanT.G. Transferring the blues: Depression-associated gut microbiota induces neurobehavioural changes in the rat.J. Psychiatr. Res.20168210911810.1016/j.jpsychires.2016.07.01927491067
    [Google Scholar]
  39. van OsJ. KapurS. Schizophrenia.Lancet2009374969063564510.1016/S0140‑6736(09)60995‑819700006
    [Google Scholar]
  40. ZhengP. ZengB. LiuM. ChenJ. PanJ. HanY. LiuY. ChengK. ZhouC. WangH. ZhouX. GuiS. PerryS.W. WongM.L. LicinioJ. WeiH. XieP. The gut microbiome from patients with schizophrenia modulates the glutamate-glutamine-GABA cycle and schizophrenia-relevant behaviors in mice.Sci. Adv.201952eaau831710.1126/sciadv.aau831730775438
    [Google Scholar]
  41. ZhuF. GuoR. WangW. JuY. WangQ. MaQ. SunQ. FanY. XieY. YangZ. JieZ. ZhaoB. XiaoL. YangL. ZhangT. LiuB. GuoL. HeX. ChenY. ChenC. GaoC. XuX. YangH. WangJ. DangY. MadsenL. BrixS. KristiansenK. JiaH. MaX. Transplantation of microbiota from drug-free patients with schizophrenia causes schizophrenia-like abnormal behaviors and dysregulated kynurenine metabolism in mice.Mol. Psychiatry202025112905291810.1038/s41380‑019‑0475‑431391545
    [Google Scholar]
  42. ZhangX. PanL. ZhangZ. ZhouY. JiangH. RuanB. Analysis of gut mycobiota in first-episode, drug-naïve Chinese patients with schizophrenia: A pilot study.Behav. Brain Res.202037911237410.1016/j.bbr.2019.11237431759045
    [Google Scholar]
  43. XuR. WuB. LiangJ. HeF. GuW. LiK. LuoY. ChenJ. GaoY. WuZ. WangY. ZhouW. WangM. Altered gut microbiota and mucosal immunity in patients with schizophrenia.Brain Behav. Immun.20208512012710.1016/j.bbi.2019.06.03931255682
    [Google Scholar]
  44. LeBlancJ.G. ChainF. MartínR. Bermúdez-HumaránL.G. CourauS. LangellaP. Beneficial effects on host energy metabolism of short-chain fatty acids and vitamins produced by commensal and probiotic bacteria.Microb. Cell Fact.20171617910.1186/s12934‑017‑0691‑z28482838
    [Google Scholar]
  45. UngerM.M. SpiegelJ. DillmannK.U. GrundmannD. PhilippeitH. BürmannJ. FaßbenderK. SchwiertzA. SchäferK.H. Short chain fatty acids and gut microbiota differ between patients with Parkinson’s disease and age-matched controls.Parkinsonism Relat. Disord.201632667210.1016/j.parkreldis.2016.08.01927591074
    [Google Scholar]
  46. ShinC. LimY. LimH. AhnT.B. Plasma short-chain fatty acids in patients with parkinson’s disease.Mov. Disord.20203561021102710.1002/mds.2801632154946
    [Google Scholar]
  47. KtsoyanZ.A. MkrtchyanM.S. ZakharyanM.K. MnatsakanyanA.A. ArakelovaK.A. GevorgyanZ.U. SedrakyanA.M. HovhannisyanA.I. ArakelyanA.A. AminovR.I. Systemic concentrations of short chain fatty acids are elevated in salmonellosis and exacerbation of familial mediterranean fever.Front. Microbiol.2016777610.3389/fmicb.2016.0077627252692
    [Google Scholar]
  48. SampsonT.R. DebeliusJ.W. ThronT. JanssenS. ShastriG.G. IlhanZ.E. ChallisC. SchretterC.E. RochaS. GradinaruV. ChesseletM.F. KeshavarzianA. ShannonK.M. Krajmalnik-BrownR. Wittung-StafshedeP. KnightR. MazmanianS.K. Gut microbiota regulate motor deficits and neuroinflammation in a model of parkinson’s disease.Cell2016167614691480.e1210.1016/j.cell.2016.11.01827912057
    [Google Scholar]
  49. ZilberterY. ZilberterM. The vicious circle of hypometabolism in neurodegenerative diseases: Ways and mechanisms of metabolic correction.J. Neurosci. Res.201795112217223510.1002/jnr.2406428463438
    [Google Scholar]
  50. HoL. OnoK. TsujiM. MazzolaP. SinghR. PasinettiG.M. Protective roles of intestinal microbiota derived short chain fatty acids in alzheimer’s disease-type beta-amyloid neuropathological mechanisms.Expert Rev. Neurother.2018181839010.1080/14737175.2018.140090929095058
    [Google Scholar]
  51. WangY. LiN. YangJ.J. ZhaoD.M. ChenB. ZhangG.Q. ChenS. CaoR.F. YuH. ZhaoC.Y. ZhaoL. GeY.S. LiuY. ZhangL.H. HuW. ZhangL. GaiZ.T. Probiotics and fructo-oligosaccharide intervention modulate the microbiota-gut brain axis to improve autism spectrum reducing also the hyper-serotonergic state and the dopamine metabolism disorder.Pharmacol. Res.202015710478410.1016/j.phrs.2020.10478432305492
    [Google Scholar]
  52. AbdelliL.S. SamsamA. NaserS.A. Propionic acid induces gliosis and neuro-inflammation through modulation of PTEN/AKT pathway in autism spectrum disorder.Sci. Rep.201991882410.1038/s41598‑019‑45348‑z31217543
    [Google Scholar]
  53. ZhuH.Z. LiangY.D. MaQ.Y. HaoW.Z. LiX.J. WuM.S. DengL.J. LiY.M. ChenJ.X. Xiaoyaosan improves depressive-like behavior in rats with chronic immobilization stress through modulation of the gut microbiota.Biomed. Pharmacother.201911210862110.1016/j.biopha.2019.10862130798141
    [Google Scholar]
  54. ChriettS. DąbekA. WojtalaM. VidalH. BalcerczykA. PirolaL. Prominent action of butyrate over β-hydroxybutyrate as histone deacetylase inhibitor, transcriptional modulator and anti-inflammatory molecule.Sci. Rep.20199174210.1038/s41598‑018‑36941‑930679586
    [Google Scholar]
  55. LiS. HuaD. WangQ. YangL. WangX. LuoA. YangC. The role of bacteria and its derived metabolites in chronic pain and depression: recent findings and research progress.Int. J. Neuropsychopharmacol.2020231264110.1093/ijnp/pyz06131760425
    [Google Scholar]
  56. JacksonA. ForsythC.B. ShaikhM. VoigtR.M. EngenP.A. RamirezV. KeshavarzianA. Diet in parkinson’s disease: Critical role for the microbiome.Front. Neurol.201910124510.3389/fneur.2019.0124531920905
    [Google Scholar]
  57. TicinesiA. TanaC. NouvenneA. PratiB. LauretaniF. MeschiT. Gut microbiota, cognitive frailty and dementia in older individuals: A systematic review.Clin. Interv. Aging2018131497151110.2147/CIA.S13916330214170
    [Google Scholar]
  58. RiederR. WisniewskiP.J. AldermanB.L. CampbellS.C. Microbes and mental health: A review.Brain Behav. Immun.20176691710.1016/j.bbi.2017.01.01628131791
    [Google Scholar]
  59. JianguoL. XueyangJ. CuiW. ChangxinW. XuemeiQ. Altered gut metabolome contributes to depression-like behaviors in rats exposed to chronic unpredictable mild stress.Transl. Psychiatry2019914010.1038/s41398‑019‑0391‑z30696813
    [Google Scholar]
  60. FattorussoA. Di GenovaL. Dell’IsolaG. MencaroniE. EspositoS. Autism spectrum disorders and the gut microbiota.Nutrients201911352110.3390/nu1103052130823414
    [Google Scholar]
  61. McMillinM. DeMorrowS. Effects of bile acids on neurological function and disease.FASEB J.201630113658366810.1096/fj.201600275R27468758
    [Google Scholar]
  62. RosaA.I. Duarte-SilvaS. Silva-FernandesA. NunesM.J. CarvalhoA.N. RodriguesE. GamaM.J. RodriguesC.M.P. MacielP. Castro-CaldasM. Tauroursodeoxycholic acid improves motor symptoms in a mouse model of Parkinson’s disease.Mol. Neurobiol.201855129139915510.1007/s12035‑018‑1062‑429651747
    [Google Scholar]
  63. LoA.C. Callaerts-VeghZ. NunesA.F. RodriguesC.M.P. D’HoogeR. Tauroursodeoxycholic acid (TUDCA) supplementation prevents cognitive impairment and amyloid deposition in APP/PS1 mice.Neurobiol. Dis.201350212910.1016/j.nbd.2012.09.00322974733
    [Google Scholar]
  64. MahmoudianDehkordiS. ArnoldM. NhoK. AhmadS. JiaW. XieG. LouieG. Kueider-PaisleyA. MoseleyM.A. ThompsonJ.W. St John WilliamsL. TenenbaumJ.D. BlachC. BaillieR. HanX. BhattacharyyaS. ToledoJ.B. SchaffererS. KleinS. KoalT. RisacherS.L. Allan KlingM. Motsinger-ReifA. RotroffD.M. JackJ. HankemeierT. BennettD.A. De JagerP.L. TrojanowskiJ.Q. ShawL.M. WeinerM.W. DoraiswamyP.M. van DuijnC.M. SaykinA.J. KastenmüllerG. Kaddurah-DaoukR. Altered bile acid profile associates with cognitive impairment in Alzheimer’s disease—An emerging role for gut microbiome.Alzheimers Dement.2019151769210.1016/j.jalz.2018.07.21730337151
    [Google Scholar]
  65. PanX. ElliottC.T. McGuinnessB. PassmoreP. KehoeP.G. HölscherC. McCleanP.L. GrahamS.F. GreenB.D. Metabolomic profiling of bile acids in clinical and experimental samples of Alzheimer’s disease.Metabolites2017722810.3390/metabo702002828629125
    [Google Scholar]
  66. QuinnM. McMillinM. GalindoC. FramptonG. PaeH.Y. DeMorrowS. Bile acids permeabilize the blood brain barrier after bile duct ligation in rats via Rac1-dependent mechanisms.Dig. Liver Dis.201446652753410.1016/j.dld.2014.01.15924629820
    [Google Scholar]
  67. YangY. TianJ. YangB. Targeting gut microbiome: A novel and potential therapy for autism.Life Sci.201819411111910.1016/j.lfs.2017.12.02729277311
    [Google Scholar]
  68. CaspaniG. KennedyS. FosterJ.A. SwannJ. Gut microbial metabolites in depression: Understanding the biochemical mechanisms.Microb. Cell201961045448110.15698/mic2019.10.69331646148
    [Google Scholar]
  69. BarrettE. RossR.P. O’TooleP.W. FitzgeraldG.F. StantonC. γ-Aminobutyric acid production by culturable bacteria from the human intestine.J. Appl. Microbiol.2012113241141710.1111/j.1365‑2672.2012.05344.x22612585
    [Google Scholar]
  70. TakanagaH. OhtsukiS. HosoyaK-I. TerasakiT. GAT2/BGT-1 as a system responsible for the transport of γ-aminobutyric acid at the mouse blood-brain barrier.J. Cereb. Blood Flow Metab.200121101232123910.1097/00004647‑200110000‑0001211598501
    [Google Scholar]
  71. BrouilletteJ. YoungD. DuringM.J. QuirionR. Hippocampal gene expression profiling reveals the possible involvement of Homer1 and GABA B receptors in scopolamine-induced amnesia.J. Neurochem.200710261978198910.1111/j.1471‑4159.2007.04666.x17540011
    [Google Scholar]
  72. GabrieleS. SaccoR. PersicoA.M. Blood serotonin levels in autism spectrum disorder: A systematic review and meta-analysis.Eur. Neuropsychopharmacol.201424691992910.1016/j.euroneuro.2014.02.00424613076
    [Google Scholar]
  73. MercadoN.M. CollierT.J. SortwellC.E. Steece-CollierK. BDNF in the aged brain: Translational implications for parkinson’s disease.Austin Neurol. Neurosci.201722102129726549
    [Google Scholar]
  74. Fernández-NovoaL. CacabelosR. Histamine function in brain disorders.Behav. Brain Res.2001124221323310.1016/S0166‑4328(01)00215‑711640975
    [Google Scholar]
  75. NewellC. BomhofM.R. ReimerR.A. HittelD.S. RhoJ.M. ShearerJ. Ketogenic diet modifies the gut microbiota in a murine model of autism spectrum disorder.Mol. Autism2016713710.1186/s13229‑016‑0099‑327594980
    [Google Scholar]
  76. EvangeliouA. VlachonikolisI. MihailidouH. SpiliotiM. SkarpalezouA. MakaronasN. ProkopiouA. ChristodoulouP. Liapi-AdamidouG. HelidonisE. SbyrakisS. SmeitinkJ. Application of a ketogenic diet in children with autistic behavior: Pilot study.J. Child Neurol.200318211311810.1177/0883073803018002050112693778
    [Google Scholar]
  77. GubertC. KongG. RenoirT. HannanA.J. Exercise, diet and stress as modulators of gut microbiota: Implications for neurodegenerative diseases.Neurobiol. Dis.202013410462110.1016/j.nbd.2019.10462131628992
    [Google Scholar]
  78. HaciogluG. Seval-CelikY. TanrioverG. OzsoyO. Saka-TopcuogluE. BalkanS. AgarA. Docosahexaenoic acid provides protective mechanism in bilaterally MPTP-lesioned rat model of Parkinson’s disease.Folia Histochem. Cytobiol.201250222823810.5603/FHC.2012.003222763967
    [Google Scholar]
  79. MockingR.J.T. HarmsenI. AssiesJ. KoeterM.W.J. RuhéH.G. ScheneA.H. Meta-analysis and meta-regression of omega-3 polyunsaturated fatty acid supplementation for major depressive disorder.Transl. Psychiatry201663e75610.1038/tp.2016.2926978738
    [Google Scholar]
  80. TurnbaughP.J. RidauraV.K. FaithJ.J. ReyF.E. KnightR. GordonJ.I. The effect of diet on the human gut microbiome: A metagenomic analysis in humanized gnotobiotic mice.Sci. Transl. Med.2009166ra1410.1126/scitranslmed.300032220368178
    [Google Scholar]
  81. De FilippisF. PellegriniN. VanniniL. JefferyI.B. La StoriaA. LaghiL. SerrazanettiD.I. Di CagnoR. FerrocinoI. LazziC. TurroniS. CocolinL. BrigidiP. NevianiE. GobbettiM. O’TooleP.W. ErcoliniD. High-level adherence to a Mediterranean diet beneficially impacts the gut microbiota and associated metabolome.Gut201665111812182110.1136/gutjnl‑2015‑30995726416813
    [Google Scholar]
  82. CassS.P. Alzheimer’s disease and exercise: A literature review.Curr. Sports Med. Rep.2017161192210.1249/JSR.000000000000033228067736
    [Google Scholar]
  83. DuZ. LiY. LiJ. ZhouC. LiF. YangX. Physical activity can improve cognition in patients with Alzheimer’s disease: A systematic review and meta-analysis of randomized controlled trials.Clin. Interv. Aging2018131593160310.2147/CIA.S16956530233156
    [Google Scholar]
  84. FerreiraJ.P. GhiaroneT. Cabral JúniorC.R. FurtadoG.E. Moreira CarvalhoH. Machado-RodriguesA.M. Andrade ToscanoC.V. Effects of physical exercise on the stereotyped behavior of children with autism spectrum disorders.Medicina (Kaunas)2019551068510.3390/medicina5510068531615098
    [Google Scholar]
  85. DauwanM. BegemannM.J.H. HeringaS.M. SommerI.E. Exercise improves clinical symptoms, quality of life, global functioning, and depression in schizophrenia: A systematic review and Meta-analysis.Schizophr. Bull.201642358859910.1093/schbul/sbv16426547223
    [Google Scholar]
  86. DaltonA. MermierC. ZuhlM. Exercise influence on the microbiome–gut–brain axis.Gut Microbes201910555556810.1080/19490976.2018.156226830704343
    [Google Scholar]
  87. AbrahamD. FeherJ. ScuderiG.L. SzaboD. DobolyiA. CservenakM. JuhaszJ. LigetiB. PongorS. Gomez-CabreraM.C. VinaJ. HiguchiM. SuzukiK. BoldoghI. RadakZ. Exercise and probiotics attenuate the development of Alzheimer’s disease in transgenic mice: Role of microbiome.Exp. Gerontol.201911512213110.1016/j.exger.2018.12.00530529024
    [Google Scholar]
  88. KarlJP HatchAM ArcidiaconoSM PearceSC Pantoja-FelicianoIG DohertyLA Effects of psychological, environmental and physical sressors on the gut microbiota.Front Microbiol201392013
    [Google Scholar]
  89. CarusoA. NicolettiF. MangoD. SaidiA. OrlandoR. ScaccianoceS. Stress as risk factor for Alzheimer’s disease.Pharmacol. Res.201813213013410.1016/j.phrs.2018.04.01729689315
    [Google Scholar]
  90. MravecB. HorvathovaL. PadovaA. Brain under stress and Alzheimer’s disease.Cell. Mol. Neurobiol.2018381738410.1007/s10571‑017‑0521‑128699112
    [Google Scholar]
  91. DalléE. MabandlaM.V. Early life stress, depression and parkinson’s disease: A new approach.Mol. Brain20181111810.1186/s13041‑018‑0356‑929551090
    [Google Scholar]
  92. LiangS. WangT. HuX. LuoJ. LiW. WuX. DuanY. JinF. Administration of Lactobacillus helveticus NS8 improves behavioral, cognitive, and biochemical aberrations caused by chronic restraint stress.Neuroscience201531056157710.1016/j.neuroscience.2015.09.03326408987
    [Google Scholar]
  93. MukhtarK. NawazH. AbidS. Functional gastrointestinal disorders and gut-brain axis: What does the future hold?World J. Gastroenterol.201925555256610.3748/wjg.v25.i5.55230774271
    [Google Scholar]
  94. MukherjeeA. BiswasA. DasS.K. Gut dysfunction in Parkinson’s disease.World J. Gastroenterol.201622255742575210.3748/wjg.v22.i25.574227433087
    [Google Scholar]
  95. GorrindoP. WilliamsK.C. LeeE.B. WalkerL.S. McGrewS.G. LevittP. Gastrointestinal dysfunction in Autism: Parental report, clinical evaluation, and associated factors.Autism Res.20125210110810.1002/aur.23722511450
    [Google Scholar]
  96. Xue Ming BrimacombeM. ChaabanJ. Zimmerman-BierB. WagnerG.C. Autism spectrum disorders: Concurrent clinical disorders.J. Child Neurol.200823161310.1177/088307380730710218056691
    [Google Scholar]
  97. ZhaoD. WuZ. ZhangH. MellorD. DingL. WuH. WuC. HuangJ. HongW. PengD. FangY. Somatic symptoms vary in major depressive disorder in China.Compr. Psychiatry201887323710.1016/j.comppsych.2018.08.01330195098
    [Google Scholar]
  98. GerritsM.M.J.G. VogelzangsN. van OppenP. van MarwijkH.W.J. van der HorstH. PenninxB.W.J.H. Impact of pain on the course of depressive and anxiety disorders.Pain2012153242943610.1016/j.pain.2011.11.00122154919
    [Google Scholar]
  99. VirtanenT. EskelinenS. SailasE. SuvisaariJ. Dyspepsia and constipation in patients with Schizophrenia spectrum disorders.Nord. J. Psychiatry2017711485410.1080/08039488.2016.121704427564411
    [Google Scholar]
  100. ClarkeG. CryanJ.F. DinanT.G. QuigleyE.M. Review article: probiotics for the treatment of irritable bowel syndrome – focus on lactic acid bacteria.Aliment. Pharmacol. Ther.201235440341310.1111/j.1365‑2036.2011.04965.x22225517
    [Google Scholar]
  101. SudoN. ChidaY. AibaY. SonodaJ. OyamaN. YuX.N. KuboC. KogaY. Postnatal microbial colonization programs the hypothalamic–pituitary–adrenal system for stress response in mice.J. Physiol.2004558126327510.1113/jphysiol.2004.06338815133062
    [Google Scholar]
  102. PulikkanJ. MazumderA. GraceT. Role of the Gut Microbiome in Autism spectrum disorders.Adv. Exp. Med. Biol.2019111825326910.1007/978‑3‑030‑05542‑4_1330747427
    [Google Scholar]
  103. BravoJ.A. ForsytheP. ChewM.V. EscaravageE. SavignacH.M. DinanT.G. BienenstockJ. CryanJ.F. Ingestion of Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve.Proc. Natl. Acad. Sci. USA201110838160501605510.1073/pnas.110299910821876150
    [Google Scholar]
  104. BercikP. ParkA.J. SinclairD. KhoshdelA. LuJ. HuangX. DengY. BlennerhassettP.A. FahnestockM. MoineD. BergerB. HuizingaJ.D. KunzeW. McLeanP.G. BergonzelliG.E. CollinsS.M. VerduE.F. The anxiolytic effect of Bifidobacterium longum NCC3001 involves vagal pathways for gut-brain communication.Neurogastroenterol. Motil.201123121132113910.1111/j.1365‑2982.2011.01796.x21988661
    [Google Scholar]
  105. BercikP. DenouE. CollinsJ. JacksonW. LuJ. JuryJ. DengY. BlennerhassettP. MacriJ. McCoyK.D. VerduE.F. CollinsS.M. The intestinal microbiota affect central levels of brain-derived neurotropic factor and behavior in mice.Gastroenterology20111412599609.e3, 609.e1-609.e310.1053/j.gastro.2011.04.05221683077
    [Google Scholar]
  106. De VadderF. Kovatcheva-DatcharyP. GoncalvesD. VineraJ. ZitounC. DuchamptA. BäckhedF. MithieuxG. Microbiota-generated metabolites promote metabolic benefits via gut-brain neural circuits.Cell20141561-2849610.1016/j.cell.2013.12.01624412651
    [Google Scholar]
  107. ErnyD. Hrabě de AngelisA.L. JaitinD. WieghoferP. StaszewskiO. DavidE. Keren-ShaulH. MahlakoivT. JakobshagenK. BuchT. SchwierzeckV. UtermöhlenO. ChunE. GarrettW.S. McCoyK.D. DiefenbachA. StaeheliP. StecherB. AmitI. PrinzM. Host microbiota constantly control maturation and function of microglia in the CNS.Nat. Neurosci.201518796597710.1038/nn.403026030851
    [Google Scholar]
  108. BlierP. El MansariM. Serotonin and beyond: therapeutics for major depression.Philos. Trans. R. Soc. Lond. B Biol. Sci.201336816152012053610.1098/rstb.2012.053623440470
    [Google Scholar]
  109. ClarkeG. GrenhamS. ScullyP. FitzgeraldP. MoloneyR.D. ShanahanF. DinanT.G. CryanJ.F. The microbiome-gut-brain axis during early life regulates the hippocampal serotonergic system in a sex-dependent manner.Mol. Psychiatry201318666667310.1038/mp.2012.7722688187
    [Google Scholar]
  110. SchwarczR. BrunoJ.P. MuchowskiP.J. WuH.Q. Kynurenines in the mammalian brain: When physiology meets pathology.Nat. Rev. Neurosci.201213746547710.1038/nrn325722678511
    [Google Scholar]
  111. TomkovichS. JobinC. Microbiota and host immune responses: A love–hate relationship.Immunology2016147111010.1111/imm.1253826439191
    [Google Scholar]
  112. SherwinE. SandhuK.V. DinanT.G. CryanJ.F. May the force be with you: The light and dark sides of the microbiota–gut–brain axis in neuropsychiatry.CNS Drugs201630111019104110.1007/s40263‑016‑0370‑327417321
    [Google Scholar]
  113. GoehlerL.E. GaykemaR.P.A. OpitzN. ReddawayR. BadrN. LyteM. Activation in vagal afferents and central autonomic pathways: Early responses to intestinal infection with Campylobacter jejuni.Brain Behav. Immun.200519433434410.1016/j.bbi.2004.09.00215944073
    [Google Scholar]
  114. GazeraniP. Probiotics for Parkinson’s disease.Int. J. Mol. Sci.20192017412110.3390/ijms2017412131450864
    [Google Scholar]
  115. CassaniE. PriviteraG. PezzoliG. PusaniC. MadioC. IorioL. BarichellaM. Use of probiotics for the treatment of constipation in Parkinson’s disease patients.Minerva Gastroenterol. Dietol.201157211712121587143
    [Google Scholar]
  116. TamtajiO.R. TaghizadehM. Daneshvar KakhakiR. KouchakiE. BahmaniF. BorzabadiS. OryanS. MafiA. AsemiZ. Clinical and metabolic response to probiotic administration in people with Parkinson’s disease: A randomized, double-blind, placebo-controlled trial.Clin. Nutr.20193831031103510.1016/j.clnu.2018.05.01829891223
    [Google Scholar]
  117. SunJ. XuJ. YangB. ChenK. KongY. FangN. GongT. WangF. LingZ. LiuJ. Effect of Clostridium butyricum against microglia-mediated neuroinflammation in Alzheimer’s disease via regulating gut microbiota and metabolites butyrate.Mol. Nutr. Food Res.2020642190063610.1002/mnfr.20190063631835282
    [Google Scholar]
  118. Rezaei AslZ. SepehriG. SalamiM. Probiotic treatment improves the impaired spatial cognitive performance and restores synaptic plasticity in an animal model of Alzheimer’s disease.Behav. Brain Res.201937611218310.1016/j.bbr.2019.11218331472194
    [Google Scholar]
  119. SivamaruthiB.S. SuganthyN. KesikaP. ChaiyasutC. The role of microbiome, dietary supplements, and probiotics in Autism spectrum disorder.Int. J. Environ. Res. Public Health2020178264710.3390/ijerph1708264732290635
    [Google Scholar]
  120. HaoZ. WangW. GuoR. LiuH. Faecalibacterium prausnitzii (ATCC 27766) has preventive and therapeutic effects on chronic unpredictable mild stress-induced depression-like and anxiety-like behavior in rats.Psychoneuroendocrinology201910413214210.1016/j.psyneuen.2019.02.02530844607
    [Google Scholar]
  121. TianP. O’RiordanK.J. LeeY. WangG. ZhaoJ. ZhangH. CryanJ.F. ChenW. Towards a psychobiotic therapy for depression: Bifidobacterium breve CCFM1025 reverses chronic stress-induced depressive symptoms and gut microbial abnormalities in mice.Neurobiol. Stress20201210021610.1016/j.ynstr.2020.10021632258258
    [Google Scholar]
  122. DickersonFB StallingsC OrigoniA Effect of probiotic supplementation on schizophrenia symptoms and association with gastroin-testinal functioning: A randomized, placebo-controlled trial.Prim Care Companion CNS Disord.2014161PCC.13m01579
    [Google Scholar]
  123. KeshavarzianA. GreenS.J. EngenP.A. VoigtR.M. NaqibA. ForsythC.B. MutluE. ShannonK.M. Colonic bacterial composition in parkinson’s disease.Mov. Disord.201530101351136010.1002/mds.2630726179554
    [Google Scholar]
  124. van de WouwM. BoehmeM. DinanT.G. CryanJ.F. Monocyte mobilisation, microbiota & mental illness.Brain Behav. Immun.201981749110.1016/j.bbi.2019.07.01931330299
    [Google Scholar]
  125. NgQ. LokeW. VenkatanarayananN. LimD. SohA. YeoW. A systematic review of the role of prebiotics and probiotics in autism spectrum disorders.Medicina (Kaunas)201955512910.3390/medicina5505012931083360
    [Google Scholar]
  126. GrimaldiR. GibsonG.R. VulevicJ. GiallourouN. Castro-MejíaJ.L. HansenL.H. Leigh GibsonE. NielsenD.S. CostabileA. A prebiotic intervention study in children with autism spectrum disorders (ASDs).Microbiome20186113310.1186/s40168‑018‑0523‑330071894
    [Google Scholar]
  127. LiuR.T. WalshR.F.L. SheehanA.E. Prebiotics and probiotics for depression and anxiety: A systematic review and meta-analysis of controlled clinical trials.Neurosci. Biobehav. Rev.2019102132310.1016/j.neubiorev.2019.03.02331004628
    [Google Scholar]
  128. KazemiA. NoorbalaA.A. AzamK. EskandariM.H. DjafarianK. Effect of probiotic and prebiotic vs placebo on psychological outcomes in patients with major depressive disorder: A randomized clinical trial.Clin. Nutr.201938252252810.1016/j.clnu.2018.04.01029731182
    [Google Scholar]
  129. AngelucciF. CechovaK. AmlerovaJ. HortJ. Antibiotics, gut microbiota, and Alzheimer’s disease.J. Neuroinflammation201916110810.1186/s12974‑019‑1494‑431118068
    [Google Scholar]
  130. DuY. MaZ. LinS. DodelR.C. GaoF. BalesK.R. TriarhouL.C. ChernetE. PerryK.W. NelsonD.L.G. LueckeS. PhebusL.A. BymasterF.P. PaulS.M. Minocycline prevents nigrostriatal dopaminergic neurodegeneration in the MPTP model of parkinson’s disease.Proc. Natl. Acad. Sci. USA20019825146691467410.1073/pnas.25134199811724929
    [Google Scholar]
  131. NINDS NET-PD Investigators A randomized, double-blind, futility clinical trial of creatine and minocycline in early parkinson disease.Neurology200666566467110.1212/01.wnl.0000201252.57661.e116481597
    [Google Scholar]
  132. LotanD. CunninghamM. JoelD. Antibiotic treatment attenuates behavioral and neurochemical changes induced by exposure of rats to group a streptococcal antigen.PLoS One201496e10125710.1371/journal.pone.010125724979049
    [Google Scholar]
  133. YulugB. HanogluL. OzansoyM. IsıkD. KilicU. KilicE. SchabitzW.R. Therapeutic role of rifampicin in Alzheimer’s disease.Psychiatry Clin. Neurosci.201872315215910.1111/pcn.1263729315976
    [Google Scholar]
  134. BezawadaN. PhangT.H. HoldG.L. HansenR. Autism spectrum disorder and the gut microbiota in children: A Systematic Review.Ann. Nutr. Metab.2020761162910.1159/00050536331982866
    [Google Scholar]
  135. DeanO.M. KanchanatawanB. AshtonM. MohebbiM. NgC.H. MaesM. BerkL. SughondhabiromA. TangwongchaiS. SinghA.B. McKenzieH. SmithD.J. MalhiG.S. DowlingN. BerkM. Adjunctive minocycline treatment for major depressive disorder: A proof of concept trial.Aust. N. Z. J. Psychiatry201751882984010.1177/000486741770935728578592
    [Google Scholar]
  136. KoolaM.M. Antipsychotic-minocycline-acetylcysteine combination for positive, cognitive, and negative symptoms of Schizophrenia.Asian J. Psychiatr.20194010010210.1016/j.ajp.2019.02.00730776665
    [Google Scholar]
  137. ZhangF. LuoW. ShiY. FanZ. JiG. Should we standardize the 1,700-year-old fecal microbiota transplantation?Am. J. Gastroenterol.201210711175510.1038/ajg.2012.25123160295
    [Google Scholar]
  138. SunJ. XuJ. LingY. WangF. GongT. YangC. YeS. YeK. WeiD. SongZ. ChenD. LiuJ. Fecal microbiota transplantation alleviated Alzheimer’s disease-like pathogenesis in APP/PS1 transgenic mice.Transl. Psychiatry20199118910.1038/s41398‑019‑0525‑331383855
    [Google Scholar]
  139. AdamsJ.B. BorodyT.J. KangD.W. KhorutsA. Krajmalnik-BrownR. SadowskyM.J. Microbiota transplant therapy and autism: Lessons for the clinic.Expert Rev. Gastroenterol. Hepatol.201913111033103710.1080/17474124.2019.168729331665947
    [Google Scholar]
  140. Chinna MeyyappanA. ForthE. WallaceC.J.K. MilevR. Effect of fecal microbiota transplant on symptoms of psychiatric disorders: A systematic review.BMC Psychiatry202020129910.1186/s12888‑020‑02654‑532539741
    [Google Scholar]
/content/journals/crcep/10.2174/0127724328335219241202142003
Loading
/content/journals/crcep/10.2174/0127724328335219241202142003
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test