Skip to content
2000
Volume 20, Issue 3
  • ISSN: 2772-4328
  • E-ISSN: 2772-4336

Abstract

Experimental studies have played an essential role in drug identification and development in biomedical research. These studies also have applications in conducting postmarketing evaluations to elucidate the mechanisms responsible for their actions. Preclinical studies on marketed drugs have led to the discovery of new mechanisms or biological effects, opening the possibility of expanding their therapeutic applications. Since its discovery, trimetazidine has been used as an antianginal drug. However, after its commercialization, the molecular actions and impact of this drug on ischemic and non-ischemic pathologies have become known. This article presents the mechanisms and antioxidant actions of trimetazidine associated with the effects observed in experimental models of heart disease, nephropathy, and diabetes mellitus. A non-systematic search of the PubMed database was performed using terms related to our objectives. We selected articles on studies focused on cardioprotection, nephroprotection, antioxidants, or diabetic heart disease, which were carried out in preclinical experimental models. The information compiled in this review shows that trimetazidine is effective in reducing damage associated with oxidative stress, as evaluated in different experimental models. The cardioprotective and nephroprotective effects of this drug have been demonstrated in ischemic and non-ischemic models.

Loading

Article metrics loading...

/content/journals/crcep/10.2174/0127724328303999240607072031
2024-08-20
2025-11-01
Loading full text...

Full text loading...

References

  1. LiuZ. ChenJ.M. HuangH. The protective effect of trimetazidine on myocardial ischemia/reperfusion injury through activating AMPK and ERK signaling pathway.Metabolism201665312213010.1016/j.metabol.2015.10.022 26892523
    [Google Scholar]
  2. DedkovaE.N. SeidlmayerL.K. BlatterL.A. Mitochondria-mediated cardioprotection by trimetazidine in rabbit heart failure.J. Mol. Cell. Cardiol.201359415410.1016/j.yjmcc.2013.01.016 23388837
    [Google Scholar]
  3. KantorP.F. LucienA. KozakR. LopaschukG.D. The antianginal drug trimetazidine shifts cardiac energy metabolism from fatty acid oxi-dation to glucose oxidation by inhibiting mitochondrial long-chain 3-ketoacyl coenzyme A thiolase.Circ. Res.200086558058810.1161/01.RES.86.5.580 10720420
    [Google Scholar]
  4. KutalaV.K. KhanM. MandalR. Attenuation of myocardial ischemia-reperfusion injury by trimetazidine derivatives functionalized with antioxidant properties.J. Pharmacol. Exp. Ther.2006317392192810.1124/jpet.105.100834 16467453
    [Google Scholar]
  5. BayramE. AtalayC. KocatürkH. YücelO. Effects of trimetazidine on lipid peroxidation, antioxidant enzyme activities and plasma brain natriuretic peptide levels in patients with chronic cor pulmonale.J. Int. Med. Res.200533661261910.1177/147323000503300602 16372578
    [Google Scholar]
  6. WangF. WangH. LiuX. Neuregulin‐1 alleviate oxidative stress and mitigate inflammation by suppressing NOX4 and NLRP3/caspase‐1 in myocardial ischaemia‐reperfusion injury.J. Cell. Mol. Med.20212531783179510.1111/jcmm.16287 33470533
    [Google Scholar]
  7. ZhengS. DuY. PengQ. FanX. LiJ. ChenM. Trimetazidine protects against atherosclerosis by changing energy charge and oxidative stress.Med. Sci. Monit.2018248459846810.12659/MSM.911317 30468686
    [Google Scholar]
  8. AndrienkoT.N. PasdoisP. PereiraG.C. OvensM.J. HalestrapA.P. The role of succinate and ROS in reperfusion injury – A critical apprais-al.J. Mol. Cell. Cardiol.201711011410.1016/j.yjmcc.2017.06.016 28689004
    [Google Scholar]
  9. WangP. ZhangF. PanL. Inhibiting cardiac mitochondrial fatty acid oxidation attenuates myocardial injury in a rat model of cardiac arrest.Oxid. Med. Cell. Longev.2021202111110.1155/2021/6622232 33728022
    [Google Scholar]
  10. Mahfoudh-BoussaidA. Hadj Ayed TkaK. ZaoualiM.A. Roselló-CatafauJ. Ben AbdennebiH. Effects of trimetazidine on the Akt/eNOS signaling pathway and oxidative stress in an in vivo rat model of renal ischemia-reperfusion.Ren. Fail.20143691436144210.3109/0886022X.2014.949765 25246344
    [Google Scholar]
  11. IshiiT. MiyazawaM. OnouchiH. YasudaK. HartmanP.S. IshiiN. Model animals for the study of oxidative stress from complex II.Biochim. Biophys. Acta Bioenerg.20131827558859710.1016/j.bbabio.2012.10.016 23142169
    [Google Scholar]
  12. AragónJ.P. ConditM.E. BhushanS. Beta3-adrenoreceptor stimulation ameliorates myocardial ischemia-reperfusion injury via endo-thelial nitric oxide synthase and neuronal nitric oxide synthase activation.J. Am. Coll. Cardiol.201158252683269110.1016/j.jacc.2011.09.033 22152956
    [Google Scholar]
  13. JiaG. HillM.A. SowersJ.R. Diabetic cardiomyopathy.Circ. Res.2018122462463810.1161/CIRCRESAHA.117.311586 29449364
    [Google Scholar]
  14. BorghettiG. von LewinskiD. EatonD.M. SourijH. HouserS.R. WallnerM. Diabetic cardiomyopathy: Current and future therapies. be-yond glycemic control.Front. Physiol.20189151410.3389/fphys.2018.01514 30425649
    [Google Scholar]
  15. Ovide-BordeauxS. Bescond-JacquetA. GrynbergA. Cardiac mitochondrial alterations induced by insulin deficiency and hyperin-sulinaemia in rats: Targeting membrane homeostasis with trimetazidine.Clin. Exp. Pharmacol. Physiol.200532121061107010.1111/j.1440‑1681.2005.04293.x 16445572
    [Google Scholar]
  16. ZhangL. DingW. WangZ. Early administration of trimetazidine attenuates diabetic cardiomyopathy in rats by alleviating fibrosis, reducing apoptosis and enhancing autophagy.J. Transl. Med.201614110910.1186/s12967‑016‑0849‑1 27121077
    [Google Scholar]
  17. TangS.G. LiuX.Y. WangS.P. WangH.H. JovanovićA. TanW. Trimetazidine prevents diabetic cardiomyopathy by inhibiting Nox2/TRPC3-induced oxidative stress.J. Pharmacol. Sci.2019139431131810.1016/j.jphs.2019.01.016 30962089
    [Google Scholar]
  18. LiuY. ZhangJ. Nox2 contributes to cardiac fibrosis in diabetic cardiomyopathy in a transforming growth factor-β dependent manner.Int. J. Clin. Exp. Pathol.2015891090810914 26617806
    [Google Scholar]
  19. HohensinnerP.J. LenzM. HaiderP. Pharmacological inhibition of fatty acid oxidation reduces atherosclerosis progression by sup-pression of macrophage NLRP3 inflammasome activation.Biochem. Pharmacol.202119011463410.1016/j.bcp.2021.114634 34058186
    [Google Scholar]
  20. GrebeA. HossF. LatzE. NLRP3 Inflammasome and the IL-1 pathway in Atherosclerosis.Circ. Res.2018122121722174010.1161/CIRCRESAHA.118.311362 29880500
    [Google Scholar]
  21. RastaldoR. PennaC. CappelloS. MancardiD. PagliaroP. LosanoG. Ischemic postconditioning: An effective strategy of myocardial protection?G. Ital. Cardiol. 200677464473 16977786
    [Google Scholar]
  22. KolwiczS.C.Jr PurohitS. TianR. Cardiac metabolism and its interactions with contraction, growth, and survival of cardiomyocytes.Circ. Res.2013113560361610.1161/CIRCRESAHA.113.302095 23948585
    [Google Scholar]
  23. HonkaH. Solis-HerreraC. TriplittC. NortonL. ButlerJ. DeFronzoR.A. Therapeutic manipulation of myocardial metabolism.J. Am. Coll. Cardiol.202177162022203910.1016/j.jacc.2021.02.057 33888253
    [Google Scholar]
  24. MarzilliM. VinereanuD. LopaschukG. Trimetazidine in cardiovascular medicine.Int. J. Cardiol.2019293394410.1016/j.ijcard.2019.05.063 31178223
    [Google Scholar]
  25. KallistratosM.S. PoulimenosL.E. GiannitsiS. TsinivizovP. ManolisA.J. Trimetazidine in the prevention of tissue ischemic conditions.Angiology201970429129810.1177/0003319718780551 29888611
    [Google Scholar]
  26. CaccioppoA. FranchinL. GrossoA. AngeliniF. D’AscenzoF. BrizziM.F. Ischemia reperfusion injury: Mechanisms of damage/protection and novel strategies for cardiac recovery/regeneration.Int. J. Mol. Sci.20192020502410.3390/ijms20205024 31614414
    [Google Scholar]
  27. MaN. BaiJ. ZhangW. Trimetazidine protects against cardiac ischemia/reperfusion injury via effects on cardiac miRNA-21 expres-sion, Akt and the Bcl-2/Bax pathway.Mol. Med. Rep.20161454216422210.3892/mmr.2016.5773 27666568
    [Google Scholar]
  28. KhanM. MeduruS. MostafaM. KhanS. HidegK. KuppusamyP. Trimetazidine, administered at the onset of reperfusion, ameliorates myocardial dysfunction and injury by activation of p38 mitogen-activated protein kinase and Akt signaling.J. Pharmacol. Exp. Ther.2010333242142910.1124/jpet.109.165175 20167841
    [Google Scholar]
  29. ShuH. HangW. PengY. Trimetazidine attenuates heart failure by improving myocardial metabolism via AMPK.Front. Pharmacol.20211270739910.3389/fphar.2021.707399 34603021
    [Google Scholar]
  30. ZhongY. ZhongP. HeS. Trimetazidine protects cardiomyocytes against hypoxia/reoxygenation injury by promoting AMP-activated protein kinase–dependent autophagic flux.J. Cardiovasc. Pharmacol.201769638939710.1097/FJC.0000000000000487 28581448
    [Google Scholar]
  31. CantóC. Gerhart-HinesZ. FeigeJ.N. AMPK regulates energy expenditure by modulating NAD+ metabolism and SIRT1 activity.Nature200945872411056106010.1038/nature07813 19262508
    [Google Scholar]
  32. FulcoM. SartorelliV. Comparing and contrasting the roles of AMPK and SIRT1 in metabolic tissues.Cell Cycle20087233669367910.4161/cc.7.23.7164 19029811
    [Google Scholar]
  33. ElibolB. KilicU. High levels of SIRT1 Expression as a protective mechanism against disease-related conditions.Front. Endocrinol.2018961410.3389/fendo.2018.00614 30374331
    [Google Scholar]
  34. LanF. CacicedoJ.M. RudermanN. IdoY. SIRT1 modulation of the acetylation status, cytosolic localization, and activity of LKB1. Pos-sible role in AMP-activated protein kinase activation.J. Biol. Chem.200828341276282763510.1074/jbc.M805711200 18687677
    [Google Scholar]
  35. AlcendorR.R. GaoS. ZhaiP. Sirt1 regulates aging and resistance to oxidative stress in the heart.Circ. Res.2007100101512152110.1161/01.RES.0000267723.65696.4a 17446436
    [Google Scholar]
  36. ChenA. LiW. ChenX. Trimetazidine attenuates pressure overload-induced early cardiac energy dysfunction via regulation of neu-ropeptide Y system in a rat model of abdominal aortic constriction.BMC Cardiovasc. Disord.201616122510.1186/s12872‑016‑0399‑8 27855650
    [Google Scholar]
  37. ChenX. XiaX. DongT. LinZ. DuL. ZhouH. Trimetazidine reduces cardiac fibrosis in rats by inhibiting NOX2-mediated endothelial-to-mesenchymal transition.Drug Des. Devel. Ther.2022162517252710.2147/DDDT.S360283 35946039
    [Google Scholar]
  38. FeuersteinG.Z. LeeE.W. Neuropeptide Y and the heart: Implication for myocardial infarction and heart failure.EXS2006959511312210.1007/3‑7643‑7417‑9_8 16383001
    [Google Scholar]
  39. WuY. DengJ. RychahouP.G. QiuS. EversB.M. ZhouB.P. Stabilization of snail by NF-kappaB is required for inflammation-induced cell migration and invasion.Cancer Cell200915541642810.1016/j.ccr.2009.03.016 19411070
    [Google Scholar]
  40. ZhaoL. Protective effects of trimetazidine and coenzyme Q10 on cisplatin-induced cardiotoxicity by alleviating oxidative stress and mitochondrial dysfunction.Anatol. J. Cardiol.201922523223910.14744/AnatolJCardiol.2019.83710 31674935
    [Google Scholar]
  41. YangY. LiN. ChenT. Trimetazidine ameliorates sunitinib-induced cardiotoxicity in mice via the AMPK/mTOR/autophagy path-way.Pharm. Biol.201957162563110.1080/13880209.2019.1657905 31545912
    [Google Scholar]
  42. PaolilloS. MarsicoF. PrastaroM. Diabetic cardiomyopathy.Heart Fail. Clin.201915334134710.1016/j.hfc.2019.02.003 31079692
    [Google Scholar]
  43. ZhouX. LiC. XuW. ChenJ. Trimetazidine protects against smoking-induced left ventricular remodeling via attenuating oxidative stress, apoptosis, and inflammation.PLoS One201277e4042410.1371/journal.pone.0040424 22792312
    [Google Scholar]
  44. LiuX. GaiY. LiuF. Trimetazidine inhibits pressure overload-induced cardiac fibrosis through NADPH oxidase–ROS–CTGF path-way.Cardiovasc. Res.201088115015810.1093/cvr/cvq181 20534773
    [Google Scholar]
  45. QinD. HuangB. DengL. Downregulation of K(+) channel genes expression in type I diabetic cardiomyopathy.Biochem. Biophys. Res. Commun.2001283354955310.1006/bbrc.2001.4825 11341759
    [Google Scholar]
  46. NishiyamaA. IshiiD.N. BackxP.H. PulfordB.E. BirksB.R. TamkunM.M. Altered K + channel gene expression in diabetic rat ventricle: Isoform switching between Kv4.2 and Kv1.4.Am. J. Physiol. Heart Circ. Physiol.20012814H1800H180710.1152/ajpheart.2001.281.4.H1800 11557574
    [Google Scholar]
  47. XiangY. HeL. XiaoJ. Effect of trimetazidine treatment on the transient outward potassium current of the left ventricular myocytes of rats with streptozotocin-induced type 1 diabetes mellitus.Braz. J. Med. Biol. Res.201245320521110.1590/S0100‑879X2012007500019 22331134
    [Google Scholar]
  48. XuZ. PatelK.P. RozanskiG.J. Metabolic basis of decreased transient outward K+ current in ventricular myocytes from diabetic rats.Am. J. Physiol.19962715H2190H219610.1152/ajpheart.1996.271.5.H2190
    [Google Scholar]
  49. CasisO. EchevarriaE. Diabetic cardiomyopathy: Electromechanical cellular alterations.Curr. Vasc. Pharmacol.20042323724810.2174/1570161043385655 15320822
    [Google Scholar]
  50. GallegoM. AldayA. UrrutiaJ. CasisO. Transient outward potassium channel regulation in healthy and diabetic heartsThis article is one of a selection of papers from the NATO Advanced Research Workshop on Translational Knowledge for Heart Health (published in part 1 of a 2-part Special Issue).Can. J. Physiol. Pharmacol.2009872778310.1139/Y08‑106 19234570
    [Google Scholar]
  51. O’ConnellR.P. MusaH. GomezM.S.M. Free fatty acid effects on the atrial myocardium: Membrane ionic currents are remodeled by the disruption of T-Tubular architecture.PLoS One2015108e013305210.1371/journal.pone.0133052 26274906
    [Google Scholar]
  52. LindseyM.L. BolliR. CantyJ.M.Jr Guidelines for experimental models of myocardial ischemia and infarction.Am. J. Physiol. Heart Circ. Physiol.20183144H812H83810.1152/ajpheart.00335.2017 29351451
    [Google Scholar]
  53. Al KuryL.T. ChacarS. AlefishatE. KhraibiA.A. NaderM. Structural and electrical remodeling of the sinoatrial node in diabetes: New dimensions and perspectives.Front. Endocrinol.20221394631310.3389/fendo.2022.946313 35872997
    [Google Scholar]
  54. PatelK.H.K. HwangT. Se LiebersC. NgF.S. Epicardial adipose tissue as a mediator of cardiac arrhythmias.Am. J. Physiol. Heart Circ. Physiol.20223222H129H14410.1152/ajpheart.00565.2021 34890279
    [Google Scholar]
  55. LinY.K. ChenY.C. ChenJ.H. ChenS.A. ChenY.J. Adipocytes modulate the electrophysiology of atrial myocytes: Implications in obesity-induced atrial fibrillation.Basic Res. Cardiol.2012107529310.1007/s00395‑012‑0293‑1 22886089
    [Google Scholar]
  56. ZhaoY. LiS. QuanE. Trimetazidine inhibits cardiac fibrosis by reducing reactive oxygen species and downregulating connective tissue growth factor in streptozotocin induced diabetic rats.Exp. Ther. Med.20191821477148510.3892/etm.2019.7705 31363380
    [Google Scholar]
  57. DaiB. CuiM. ZhuM. SuW.L. QiuM.C. ZhangH. STAT1/3 and ERK1/2 synergistically regulate cardiac fibrosis induced by high glucose.Cell. Physiol. Biochem.201332496097110.1159/000354499 24107317
    [Google Scholar]
  58. DingW. ZhouD. ZhangS. QianJ. YangL. TangL. Trimetazidine inhibits liver fibrosis and hepatic stellate cell proliferation and blocks transforming growth factor-β (TGFβ)/Smad signaling in vitro and in vivo.Bioengineered20221337147715610.1080/21655979.2022.2047403 35249457
    [Google Scholar]
  59. ZhangX. LiuC. LiuC. WangY. ZhangW. XingY. Trimetazidine and l carnitine prevent heart aging and cardiac metabolic impairment in rats via regulating cardiac metabolic substrates.Exp. Gerontol.201911912012710.1016/j.exger.2018.12.019 30639303
    [Google Scholar]
  60. GuariniG. HuqiA. MorroneD. Giuseppina CapozzaP.F. MarzilliM. Trimetazidine and other metabolic modifiers.Eur. Cardiol.2018132110.15420/ecr.2018.15.2 30697354
    [Google Scholar]
  61. PanovA. MayorovV.I. DikalovS. Metabolic syndrome and β-oxidation of long-chain fatty acids in the brain, heart, and kidney mito-chondria.Int. J. Mol. Sci.2022237404710.3390/ijms23074047 35409406
    [Google Scholar]
  62. MirhosseniA. FarahaniB. Gandomi-MohammadabadiA. Preventive effect of trimetazidine on contrast-induced acute kidney inju-ry in ckd patients based on Urinary Neutrophil Gelatinase-associated Lipocalin (uNGAL): A randomized clinical trial.Iran. J. Kidney Dis.2019133191197 31209192
    [Google Scholar]
  63. SucuN. UnluA. TamerL. Effects of trimetazidine on tissue damage in kidney after hindlimb ischemia-reperfusion.Pharmacol. Res.200246434534910.1016/S104366180200172X 12361697
    [Google Scholar]
  64. KherA. MeldrumK. WangM. TsaiB. PitcherJ. MeldrumD. Cellular and molecular mechanisms of sex differences in renal ischemia–reperfusion injury.Cardiovasc. Res.200567459460310.1016/j.cardiores.2005.05.005 15950202
    [Google Scholar]
  65. CardenD.L. GrangerD.N. Pathophysiology of ischaemia-reperfusion injury.J. Pathol.2000190325526610.1002/(SICI)1096‑9896(200002)190:3<255::AID‑PATH526>3.0.CO;2‑6 10685060
    [Google Scholar]
  66. Nieuwenhuijs-MoekeG.J. PischkeS.E. BergerS.P. Ischemia and reperfusion injury in kidney transplantation: Relevant mechanisms in injury and repair.J. Clin. Med.20209125310.3390/jcm9010253 31963521
    [Google Scholar]
  67. GoujonJ.M. VandewalleA. BaumertH. CarretierM. HauetT. Influence of cold-storage conditions on renal function of autotransplanted large pig kidneys.Kidney Int.200058283885010.1046/j.1523‑1755.2000.00233.x 10916109
    [Google Scholar]
  68. FaureJ.P. BaumertH. HanZ. Evidence for a protective role of trimetazidine during cold ischemia: Targeting inflammation and nephron mass.Biochem. Pharmacol.200366112241225010.1016/j.bcp.2003.07.011 14609748
    [Google Scholar]
  69. BaumertH. FaureJ.P. ZhangK. Evidence for a mitochondrial impact of trimetazidine during cold ischemia and reperfusion.Pharmacology2004711253710.1159/000076259 15051920
    [Google Scholar]
  70. FaureJ.P. JayleC. DutheilD. Evidence for protective roles of polyethylene glycol plus high sodium solution and trimetazidine against consequences of renal medulla ischaemia during cold preservation and reperfusion in a pig kidney model.Nephrol. Dial. Transplant.20041971742175110.1093/ndt/gfh142 15128878
    [Google Scholar]
  71. TardieuA. DionL. LavouéV. The key role of warm and cold ischemia in uterus transplantation: A review.J. Clin. Med.20198676010.3390/jcm8060760 31146406
    [Google Scholar]
  72. BurnsA.T. DaviesD.R. MclarenA.J. CerundoloL. MorrisP.J. FuggleS.V. Apoptosis in ischemia/reperfusion injury of human renal allo-grafts.Transplantation199866787287610.1097/00007890‑199810150‑00010 9798696
    [Google Scholar]
  73. SalahudeenA.K. Cold ischemic injury of transplanted kidneys: New insights from experimental studies.Am. J. Physiol. Renal Physiol.20042872F181F18710.1152/ajprenal.00098.2004 15271685
    [Google Scholar]
  74. JayleC. FavreauF. ZhangK. Comparison of protective effects of trimetazidine against experimental warm ischemia of different durations: Early and long-term effects in a pig kidney model.Am. J. Physiol. Renal Physiol.20072923F1082F109310.1152/ajprenal.00338.2006 17341718
    [Google Scholar]
  75. CatrouxP. BenchekrounN. RobertJ. CambarJ. Influence of trimetazidine on deleterious effect of oxygen radical species in post-ischemic acute renal failure in the rat.Cardiovasc. Drugs Ther.19904S4Suppl. 481681710.1007/BF00051283 2093372
    [Google Scholar]
  76. HauetT. GoujonJ.M. VandewalleA. Trimetazidine reduces renal dysfunction by limiting the cold ischemia/reperfusion injury in autotransplanted pig kidneys.J. Am. Soc. Nephrol.200011113814810.1681/ASN.V111138 10616850
    [Google Scholar]
  77. RubinC.I. AtwehG.F. The role of stathmin in the regulation of the cell cycle.J. Cell. Biochem.200493224225010.1002/jcb.20187 15368352
    [Google Scholar]
  78. ZahediK. WangZ. BaroneS. Identification of stathmin as a novel marker of cell proliferation in the recovery phase of acute is-chemic renal failure.Am. J. Physiol. Cell Physiol.20042865C1203C121110.1152/ajpcell.00432.2003 15075220
    [Google Scholar]
  79. ZahediK. ReveloM.P. BaroneS. Stathmin-deficient mice develop fibrosis and show delayed recovery from ischemic-reperfusion injury.Am. J. Physiol. Renal Physiol.20062906F1559F156710.1152/ajprenal.00424.2005 16434570
    [Google Scholar]
  80. TanakaT. A mechanistic link between renal ischemia and fibrosis.Med. Mol. Morphol.20175011810.1007/s00795‑016‑0146‑3 27438710
    [Google Scholar]
  81. ParkJ.H. JunJ.H. ShimJ.K. ShinE.J. ShinE. KwakY.L. Effects of post ischemia-reperfusion treatment with trimetazidine on renal injury in rats: Insights on delayed renal fibrosis progression.Oxid. Med. Cell. Longev.2018201811010.1155/2018/1072805 30057668
    [Google Scholar]
  82. HazelhoffM.H. BulacioR.P. TorresA.M. Trimetazidine protects from mercury-induced kidney injury.Pharmacology20211065-633234010.1159/000514843 33849026
    [Google Scholar]
  83. El-SherbeenyN.A. AttiaG.M. The protective effect of trimetazidine against cisplatin-induced nephrotoxicity in rats.Can. J. Physiol. Pharmacol.201694774575110.1139/cjpp‑2015‑0472 27348619
    [Google Scholar]
  84. AkgüllüÇ. SaruhanT. EryilmazU. The first histopathological evidence of trimetazidine for the prevention of contrast-induced nephropathy.Ren. Fail.201436457558010.3109/0886022X.2014.880324 24467457
    [Google Scholar]
  85. IbrahimT.A. El-MawardyR.H. El-SerafyA.S. El-FekkyE.M. Trimetazidine in the prevention of contrast-induced nephropathy in chronic kidney disease.Cardiovasc. Revasc. Med.201718531531910.1016/j.carrev.2017.02.006 28532702
    [Google Scholar]
/content/journals/crcep/10.2174/0127724328303999240607072031
Loading
/content/journals/crcep/10.2174/0127724328303999240607072031
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test