Skip to content
2000
Volume 21, Issue 4
  • ISSN: 1573-3963
  • E-ISSN: 1875-6336

Abstract

Background

LIG4 syndrome, characterized by immunodeficiency, sensitivity to ionizing radiations, intrauterine growth retardation, postnatal growth retardation, and microcephaly, is a rare genetic disorder caused by pathogenic variants of the gene. Few patients are presented with no immune dysregulation as well.

Case Study

We present here a male child of 2 years and 4 months of age with severe microcephaly and short stature. His birth weight was 1.9 Kg, and his current height, weight, and head circumference are 83.2 cm (z score = -2.37), 9.5 Kg (z score = -2.76), and 36 cm (z score = -9.24), respectively. Possible causative pathogenic compound heterozygous variants of the gene, which were inherited from the parents, were identified by whole exome sequencing of the DNA of the patient and his parents. A systematic review of the literature is also performed to summarize the patients of LIG4 syndrome reported worldwide and summarize the associated genetic mutations of the gene. Compound heterozygous variants (c.597_600delTCAG/ c.342del) of gene were identified. The parents were found to be heterozygous carriers of one variant each.

Conclusion

The analysis of identified variants explains their effect on the structure and function of the protein hence explaining the genotype-phenotype correlation.

Loading

Article metrics loading...

/content/journals/cpr/10.2174/0115733963285549240328083623
2024-04-08
2025-09-10
Loading full text...

Full text loading...

References

  1. AltmannT. GenneryA.R. DNA ligase IV syndrome; A review.Orphanet J. Rare Dis.201611113710.1186/s13023‑016‑0520‑127717373
    [Google Scholar]
  2. McKennaA. HannaM. BanksE. SivachenkoA. CibulskisK. KernytskyA. GarimellaK. AltshulerD. GabrielS. DalyM. DePristoM.A. The genome analysis toolkit: A mapreduce framework for analyzing next-generation DNA sequencing data.Genome Res.20102091297130310.1101/gr.107524.11020644199
    [Google Scholar]
  3. McLarenW. PritchardB. RiosD. ChenY. FlicekP. CunninghamF. Deriving the consequences of genomic variants with the ensembl API and SNP effect predictor.Bioinformatics201026162069207010.1093/bioinformatics/btq33020562413
    [Google Scholar]
  4. PlagnolV. CurtisJ. EpsteinM. MokK.Y. StebbingsE. GrigoriadouS. WoodN.W. HambletonS. BurnsS.O. ThrasherA.J. KumararatneD. DoffingerR. NejentsevS. A robust model for read count data in exome sequencing experiments and implications for copy number variant calling.Bioinformatics201228212747275410.1093/bioinformatics/bts52622942019
    [Google Scholar]
  5. LandrumM.J. LeeJ.M. BensonM. BrownG. ChaoC. ChitipirallaS. GuB. HartJ. HoffmanD. HooverJ. JangW. KatzK. OvetskyM. RileyG. SethiA. TullyR. Villamarin-SalomonR. RubinsteinW. MaglottD.R. ClinVar: Public archive of interpretations of clinically relevant variants.Nucleic Acids Res.201644D1D862D86810.1093/nar/gkv122226582918
    [Google Scholar]
  6. AmbergerJ. BocchiniC.A. ScottA.F. HamoshA. McKusick’s online mendelian inheritance in man (OMIM(R)).Nucleic Acids Res.200937D793D79610.1093/nar/gkn66518842627
    [Google Scholar]
  7. StensonP.D. MortM. BallE.V. EvansK. HaydenM. HeywoodS. HussainM. PhillipsA.D. CooperD.N. The human gene mutation database: Towards a comprehensive repository of inherited mutation data for medical research, genetic diagnosis and next-generation sequencing studies.Hum. Genet.2017136666567710.1007/s00439‑017‑1779‑628349240
    [Google Scholar]
  8. FokkemaI.F.A.C. TaschnerP.E.M. SchaafsmaG.C.P. CelliJ. LarosJ.F.J. den DunnenJ.T. LOVD v.2.0: The next generation in gene variant databases.Hum. Mutat.201132555756310.1002/humu.2143821520333
    [Google Scholar]
  9. FirthH.V. RichardsS.M. BevanA.P. ClaytonS. CorpasM. RajanD. VoorenS.V. MoreauY. PettettR.M. CarterN.P. DECIPHER: Database of chromosomal imbalance and phenotype in humans using ensembl resources.Am. J. Hum. Genet.200984452453310.1016/j.ajhg.2009.03.01019344873
    [Google Scholar]
  10. MottazA. DavidF.P.A. VeutheyA.L. YipY.L. Easy retrieval of single amino-acid polymorphisms and phenotype information using SwissVar.Bioinformatics201026685185210.1093/bioinformatics/btq02820106818
    [Google Scholar]
  11. AutonA. BrooksL.D. DurbinR.M. A global reference for human genetic variation.Nature2015526687410.1038/nature15393
    [Google Scholar]
  12. WangQ. HoffmanP.E. CummingsB.B. AlföldiJ. FrancioliL.C. GauthierL.D. HillA.J. LuriaO.A.H. ArmeanI.M. BanksE. BergelsonL. CibulskisK. CollinsR.L. ConnollyK.M. CovarrubiasM. DalyM.J. DonnellyS. FarjounY. FerrieraS. GabrielS. GentryJ. GuptaN. JeandetT. KaplanD. LaricchiaK.M. LlanwarneC. MinikelE.V. MunshiR. NealeB.M. NovodS. PetrilloN. PoterbaT. RoazenD. Ruano-RubioV. SaltzmanA. SamochaK.E. SchleicherM. SeedC. SolomonsonM. SotoJ. TiaoG. TibbettsK. TolonenC. VittalC. WadeG. WangA. WareJ.S. WattsN.A. WeisburdB. WhiffinN. Aguilar SalinasC.A. AhmadT. AlbertC.M. ArdissinoD. AtzmonG. BarnardJ. BeaugerieL. BenjaminE.J. BoehnkeM. BonnycastleL.L. BottingerE.P. BowdenD.W. BownM.J. ChambersJ.C. ChanJ.C. ChasmanD. ChoJ. ChungM.K. CohenB. CorreaA. DabeleaD. DarbarD. DuggiralaR. DupuisJ. EllinorP.T. ElosuaR. ErdmannJ. EskoT. FärkkiläM. FlorezJ. FrankeA. GetzG. GlaserB. GlattS.J. GoldsteinD. GonzalezC. GroopL. HaimanC. HanisC. HarmsM. HiltunenM. HoliM.M. HultmanC.M. KallelaM. KaprioJ. KathiresanS. KimB-J. KimY.J. KirovG. KoonerJ. KoskinenS. KrumholzH.M. KugathasanS. KwakS.H. LaaksoM. LehtimäkiT. LoosR.J.F. LubitzS.A. MaR.C.W. MarrugatJ. MattilaK.M. McCarrollS. McCarthyM.I. McGovernD. McPhersonR. MeigsJ.B. MelanderO. MetspaluA. NilssonP.M. O’DonovanM.C. OngurD. OrozcoL. OwenM.J. PalmerC.N.A. PalotieA. ParkK.S. PatoC. PulverA.E. RahmanN. RemesA.M. RiouxJ.D. RipattiS. RodenD.M. SaleheenD. SalomaaV. SamaniN.J. ScharfJ. SchunkertH. ShoemakerM.B. SklarP. SoininenH. SokolH. SpectorT. SullivanP.F. SuvisaariJ. TaiE.S. TeoY.Y. TiinamaijaT. TsuangM. TurnerD. Tusie-LunaT. VartiainenE. WatkinsH. WeersmaR.K. WessmanM. WilsonJ.G. XavierR.J. VawterM.P. KarczewskiK.J. MacArthurD.G. Landscape of multi-nucleotide variants in 125,748 human exomes and 15,708 genomes.Nat. Commun.2020111253910.1038/s41467‑019‑12438‑532461613
    [Google Scholar]
  13. SherryS.T. WardM.H. KholodovM. BakerJ. PhanL. SmigielskiE.M. SirotkinK. dbSNP: The NCBI database of genetic variation.Nucleic Acids Res.200129130831110.1093/nar/29.1.30811125122
    [Google Scholar]
  14. NagasakiM. YasudaJ. KatsuokaF. NariaiN. KojimaK. KawaiY. KabataY.Y. YokozawaJ. DanjohI. SaitoS. SatoY. MimoriT. TsudaK. SaitoR. PanX. NishikawaS. ItoS. KurokiY. TanabeO. FuseN. KuriyamaS. KiyomotoH. HozawaA. MinegishiN. Douglas EngelJ. KinoshitaK. KureS. YaegashiN. TsuboiA. NagamiF. KawameH. TomitaH. TsujiI. NakayaJ. SugawaraJ. SuzukiK. KikuyaM. AbeM. NakayaN. OsumiN. YamashitaR. OgishimaS. TakaiT. TominagaT. TakiY. SuzukiY. YamamotoM. Rare variant discovery by deep whole-genome sequencing of 1,070 Japanese individuals.Nat. Commun.201561801810.1038/ncomms901826292667
    [Google Scholar]
  15. TaliunD. HarrisD.N. KesslerM.D. CarlsonJ. SzpiechZ.A. TorresR. TaliunS.A.G. CorveloA. GogartenS.M. KangH.M. PitsillidesA.N. LeFaiveJ. LeeS. TianX. BrowningB.L. DasS. EmdeA.K. ClarkeW.E. LoeschD.P. ShettyA.C. BlackwellT.W. SmithA.V. WongQ. LiuX. ConomosM.P. BoboD.M. AguetF. AlbertC. AlonsoA. ArdlieK.G. ArkingD.E. AslibekyanS. AuerP.L. BarnardJ. BarrR.G. BarwickL. BeckerL.C. BeerR.L. BenjaminE.J. BielakL.F. BlangeroJ. BoehnkeM. BowdenD.W. BrodyJ.A. Burcharde.g. CadeB.E. CasellaJ.F. ChalazanB. ChasmanD.I. ChenY.D.I. ChoM.H. ChoiS.H. ChungM.K. ClishC.B. CorreaA. CurranJ.E. CusterB. DarbarD. DayaM. de AndradeM. DeMeoD.L. DutcherS.K. EllinorP.T. EmeryL.S. EngC. FatkinD. FingerlinT. ForerL. FornageM. FranceschiniN. FuchsbergerC. FullertonS.M. GermerS. GladwinM.T. GottliebD.J. GuoX. HallM.E. HeJ. Heard-CostaN.L. HeckbertS.R. IrvinM.R. JohnsenJ.M. JohnsonA.D. KaplanR. KardiaS.L.R. KellyT. KellyS. KennyE.E. KielD.P. KlemmerR. KonkleB.A. KooperbergC. KöttgenA. LangeL.A. Lasky-SuJ. LevyD. LinX. LinK.H. LiuC. LoosR.J.F. GarmanL. GersztenR. LubitzS.A. LunettaK.L. MakA.C.Y. ManichaikulA. ManningA.K. MathiasR.A. McManusD.D. McGarveyS.T. MeigsJ.B. MeyersD.A. MikullaJ.L. MinearM.A. MitchellB.D. MohantyS. MontasserM.E. MontgomeryC. MorrisonA.C. MurabitoJ.M. NataleA. NatarajanP. NelsonS.C. NorthK.E. O’ConnellJ.R. PalmerN.D. PankratzN. PelosoG.M. PeyserP.A. PleinessJ. PostW.S. PsatyB.M. RaoD.C. RedlineS. ReinerA.P. RodenD. RotterJ.I. RuczinskiI. SarnowskiC. SchoenherrS. SchwartzD.A. SeoJ.S. SeshadriS. SheehanV.A. SheuW.H. ShoemakerM.B. SmithN.L. SmithJ.A. SotoodehniaN. StilpA.M. TangW. TaylorK.D. TelenM. ThorntonT.A. TracyR.P. Van Den BergD.J. VasanR.S. Viaud-MartinezK.A. VriezeS. WeeksD.E. WeirB.S. WeissS.T. WengL.C. WillerC.J. ZhangY. ZhaoX. ArnettD.K. Ashley-KochA.E. BarnesK.C. BoerwinkleE. GabrielS. GibbsR. RiceK.M. RichS.S. SilvermanE.K. QasbaP. GanW. AbeN. AlmasyL. AmentS. AndersonP. AnuguP. Applebaum-BowdenD. AssimesT. AvramopoulosD. Barron-CasellaE. BeatyT. BeckG. BeckerD. BeitelsheesA. BenosT. BezerraM. BisJ. BowlerR. BroeckelU. BroomeJ. BuntingK. BustamanteC. ButhE. CardwellJ. CareyV. CartyC. CasaburiR. CastaldiP. ChaffinM. ChangC. ChangY-C. ChavanS. ChenB-J. ChenW-M. ChuangL-M. ChungR-H. ComhairS. CornellE. CrandallC. CrapoJ. CurtisJ. DamcottC. DavidS. DavisC. FuentesL. DeBaunM. DekaR. DevineS. DuanQ. DuggiralaR. DurdaJ.P. EatonC. EkunweL. El BoueizA. ErzurumS. FarberC. FlickingerM. FornageM. FrazarC. FuM. FultonL. GaoS. GaoY. GassM. GelbB. GengX.P. GeraciM. GhoshA. GignouxC. GlahnD. GongD-W. GoringH. GrawS. GrineD. GuC.C. GuanY. GuptaN. HaesslerJ. HawleyN.L. HeavnerB. HerringtonD. HershC. HidalgoB. HixsonJ. HobbsB. HokansonJ. HongE. HothK. HsiungC.A. HungY-J. HustonH. HwuC.M. JacksonR. JainD. JhunM.A. JohnsonC. JohnstonR. JonesK. KathiresanS. KhanA. KimW. KinneyG. KramerH. LangeC. LangeE. LangeL. LaurieC. LeBoffM. LeeJ. LeeS.S. LeeW-J. LevineD. LewisJ. LiX. LiY. LinH. LinH. LinK.H. LiuS. LiuY. LiuY. LuoJ. MahaneyM. MakeB. MansonJ.A. MargolinL. MartinL. MathaiS. MayS. McArdleP. McDonaldM-L. McFarlandS. McGoldrickD. McHughC. MeiH. MestroniL. MinN. MinsterR.L. MollM. MoscatiA. MusaniS. MwasongweS. MychaleckyjJ.C. NadkarniG. NaikR. NaseriT. NekhaiS. NeltnerB. Ochs-BalcomH. PaikD. PankowJ. ParsaA. PeraltaJ.M. PerezM. PerryJ. PetersU. PhillipsL.S. PollinT. BeckerJ.P. BoorgulaM.P. PreussM. QiaoD. QinZ. RafaelsN. RaffieldL. Rasmussen-TorvikL. RatanA. ReedR. ReganE. ReupenaM.S. RoselliC. RussellP. RuuskaS. RyanK. SabinoE.C. SaleheenD. SalimiS. SalzbergS. SandowK. SankaranV.G. SchellerC. SchmidtE. SchwanderK. SciurbaF. SeidmanC. SeidmanJ. ShermanS.L. ShettyA. SheuW.H-H. SilverB. SmithJ. SmithT. SmollerS. SnivelyB. SnyderM. SoferT. StormG. StreetenE. SungY.J. SylviaJ. SzpiroA. SztalrydC. TangH. TaubM. TaylorM. TaylorS. ThrelkeldM. TinkerL. TirschwellD. TishkoffS. TiwariH. TongC. TsaiM. VaidyaD. VandeHaarP. WalkerT. WallaceR. WaltsA. WangF.F. WangH. WatsonK. WesselJ. WilliamsK. WilliamsL.K. WilsonC. WuJ. XuH. YanekL. YangI. YangR. ZaghloulN. ZekavatM. ZhaoS.X. ZhaoW. ZhiD. ZhouX. ZhuX. PapanicolaouG.J. NickersonD.A. BrowningS.R. ZodyM.C. ZöllnerS. WilsonJ.G. CupplesL.A. LaurieC.C. JaquishC.E. HernandezR.D. O’ConnorT.D. AbecasisG.R. Sequencing of 53,831 diverse genomes from the NHLBI TOPMed Program.Nature2021590784529029910.1038/s41586‑021‑03205‑y33568819
    [Google Scholar]
  16. WallJ.D. StawiskiE.W. RatanA. KimH.L. KimC. GuptaR. SuryamohanK. GusarevaE.S. PurbojatiR.W. BhangaleT. StepanovV. KharkovV. SchröderM.S. RamprasadV. TomJ. DurinckS. BeiQ. LiJ. GuilloryJ. PhalkeS. BasuA. StinsonJ. NairS. MalaichamyS. BiswasN.K. ChambersJ.C. ChengK.C. GeorgeJ.T. KhorS.S. KimJ-I. ChoB. MenonR. SattibabuT. BassiA. DeshmukhM. VermaA. GopalanV. ShinJ-Y. PratapneniM. SanthoshS. TokunagaK. Md-ZainB.M. ChanK.G. ParaniM. NatarajanP. HauserM. AllinghamR.R. Santiago-TurlaC. GhoshA. GaddeS.G.K. FuchsbergerC. ForerL. SchoenherrS. SudoyoH. LansingJ.S. FriedlaenderJ. KokiG. CoxM.P. HammerM. KarafetT. AngK.C. MehdiS.Q. RadhaV. MohanV. MajumderP.P. SeshagiriS. SeoJ-S. SchusterS.C. PetersonA.S. The genomeAsia 100K Project enables genetic discoveries across Asia.Nature2019576778510611110.1038/s41586‑019‑1793‑z31802016
    [Google Scholar]
  17. VaserR. AdusumalliS. LengS.N. SikicM. NgP.C. SIFT missense predictions for genomes.Nat. Protoc.20161111910.1038/nprot.2015.12326633127
    [Google Scholar]
  18. ChunS. FayJ.C. Identification of deleterious mutations within three human genomes.Genome Res.20091991553156110.1101/gr.092619.10919602639
    [Google Scholar]
  19. AdzhubeiI. JordanD.M. SunyaevS.R. Predicting functional effect of human missense mutations using PolyPhen-2.Curr Protoc Hum Genet2013201310.1002/0471142905.hg0720s76
    [Google Scholar]
  20. SchwarzJ.M. CooperD.N. SchuelkeM. SeelowD. MutationTaster2: Mutation prediction for the deep-sequencing age.Nat. Methods201411436136210.1038/nmeth.289024681721
    [Google Scholar]
  21. RichardsS. AzizN. BaleS. BickD. DasS. Gastier-FosterJ. GrodyW.W. HegdeM. LyonE. SpectorE. VoelkerdingK. RehmH.L. Standards and guidelines for the interpretation of sequence variants: A joint consensus recommendation of the american college of medical genetics and genomics and the association for molecular pathology.Genet. Med.201517540542410.1038/gim.2015.3025741868
    [Google Scholar]
  22. WaterhouseA. BertoniM. BienertS. StuderG. TaurielloG. GumiennyR. HeerF.T. de BeerT.A.P. RempferC. BordoliL. LeporeR. SchwedeT. SWISS-MODEL: Homology modelling of protein structures and complexes.Nucleic Acids Res.201846W1W296W30310.1093/nar/gky42729788355
    [Google Scholar]
  23. RigsbyR.E. ParkerA.B. Using the P y MOL application to reinforce visual understanding of protein structure.Biochem. Mol. Biol. Educ.201644543343710.1002/bmb.2096627241834
    [Google Scholar]
  24. SzklarczykD. FranceschiniA. WyderS. ForslundK. HellerD. Huerta-CepasJ. SimonovicM. RothA. SantosA. TsafouK.P. KuhnM. BorkP. JensenL.J. von MeringC. STRING v10: protein–protein interaction networks, integrated over the tree of life.Nucleic Acids Res.201543D1D447D45210.1093/nar/gku100325352553
    [Google Scholar]
  25. TianW. ChenC. LeiX. ZhaoJ. LiangJ. CASTp 3.0: Computed atlas of surface topography of proteins.Nucleic Acids Res.201846W1W363W36710.1093/nar/gky47329860391
    [Google Scholar]
  26. SibandaB.L. CritchlowS.E. BegunJ. PeiX.Y. JacksonS.P. BlundellT.L. PellegriniL. Crystal structure of an Xrcc4-DNA ligase IV complex.Nat. Struct. Biol.20018121015101910.1038/nsb72511702069
    [Google Scholar]
  27. LaskowskiR.A. SwindellsM.B. LigPlot+: Multiple ligand-protein interaction diagrams for drug discovery.J. Chem. Inf. Model.201151102778278610.1021/ci200227u21919503
    [Google Scholar]
  28. MadhuR. BeamanG.M. ChandlerK.E. O’SullivanJ. UrquhartJ.E. KhanN. MartindaleE. BriggsT.A. Clayton-SmithJ. HiggsJ. BatraG. KerrB. WoolfA.S. NewmanW.G. Ligase IV syndrome can present with microcephaly and radial ray anomalies similar to Fanconi anaemia plus fatal kidney malformations.Eur. J. Med. Genet.202063910397410.1016/j.ejmg.2020.10397432534991
    [Google Scholar]
  29. Ben-OmranT.I. CerosalettiK. ConcannonP. WeitzmanS. NezaratiM.M. A patient with mutations in DNA Ligase IV: Clinical features and overlap with Nijmegen breakage syndrome.Am. J. Med. Genet. A.2005137A328328710.1002/ajmg.a.3086916088910
    [Google Scholar]
  30. O’DriscollM. CerosalettiK.M. GirardP.M. DaiY. StummM. KyselaB. HirschB. GenneryA. PalmerS.E. SeidelJ. GattiR.A. VaronR. OettingerM.A. NeitzelH. JeggoP.A. ConcannonP. DNA ligase IV mutations identified in patients exhibiting developmental delay and immunodeficiency.Mol. Cell2001861175118510.1016/S1097‑2765(01)00408‑711779494
    [Google Scholar]
  31. SchoberS. SchilbachK. DoeringM. StanchiC.K.M. HolzerU. KasteleinerP. SchittenhelmJ. SchaeferJ.F. MuellerI. LangP. HandgretingerR. Allogeneic hematopoietic stem cell transplantation in two brothers with DNA ligase IV deficiency: A case report and review of the literature.BMC Pediatr.201919134610.1186/s12887‑019‑1724‑z31604460
    [Google Scholar]
  32. ChadhaP. ThibodeauR. JafroodifarA. MajmudarA. A case report of an adolescent with ligase-4 deficiency and the potential dangers of ionizing radiation in this rare patient population.Radiol. Case Rep.202116102890289310.1016/j.radcr.2021.07.00234401020
    [Google Scholar]
  33. ChistiakovD.A. Ligase IV syndrome.Dis. DNA Repair. AhmadS.I. New York, NYSpringer201017518510.1007/978‑1‑4419‑6448‑9_16
    [Google Scholar]
  34. HeJ. TianX. LuoT. ZouR. YinZ. ChenK. ZhuC. HeX. Allogeneic hematopoietic stem cell transplantation corrects ligase IV deficiency.Transpl. Immunol.20238010189710.1016/j.trim.2023.10189737437665
    [Google Scholar]
  35. IyengarJ.J. QuinonezS.C. RazumilavaN. SoysterB. SmithY.R. Vander LugtM.T. WyckoffJ. DNA ligase IV syndrome: A rare cause of growth failure & hypogonadism.AACE Clin. Case Rep.201952e154e15810.4158/ACCR‑2018‑029131967023
    [Google Scholar]
  36. SunB. ChenQ. WangY. LiuD. HouJ. WangW. YingW. HuiX. ZhouQ. SunJ. WangX. LIG4 syndrome: Clinical and molecular characterization in a Chinese cohort.Orphanet J. Rare Dis.202015113110.1186/s13023‑020‑01411‑x32471509
    [Google Scholar]
  37. CastroA.C. MaiaR. BatalhaS. FreixoJ.P. MartinsC. NevesC. CordeiroA.I. NevesJ.F. Case report: Wide spectrum of manifestations of ligase IV deficiency: Report of 3 cases.Front. Immunol.20221386972810.3389/fimmu.2022.86972835592332
    [Google Scholar]
  38. JauchA.J. BignucoloO. SekiS. GhraichyM. DelmonteO.M. von NiederhäusernV. HigginsR. GhoshA. NishizawaM. TanakaM. BaldrichA. KöppenJ. HirsigerJ.R. HupferR. EhlS. Rensing-EhlA. HopferH. PrinceS.S. DaleyS.R. MarquardsenF.A. MeyerB.J. TammM. DaikelerT.D. DieschT. KühneT. HelblingA. BerkemeierC. HeijnenI. NavariniA.A. TrückJ. de VillartayJ.P. OxeniusA. BergerC.T. HessC. NotarangeloL.D. YamamotoH. RecherM. Autoimmunity and immunodeficiency associated with monoallelic LIG4 mutations via haploinsufficiency.J. Allergy Clin. Immunol.2023152250051610.1016/j.jaci.2023.03.02237004747
    [Google Scholar]
  39. LuoX. LiuQ. JiangJ. TangW. DingY. ZhouL. YuJ. TangX. AnY. ZhaoX. Characterization of a cohort of patients with LIG4 deficiency reveals the founder effect of p.R278L, unique to the chinese population.Front. Immunol.20211269599310.3389/fimmu.2021.69599334630384
    [Google Scholar]
  40. LelieveldS.H. SpielmannM. MundlosS. VeltmanJ.A. GilissenC. Comparison of exome and genome sequencing technologies for the complete capture of protein-coding regions.Hum. Mutat.201536881582210.1002/humu.2281325973577
    [Google Scholar]
  41. HelledayT. LoJ. VangentD. EngelwardB. DNA double-strand break repair: From mechanistic understanding to cancer treatment.DNA Repair20076792393510.1016/j.dnarep.2007.02.00617363343
    [Google Scholar]
  42. LieberM.R. MaY. PannickeU. SchwarzK. The mechanism of vertebrate nonhomologous DNA end joining and its role in V(D)J recombination.DNA Repair200438-981782610.1016/j.dnarep.2004.03.01515279766
    [Google Scholar]
  43. MaY. PannickeU. SchwarzK. LieberM.R. Hairpin opening and overhang processing by an Artemis/DNA-dependent protein kinase complex in nonhomologous end joining and V(D)J recombination.Cell2002108678179410.1016/S0092‑8674(02)00671‑211955432
    [Google Scholar]
  44. KyselaB. DohertyA.J. ChovanecM. StiffT. Ameer-BegS.M. VojnovicB. GirardP.M. JeggoP.A. Ku stimulation of DNA ligase IV-dependent ligation requires inward movement along the DNA molecule.J. Biol. Chem.200327825224662247410.1074/jbc.M30327320012682039
    [Google Scholar]
  45. AdachiN. IshinoT. IshiiY. TakedaS. KoyamaH. DNA ligase IV-deficient cells are more resistant to ionizing radiation in the absence of Ku70: Implications for DNA double-strand break repair.Proc. Natl. Acad. Sci.20019821121091211310.1073/pnas.20127109811593023
    [Google Scholar]
  46. SadoK. AyusawaD. EnomotoA. SuganumaT. OshimuraM. SatoK. KoyamaH. Identification of a mutated DNA ligase IV gene in the X-ray-hypersensitive mutant SX10 of mouse FM3A cells.J. Biol. Chem.2001276139742974810.1074/jbc.M01053020011133995
    [Google Scholar]
  47. TilgnerK. NeganovaI. GimenoM.I. AL-AamaJ.Y. BurksD. YungS. SinghapolC. SaretzkiG. EvansJ. GorbunovaV. GenneryA. PrzyborskiS. StojkovicM. ArmstrongL. JeggoP. LakoM. A human iPSC model of Ligase IV deficiency reveals an important role for NHEJ-mediated-DSB repair in the survival and genomic stability of induced pluripotent stem cells and emerging haematopoietic progenitors.Cell Death Differ.20132081089110010.1038/cdd.2013.4423722522
    [Google Scholar]
  48. BarnesD.E. StampG. RosewellI. DenzelA. LindahlT. Targeted disruption of the gene encoding DNA ligase IV leads to lethality in embryonic mice.Curr. Biol.19988251395139810.1016/S0960‑9822(98)00021‑99889105
    [Google Scholar]
  49. FrankK.M. SekiguchiJ.M. SeidlK.J. SwatW. RathbunG.A. ChengH.L. DavidsonL. KangalooL. AltF.W. Late embryonic lethality and impaired V (D)J recombination in mice lacking DNA ligase IV.Nature1998396670717317710.1038/241729823897
    [Google Scholar]
  50. FrankK.M. SharplessN.E. GaoY. SekiguchiJ.M. FergusonD.O. ZhuC. ManisJ.P. HornerJ. DePinhoR.A. AltF.W. DNA ligase IV deficiency in mice leads to defective neurogenesis and embryonic lethality via the p53 pathway.Mol. Cell200056993100210.1016/S1097‑2765(00)80264‑610911993
    [Google Scholar]
  51. SharplessN.E. FergusonD.O. O’HaganR.C. CastrillonD.H. LeeC. FaraziP.A. AlsonS. FlemingJ. MortonC.C. FrankK. ChinL. AltF.W. DePinhoR.A. Impaired nonhomologous end-joining provokes soft tissue sarcomas harboring chromosomal translocations, amplifications, and deletions.Mol. Cell2001861187119610.1016/S1097‑2765(01)00425‑711779495
    [Google Scholar]
  52. NijnikA. WoodbineL. MarchettiC. DawsonS. LambeT. LiuC. RodriguesN.P. CrockfordT.L. CabuyE. VindigniA. EnverT. BellJ.I. SlijepcevicP. GoodnowC.C. JeggoP.A. CornallR.J. DNA repair is limiting for haematopoietic stem cells during ageing.Nature2007447714568669010.1038/nature0587517554302
    [Google Scholar]
  53. GatzS.A. JuL. GruberR. HoffmannE. CarrA.M. WangZ.Q. LiuC. JeggoP.A. Requirement for DNA ligase IV during embryonic neuronal development.J. Neurosci.20113127100881010010.1523/JNEUROSCI.1324‑11.201121734301
    [Google Scholar]
  54. RiballoE. CritchlowS.E. TeoS-H. DohertyA.J. PriestleyA. BroughtonB. KyselaB. BeamishH. PlowmanN. ArlettC.F. LehmannA.R. JacksonS.P. JeggoP.A. Identification of a defect in DNA ligase IV in a radiosensitive leukaemia patient.Curr. Biol.1999913699S210.1016/S0960‑9822(99)80311‑X10395545
    [Google Scholar]
  55. PlowmanP.N. BridgesB.A. ArlettC.F. HinneyA. KingstonJ.E. An instance of clinical radiation morbidity and cellular radiosensitivity, not associated with ataxia-telangiectasia.Br. J. Radiol.19906375262462810.1259/0007‑1285‑63‑752‑6242400879
    [Google Scholar]
  56. RucciF. NotarangeloL.D. FazeliA. PatriziL. HickernellT. PaganiniT. CoakleyK.M. DetreC. KeszeiM. WalterJ.E. FeldmanL. ChengH.L. PolianiP.L. WangJ.H. BalterB.B. RecherM. AnderssonE.M. ZhaS. GilianiS. TerhorstC. AltF.W. YanC.T. Homozygous DNA ligase IV R278H mutation in mice leads to leaky SCID and represents a model for human LIG4 syndrome.Proc. Natl. Acad. Sci.201010773024302910.1073/pnas.091486510720133615
    [Google Scholar]
  57. CritchlowS.E. BowaterR.P. JacksonS.P. Mammalian DNA double-strand break repair protein XRCC4 interacts with DNA ligase IV.Curr. Biol.19977858859810.1016/S0960‑9822(06)00258‑29259561
    [Google Scholar]
  58. GrawunderU. WilmM. WuX. KuleszaP. WilsonT.E. MannM. LieberM.R. Activity of DNA ligase IV stimulated by complex formation with XRCC4 protein in mammalian cells.Nature1997388664149249510.1038/413589242410
    [Google Scholar]
  59. Wolska-KuśnierzB. GregorekH. ChrzanowskaK. PiątosaB. PietruchaB. PliszkaH.E. PacM. DreszlerK.M. KostyuchenkoL. PasicS. MarodiL. BelohradskyB.H. ČižnárP. ShcherbinaA. KilicS.S. BaumannU. SeidelM.G. GenneryA.R. SyczewskaM. MikołućB. KałwakK. StyczyńskiJ. PieczonkaA. DrabkoK. WakulińskaA. GathmannB. AlbertM.H. SkarżyńskaU. BernatowskaE. Nijmegen breakage syndrome: Clinical and immunological features, long-term outcome and treatment options – A retrospective analysis.J. Clin. Immunol.201535653854910.1007/s10875‑015‑0186‑926271390
    [Google Scholar]
  60. SlatterM.A. GenneryA.R. Primary immunodeficiencies associated with DNA-repair disorders.Expert Rev. Mol. Med.201012e910.1017/S146239941000141920298636
    [Google Scholar]
  61. O’DriscollM. GenneryA.R. SeidelJ. ConcannonP. JeggoP.A. An overview of three new disorders associated with genetic instability: LIG4 syndrome, RS-SCID and ATR-Seckel syndrome.DNA Repair200438-91227123510.1016/j.dnarep.2004.03.025
    [Google Scholar]
  62. GuoC. NakazawaY. WoodbineL. BjörkmanA. ShimadaM. FawcettH. JiaN. OhyamaK. LiT.S. NagayamaY. MitsutakeN. HammarströmP.Q. GenneryA.R. LehmannA.R. JeggoP.A. OgiT. XRCC4 deficiency in human subjects causes a marked neurological phenotype but no overt immunodeficiency.J. Allergy Clin. Immunol.201513641007101710.1016/j.jaci.2015.06.00726255102
    [Google Scholar]
  63. KangS-H.L. SchefferA. OuZ. LiJ. ScagliaF. BelmontJ. LalaniS.R. RoederE. EncisoV. BraddockS. BuchholzJ. VachaS. ChinaultA.C. CheungS.W. BacinoC.A. Identification of proximal 1p36 deletions using array-CGH: A possible new syndrome.Clin. Genet.200772432933810.1111/j.1399‑0004.2007.00876.x17850629
    [Google Scholar]
  64. BalasubramanianM. DingemansA.J.M. AlbabaS. RichardsonR. YatesT.M. CoxH. DouzgouS. ArmstrongR. SansburyF.H. BurkeK.B. FryA.E. RaggeN. SharifS. FosterA. GiovannoliD.S.A. ElouejS. VasudevanP. MansourS. WilsonK. StewartH. HeideS. NavaC. KerenB. DemirdasS. BrooksA.S. VincentM. IsidorB. KüryS. SchoutenM. LeendersE. ChungW.K. HaeringenA. ScheffnerT. DebrayF.G. WhiteS.M. PalafollM.I.V. PfundtR. Newbury-EcobR. KleefstraT. Comprehensive study of 28 individuals with SIN3A-related disorder underscoring the associated mild cognitive and distinctive facial phenotype.Eur. J. Hum. Genet.202129462563610.1038/s41431‑020‑00769‑733437032
    [Google Scholar]
  65. ShinawiM. LiuP. KangS.H.L. ShenJ. BelmontJ.W. ScottD.A. ProbstF.J. CraigenW.J. GrahamB.H. PursleyA. ClarkG. LeeJ. ProudM. StoccoA. RodriguezD.L. KozelB.A. SparaganaS. RoederE.R. McGrewS.G. KurczynskiT.W. AllisonL.J. AmatoS. SavageS. PatelA. StankiewiczP. BeaudetA.L. CheungS.W. LupskiJ.R. Recurrent reciprocal 16p11.2 rearrangements associated with global developmental delay, behavioural problems, dysmorphism, epilepsy, and abnormal head size.J. Med. Genet.201047533234110.1136/jmg.2009.07301519914906
    [Google Scholar]
  66. MyersKC SauterS ZhangX BleesingJJ DaviesSM WellsSI Impaired immune function in children and adults with Fanconi anemia.Pediatr Blood Cancer20176410.1002/pbc.2659910.1002/pbc.26599
    [Google Scholar]
  67. CowanM.J. GenneryA.R. Radiation-sensitive severe combined immunodeficiency: The arguments for and against conditioning before hematopoietic cell transplantation—what to do?J. Allergy Clin. Immunol.201513651178118510.1016/j.jaci.2015.04.02726055221
    [Google Scholar]
  68. UnalS. CerosalettiK. Uckan-CetinkayaD. CetinM. GumrukF. A novel mutation in a family with DNA ligase IV deficiency syndrome.Pediatr. Blood Cancer200953348248410.1002/pbc.2203119418549
    [Google Scholar]
  69. EndersA. FischP. SchwarzK. DuffnerU. PannickeU. NikolopoulosE. PetersA. Orlowska-VolkM. SchindlerD. FriedrichW. SelleB. NiemeyerC. EhlS. A severe form of human combined immunodeficiency due to mutations in DNA ligase IV.J. Immunol.200617685060506810.4049/jimmunol.176.8.506016585603
    [Google Scholar]
  70. StraathofK.C. RaoK. EyrichM. HaleG. BirdP. BerrieE. BrownL. AdamsS. SchlegelP.G. GouldenN. GasparH.B. GenneryA.R. LandaisP. Daviese.g. BrennerM.K. VeysP.A. AmroliaP.J. Haemopoietic stem-cell transplantation with antibody-based minimal-intensity conditioning: A phase 1/2 study.Lancet2009374969391292010.1016/S0140‑6736(09)60945‑419729196
    [Google Scholar]
  71. GruhnB. SeidelJ. ZintlF. VaronR. TönniesH. NeitzelH. BechtoldA. HoehnH. SchindlerD. Successful bone marrow transplantation in a patient with DNA ligase IV deficiency and bone marrow failure.Orphanet J. Rare Dis.200721510.1186/1750‑1172‑2‑517224058
    [Google Scholar]
  72. GrunebaumE. BatesA. RoifmanC.M. Omenn syndrome is associated with mutations in DNA ligase IV.J. Allergy Clin. Immunol.200812261219122010.1016/j.jaci.2008.08.03118845326
    [Google Scholar]
  73. BuckD. MoshousD. de ChassevalR. MaY. le DeistF. Cavazzana-CalvoM. FischerA. CasanovaJ.L. LieberM.R. de VillartayJ.P. Severe combined immunodeficiency and microcephaly in siblings with hypomorphic mutations in DNA ligase IV.Eur. J. Immunol.200636122423510.1002/eji.20053540116358361
    [Google Scholar]
  74. TamuraS. HiguchiK. TamakiM. InoueC. AwazawaR. MitsukiN. NakazawaY. MishimaH. TakahashiK. KondoO. ImaiK. MorioT. OharaO. OgiT. FurukawaF. InoueM. YoshiuraK. KanazawaN. Novel compound heterozygous DNA ligase IV mutations in an adolescent with a slowly-progressing radiosensitive-severe combined immunodeficiency.Clin. Immunol.2015160225526010.1016/j.clim.2015.07.00426172957
    [Google Scholar]
  75. van der BurgM. van VeelenL.R. VerkaikN.S. WiegantW.W. HartwigN.G. BarendregtB.H. BrugmansL. RaamsA. JaspersN.G. ZdzienickaM.Z. van DongenJ.J. van GentD.C. A new type of radiosensitive T-B-NK+ severe combined immunodeficiency caused by a LIG4 mutation.J. Clin. Invest.2005116113714510.1172/JCI2612116357942
    [Google Scholar]
  76. NadeauM-F. MasséL. ArgumedesM. VerretC. Education for students with neurodevelopmental disabilities—Resources and educational adjustments.Handbook of Clinical NeurologyElsevier202017436937810.1016/B978‑0‑444‑64148‑9.00027‑2
    [Google Scholar]
/content/journals/cpr/10.2174/0115733963285549240328083623
Loading
/content/journals/cpr/10.2174/0115733963285549240328083623
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test