Skip to content
2000
Volume 24, Issue 10
  • ISSN: 1389-2037
  • E-ISSN: 1875-5550

Abstract

Nowadays, discovering an effective and safe anticancer medication is one of the major challenges. Premature death due to the unidirectional toxicity of conventional therapy is common in cancer patients with poor health status. Plants have been used as medicine since prehistoric times, and extensive research on the anticancer properties of various bioactive phytomolecules is ongoing. Pentacyclic triterpenoids are secondary metabolites of plants with well-known cytotoxic and chemopreventive properties established in numerous cancer research studies. The lupane, oleanane, and ursane groups of these triterpenoids have been well-studied in recent decades for their potential antitumor activity. This review delves into the molecular machinery governing plant-derived triterpenes' anticancer efficacy. The highlighted mechanisms are antiproliferative activity, induction of apoptosis through regulation of BCL-2 and BH3 family proteins, modulation of the inflammatory pathway, interference with cell invagination and inhibition of metastasis. Lack of solubility in mostly used biological solvents is the major barrier to the therapeutic progress of these triterpenoids. This review also highlights some probable ways to mitigate this issue with the help of nanotechnology and the modification of their physical forms.

Loading

Article metrics loading...

/content/journals/cpps/10.2174/1389203724666230418123409
2023-12-01
2025-11-01
Loading full text...

Full text loading...

/content/journals/cpps/10.2174/1389203724666230418123409
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test