Skip to content
2000
Volume 20, Issue 6
  • ISSN: 1389-2037
  • E-ISSN: 1875-5550

Abstract

A major question in cell and cancer biology is concerned with understanding the flow of information from gene to protein. Indeed, many studies indicate that the proteome can be decoupled from the transcriptome. A major source of this decoupling is post-transcriptional regulation. The eukaryotic translation initiation factor eIF4E serves as an excellent example of a protein that can modulate the proteome at the post-transcriptional level. eIF4E is elevated in many cancers thus highlighting the relevance of this mode of control to biology. In this review, we provide a brief overview of various functions of eIF4E in RNA metabolism e.g. in nuclear-cytoplasmic RNA export, translation, RNA stability and/or sequestration. We focus on the modalities of eIF4E regulation at the biochemical and particularly structural level. In this instance, we describe not only the importance for the m7Gcap eIF4E interaction but also of recently discovered non-traditional RNA-eIF4E interactions as well as cap-independent activities of eIF4E. Further, we describe several distinct structural modalities used by the cell and some viruses to regulate or co-opt eIF4E, substantially extending the types of proteins that can regulate eIF4E from the traditional eIF4E-binding proteins (e.g. 4E-BP1 and eIF4G). Finally, we provide an overview of the results of targeting eIF4E activity in the clinic.

Loading

Article metrics loading...

/content/journals/cpps/10.2174/1389203720666190110142438
2019-06-01
2025-10-23
Loading full text...

Full text loading...

/content/journals/cpps/10.2174/1389203720666190110142438
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test