Skip to content
2000
Volume 20, Issue 1
  • ISSN: 1389-2037
  • E-ISSN: 1875-5550

Abstract

Background: Mixed-mode chromatography is becoming an important tool for downstream process purification, as it provides the selectivity and robustness unmatched by conventional singlemode chromatographic methods. The joint action of multiple functionalities present on the ligands of mixed-mode chromatography matrices effectively enhances the separation of target molecules from impurities. Material and Methods: Using Nuvia cPrime as an example, we elucidate the separation principles of hydrophobic cation exchange mixed-mode chromatography and its difference from traditional strong cation exchangers. We have developed a Nuvia cPrime based polish purification step specifically for the removal of a major process contaminant, which has an isoelectric point similar to that of the target monoclonal IgM molecule. Additional purification was accomplished using a second mixed-mode chromatography column packed with Ceramic Hydroxyapatite. Conclusion: The monoclonal IgM prepared with this new process fully retained its biological activity and was free of high molecular weight aggregates, a product quality that was not achievable in previous attempts using traditional ion exchange or hydrophobic interaction chromatography.

Loading

Article metrics loading...

/content/journals/cpps/10.2174/1389203718666171017130506
2019-01-01
2025-09-04
Loading full text...

Full text loading...

/content/journals/cpps/10.2174/1389203718666171017130506
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test