Skip to content
2000
Volume 8, Issue 5
  • ISSN: 1389-2037
  • E-ISSN: 1875-5550

Abstract

Burn-induced immunosuppression not only increases susceptibility to infection, but also predisposes burn patients to related adverse sequelae, including systemic inflammatory response syndrome and sepsis. Although burn-related immunosuppression is not fully understood, it is characterized by decreased T- and B-lymphocyte function and by impaired functions of circulating leukocytes and complement. Alterations in defensins, a family of cationic, naturally occurring antimicrobial peptides, may underlie these immune deficiency patterns. Defensins are considered important components of the innate immune system, as they inhibit bacterial, fungal, and viral colonization. They also chemoattract immature dendritic cells and T lymphocytes, recruit neutrophils, macrophages, and monocytes, modulate complement and adjuvant activity, and promote inflammation and wound healing. Infectious states are associated with upregulation of circulating defensins, which suggests an underlying antimicrobial role. In addition, data from our laboratory demonstrated diminished levels of certain defensins in burned tissue. The inference is that decreased defensin levels in burn injury may facilitate infection and subsequent sepsis. It may also alter functions of T- and B-lymphocytes, neutrophils, macrophages, and complement, thereby contributing to the pathophysiology of burn-related systemic inflammatory responses. This article is a comprehensive review on the role of antimicrobial peptides in burns and wounds.

Loading

Article metrics loading...

/content/journals/cpps/10.2174/138920307782411428
2007-10-01
2025-11-08
Loading full text...

Full text loading...

/content/journals/cpps/10.2174/138920307782411428
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test